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Topics

• A short guide to literature

• Why ‘unconventional models of computation’?

• Fundamental mathematical constraints on computation

• Natural algorithms

• DNA computation

• P systems

• Fundamental physical constraints on computation

• The billiard-ball model of computation

• Quantum computation

• Relativistic computation

• Cellular automata

• Potential future computing technologies

• Implications for the mind theories
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Format

The course will consist of:

1. Lectures introducing each topic and reviewing the readings

2. Reading assignments from the primary research literature

3. Written assignments to encourage and verify participation

4. Final project

5. Written exam with questions from the topics discussed in class
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Assessment

You will have weekly reading assignments, fortnightly written

assignments, each worth 4%, and a project worth 35%.

You will be given a few papers from the primary research literature

to read every week. Skim through the readings, and read more

thoroughly, at your leisure, the ones that you think you will get

most out of. Don’t worry if you don’t understand every bit of what

you read. In this course we will be reading materials that span a

wide range of levels of depth and sophistication, and not everyone

will understand every phrase and formula in every paper.

The exam is worth 40%.
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In the written assignments (1-2 pages) you may do one of the

following:

1. Summarize what you learned from the fortnight’s lectures

and/or readings.

2. Write a summary, review, or critique of one or more of the

articles/chapters that you read.

3. Describe and elaborate on any creative or interesting

ideas/thoughts relating to the subject matter that might have

been stimulated in your mind as you were listening

to/reading/reflecting on the material.

4. Set up and carry out any interesting analysis, calculation or

simulation relating to any of the quantitative/technical ideas

covered during the fortnight.

5. Correct any statement that was made in class or in one of the

readings which in your opinion is wrong or inaccurate (explain

why).

6. Do a bit of research on your own. Summarize what you learned

and cite your references.
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A Short Guide to Literature

Textbook

C. S. Calude, G. Păun. Computing with Cells and Atoms, Taylor &

Francis Publishers, London, 2001.

Recommended Books

• J. Gruska. Quantum Computing, McGraw-Hill, London, 1999.

The most comprehensive textbook in Quantum Computing.

• J. G. Hey and R. W. Allen, (eds.). Feynman Lectures on

Computation, Addison-Wesley, Reading, Massachusetts, 1996.

Feynman’s lecture notes from the course “The Potentialities and

Limitations of Computing Machines” taught at Caltech in the early

eighties.
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• J. G. Hey (ed.). Feynman and Computation. Exploring the

Limits of Computers, Perseus Books, Reading, Massachusetts,

1999.

Companion volume to Feynman Lectures on Computation, this book

collects old and recent articles on the physics of computing by

Feynman and his colleagues in physics, electrical engineering, and

computer science who were guest lecturers in his course.

• Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing. New

Computing Paradigms, Springer-Verlag, Berlin, 1998.

The best textbook in DNA Computing.

• C. P. Williams, S. H. Clearwater. Explorations in Quantum

Computing, Springer-Verlag, New York, 1997.

A very good book in Quantum Computing which comes with

software which some may be interested in playing with.

• C. P. Williams, S. H. Clearwater. Ultimate Zero and One:

Computing at the Quantum Frontier, Springer-Verlag,

Heidelberg, 2000.

A continuation of Explorations in Quantum Computing.
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Projects

• Improve the P system implementation of Bead-Sort by reducing

the number of symbols involved (in symport, antiport) close to

2 (as in biology). Also, do a more precise time complexity

analysis of Bead-Sort by taking into consideration, factors such

as air friction which affect the bead fall.

• Simulate using a CA, the physical system used to solve SAT.

• An analog electrical circuit for solving the ‘Graph Connectivity’

problem was discussed in class. Describe a similar approach to

solve the ‘Maze Problem’: Given a maze, find a route leading

from the source to the destination.

• Simulate using a CA, the liquid-based natural algorithm for

finding the average of n integers.

• Is it possible to imagine a ‘natural’ representation of text? If so,

construct natural algorithms to do fast text pattern matching.

• Present a review of DNA computing approaches to solve at least

five interesting “hard” computing problems (other than those

discussed in class).

• Explore natural physical phenomena (other than beads falling

down) that exhibit ‘sorting’ capability. Describe in detail one

such phenomenon and a possible implementation.

• An approach to solve the Travelling Salesman problem (TSP)

using a Particle Physics metaphor was discussed in class.

Imagine yet another physics metaphor to solve TSP and

simulate it.

• Explore problems (other than sorting) that can be solved using
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beads and rods. Describe a beads-and-rods solution to one such

problem (it should exhibit some ‘natural law’ in action).

• Critical review of Physical Church-Turing Thesis.

• Critical review of an attempt to break the Turing barrier.

• Program for a non-trivial quantum algorithm.

• Analysis of the capability of a restricted class of quantum

algorithms.

• Analysis of randomness in quantum computation.

• Is quantum computation relevant for the brain activity?
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Why Unconventional

Models of Computation?

The computer seems to be the only important instrument ever to

get exponentially better as it gets cheaper. Its capacity for handling

information has been growing about ten million times faster than it

did in nervous systems during our entire evolution. The power

• doubled every two years up until 1980s,

• doubled every 18 months in the 1980s (Gordon Moore’s 1965

law), and

• is now doubling each year.

By 1993 personal computers provided 10 MIPS (MIPS = million of

instructions per second), by 1995 it was 30 MIPS, in 1997 it was

over 100 MIPS, now it’s about 200 MIPS.
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For the sake of a comparison: the human retina uses about 1,000

MIPS to handle edge and motion detectors, while the whole human

brain—which is roughly 100,000 times larger than the retina—is

worth perhaps 100 million MIPS.

Computers are reading text, recognizing speech, and robots are

driving themselves across Mars.

Yet, this exponential race will not guarantee solutions to the many

intractable/undecidable problems challenging computer science.

Even worse, it is predictable that this trend of conventional

technology will hit the wall in less than 20 years. This is a reason to

believe that conventional computation is approaching a critical

phase where new technologies will be required to provide significant

further progress.
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Fundamental Mathematical

Constraints on Computation

Church-Turing Thesis

Church-Turing Thesis, a prevailing paradigm in classical

computation theory, states that no realizable computing device can

be “globally” more powerful, that is, aside from relative speedups,

than a universal Turing machine. The modern form of

Church-Turing Thesis states that

any “reasonable” model of computation can be effectively

simulated by a (probabilistic) Turing machine.
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The above statement is a thesis, and not a theorem, as it relates an

informal notion–a realizable computing device–to the mathematical

notion of (probabilistic) Turing machine. Here are some reasons

supporting Church-Turing Thesis:

• Philosophical argument: Due to Turing’s analysis it seems very

difficult to imagine some other method which falls outside the

scope of his description.

• Mathematical evidence: Every mathematical notion of

computability which has been proposed was proven equivalent

to Turing computability.

• Sociological evidence: No example of classical computing device

which cannot be simulated by a Turing machine has been given,

i.e., the thesis has not been disproved despite having been

proposed for more than 60 years.
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Church-Turing’s Thesis includes a syntactic as well a physical claim.

In particular, it specifies which types of computations are physically

realisable. According to Deutsch (1982):

The reason why we find it possible to construct, say,

electronic calculators, and indeed why we can perform

mental arithmetic, cannot be found in mathematics or logic.

The reason is that the laws of physics “happen” to permit

the existence of physical models for the operations of

arithmetic such as addition, subtraction and multiplication.

If they did not, these familiar operations would be

non-computable functions. We might still know of them

and invoke them in mathematical proofs (which would be

presumably called “non-constructive”) but we could not

perform them.
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Church-Turing Thesis was challenged by logicians (Kalmar, Davis,

Kreisel), computer scientists (Rosen, Hogarth, Siegelmann) and

physicists (Landauer, Svozil). For example, Davis asks himself:

“. . . how can we ever exclude the possibility of our presented,

some day (perhaps by some extraterrestrial visitors), with a

(perhaps extremely complex) device or “oracle” that

“computes” an uncomputable function?”

Thinking is an essential, if not the most essential, component of

human life–it is a mark of “intelligence”. Descartes placed the

essence of being in thinking. Church-Turing Thesis has been used to

approach formally the notion of “intelligent being”. In simple terms,

Church-Turing Thesis was stated as follows:

What is human computable is computable by a universal

Turing machine.
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FAQ

Q: What has computing to do with physics?

A: Information, essential for any form of computing, is not a pure

abstract entity. In fact, measuring, communicating and computing

are all about exchanging information. Information is inevitably tied

to a physical embodiment or representation; it can be engraved on

stone tablets, represented by holes punched in a card, or by a

present/absent charge or by a spin up or down.

R. Landauer: “The computer has made us aware that information is

a physical entity”.

D. Deutsch: “The reason why we find it possible to construct, say,

electronic calculators, and indeed why we can perform mental

arithmetic . . . is that the laws of physics “happen” to permit the

existence of physical models for the operations of arithmetic such as

addition, subtraction and multiplication.
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Q: What is quantum computing?

A: Quantum computing is the quest to understand what sort of

machines do useful computation in a universe described by quantum

mechanics. Today the subject is mostly theoretical, but tentatively,

slowly and hesitantly groping towards some practical applications.

Q: What is quantum mechanics?

A: Quantum mechanics describes the behaviour of very small

objects, the size of atoms or smaller, in contrast with relativity

theory which describes the laws of larger everyday objects.

Interestingly, particles do not behave in the same way as larger

everyday objects, such as billiard balls. If we strike a billiard ball in

a very precise way and we know its exact initial position, then we

can predict with (theoretical) certainty where it will go. The same is

not true for particles.
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Q: If classical mechanics is wrong, why do we still use it?

A: Classical mechanics is flawed only when dealing with the very

small (atomic size) or the very fast (near the speed of light). For

everyday things, classical physics does an excellent job.

Q: What are the main features of quantum mechanics?

A: Here are five:

• Quantisation: observable quantities do not vary continuously,

but come in discrete chunks called quanta.

• Randomness: physical reality is irreducibly random.

• Interference: the outcome of a quantum process depends on all

the possible histories of that process.

• Superposition: the ability of carrying out computations with

“blends” of states, superpositions.

• Entanglement: two spatially separated and non-interacting

quantum systems, that have interacted in the past could have

some locally inaccessible information in common – information

which cannot be accessed in any experiment performed on

either of them alone.
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Q: Are these features useful for quantum computing?

A: Quantisation makes quantum computing possible at all.

Randomness, superposition and interference make quantum

computers more powerful than classical ones. Entanglement is

useful in quantum cryptography.

Q: In contrast with classical computers which use bits, quantum

computers process quantum bits. What’s the difference?

A: We have four concepts:

• The mathematical bit (0 or 1).

• A classical system representing a bit, called Cbit.

• The mathematical quantum bit.

• A quantum system (event) in which we have two possible

mutually exclusive outcomes realising a quantum bit, called

Qbit.

All knowledge of the quantum system is based upon acts of

observation. The information derived from an elementary act of

observation is no more than a single bit, but . . . Before

measurement, the system can be in any intermediate quantum state,

that is in a superposition of 0 and 1, in a (sort of) mixture of 0 and

1 containing both classical (contradicting) states at once; after

observation, we get either 0 or 1 with some probability.
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Q: Are Qbits responsible for the famous “exponential explosion”?

A: Yes. Any classical register composed of three Cbits can store in a

given moment of time only one out of eight different numbers

because the register can be in only one out of eight possible

configurations:

000, 001, 010, 011, 100, 101, 111.

A quantum register composed of three Qbits can store in a given

moment of time all eight numbers in a quantum superposition. If

we increase the number of Qbits to the register, then we increase its

storage capacity exponentially: three Qbits can store eight different

numbers at once, four Qbits can store sixteen different numbers at

once, in general n Qbits can store 2n numbers at once.

Note that it would require vast resources to simulate even a small

quantum system on a conventional computer, as such a simulation

would require keeping track of exponentially many states.

Q: What can you do with superpositions?

A: We can perform operations on them. During such an operation

each number in the superposition is affected and as the result we

obtain a massive parallel computation albeit in just one piece of

quantum hardware. As in the solution of the Merchant’s Problem,

we can act at once on all stacks of coins. A quantum computer

offers an enormous gain in time and memory.
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Q: Where is the catch?

A: Qbits suffer from a major limitation which doesn’t affect Cbits:

given a superposition of Qbits in some state, there is nothing one

can do to the Qbits to be able to extract what that state is in.

Q: Is this the only limitation?

A: No. There are also limited possibilities to extract the information

contained in a Qbit. Learning the value of a combination of Cbits is

so easy (you print it out) that it is not even explicitly regarded as a

part of the computation. More importantly, Cbits are not altered by

“reading” them. Not anymore with Qbits: we can extract the

information from a Qbit only by measurement, a process which:

(a) is probabilistic (recall the intrinsic randomness of quantum

mechanics), and

(b) affects the state of the Qbit; simple operations, like copying a

Cbit into another Cbit, are not available in quantum computing.

Q: So, under these wretched conditions, what are Qbits good for?

A: The art is to produce a superposition in which the useful

information has a high probability of being indicated by

measurement and the unimportant information can be expected to

appear with probability close to zero. To make the result safe, one

has to be able to easily confirm the result of the computation . . .
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Q: Can you give an example?

A: Peter Shor has shown in 1994 that quantum factoring integers is

dramatically faster than any known classical algorithm. The obvious

method of factoring a number N represented by n bits requires

about 2n/2 trials.

A much smarter algorithm (based on sophisticated mathematical

results) does the job in approximately 2c 3
√

n steps, where c is a

constant; still, factoring a number of a million of bits would require

a time larger than the age of the Universe.

Shor has observed that the factoring problem can be rephrased in

terms of a search for how often some “period” of a finite sequence is

repeating itself within the sequence. For example, the sequence

123412341234

has 1234 as period which repeats itself three times. Periods may be

seen as waves, undulating streams.

The quantum algorithm is polynomial-time in the number of bits

necessary to represent the number to be factored. Confirming the

result is easy.
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Q: What about Grover’s quantum algorithm?

A: Start with an example. Searching a telephone directory

containing n names in alphabetic ordering requires about log2 n

steps. Searching the name in the telephone directory, when the

telephone number is known, is much more difficult because the list

is unsorted with respect to telephone numbers. We need about n/2

steps on average and n steps in the worst case.

Looking up a name given a number is exponentially more difficult

than looking up a number given a name.

Grover’s quantum algorithm searches an unsorted list very fast; his

procedure needs roughly π/4
√
n quantum steps.

Q: What will quantum computers be good at?

A: These are the most important applications currently known:

• Cryptography: RSA code breaking, perfectly secure

communication.

• Searching: fast searching (Grover’s algorithm).

• Simulating: efficient simulation of quantum-mechanical systems.
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Q: Can I learn quantum computing without understanding

quantum mechanics?

A: Yes, you can. Recently, L. Fortnow has published in Theoretical

Computer Science (292 (2003), 597–610) a nice paper titled

“One complexity theorist’s view of quantum computing”

in which he shows that a large part of quantum computing can be

understood without any knowledge of quantum mechanics.

Arguably, the amount of quantum mechanics required for the

mainstream quantum computing is limited : this parallels the

situation of classical computing, where computer scientists need not

know much about transistors and the way they work.

Q: How soon a quantum computer might be built?

A: Lab experiments show that the basic principles of quantum

computing are sound. To realistically compete with classical

computing, quantum computing must be carried out on significantly

larger scales . . . It is unreasonable to make predictions; however, it

is reasonable to expect that small milestones will continue to appear.
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Information and Computation Are Physical

An operation is “logically reversible” if it can be run backwards,

that is, if its inputs can always be deduced from the outputs. Most

logical gates are irreversible; a typical example is the NAND gate

(a, b) 7→ ¬(a ∧ b) (1)

which has two input bits and only one output bit. We cannot

recover a unique input from the output bit because the result 1 can

be obtained from three distinct inputs: (0, 0), (0, 1), (1, 0).

Assume we operate the gate NAND with two Boolean variables, a, b,

and suppose that the four initial states, (0, 0), (0, 1), (1, 0), (1, 1),

have the same probability distribution, 1
4 . Then, the initial entropy,

which is calculated with Shannon’s formula:

H = −
∑

i

pi · log pi,

is then

Hinitial = −4 ·
(

1

4
log

1

4

)

= 2 bits.

The result will be a system with only two possible states, 0 and 1,

the outcome 0 appearing with probability 1
4 and the outcome 1

appearing with probability 3
4 . Consequently, the final entropy is

Hfinal = −
(

3

4
log

3

4
+

1

4
log

1

4

)

= 2− 3

4
log 3 bits,

which means a loss of Hinitial −Hfinal = 3
4 log 3 bits.
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Assume now that we operate the gate

(a, b) 7→ (a ∨ b, a ∧ b),

and, again, suppose that the four initial states of the Boolean

variables a, b have the same probability distribution, 1
4 . This gate

has finally only three final states, namely (0, 0), (1, 0), (1, 1), two of

them with probability 1
4 and one with probability 1/2.

Consequently, the final entropy is

Hfinal = −
(

2 · 1
4

log
1

4
+

1

2
log

1

2

)

= 1.5 bits.

In this case, the gate decreases the entropy by 0.5 bits.

The first gate is “more irreversible” than the second one, since it

decreases more the entropy.
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In thermodynamics the entropy is defined by

S = −k ·
∑

i

pi · ln (pi),

where k ≈ 1.38× 10−23 joule/◦kelvin is Boltzmann’s constant.

This notion is coupled to energy through the temperature T of the

system: when the entropy of a system is decreased by some amount,

the system dissipates energy equal to the amount of entropy

reduction times the temperature. Von Neumann noticed that the

two entropies are related by some constant factor, so they are in fact

the same notion. When the probability distribution of the system is

changed so that the entropy H is decreased by 1 bit, then the

entropy S is decreased by k · ln2 joule/◦kelvin, and the system

dissipates kT · ln2 joules of energy in the form of heat.

Does the above analysis apply to computation?

In 1961 Landauer produced evidence for the affirmative answer. To

operate a computer we have to make sure that distinct logical states

are represented by distinct physical states. A set of n bits has n

degrees of freedom; they correspond to 2n physical states. If we

erase n bits, say we reset all to 0, then we have compressed 2n

logical states into a single state, a loss of entropy. The irreversible

loss information increases temperature of the system, which means,

heat dissipation. Consequently, operations which are not one-to-one,

which map distinct logical states into a common one, cost energy.

This cost is expressed by Landauer’s principle:

erasure of information is a dissipative process.
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Here is a simple “home” example. We need two basketballs to

design a system of representing information. Put one on the floor by

your left foot and hold the other in your (right) hand.

Zero (0) is represented by the ball on the floor; one (1) is

represented by the ball in your hand.

Assume that we want to erase the bit 1, that is the bit in your hand.

To do this you have to drop the ball. Simple?

Not really, as the ball does not get directly into the floor (to become

a 0), but in fact bounces for a while. With a perfectly elastic

basketball and a good hard floor the ball may bounce close to your

hand, i.e., to the 1 position!

To settle down into 0 the ball has to encounter friction, with the air

molecules and the floor. Eventually friction slows down the ball, so

1 has been erased. We could do it because the energy from bouncing

the ball has been transmitted to the floor and the air. In a vacuum

with a perfect friction-less floor erase would be impossible! Energy

is consumed in the process of erasure.
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Irreversible operations, as the NAND gate, the binary addition

(a, b) 7→ (a⊕ b, a ∧ b) (sum and carry) and the real addition

(x, y) 7→ x+ y, dissipate energy. Recall that a⊕ b is 1 only if a and b

have different values, i.e., a = 0, b = 1 or a = 1, b = 0.

The above irreversible operations can be easily simulated by

reversible ones. A reversible version of the NAND gate is, for

example, Toffoli’s gate

(a, b, c) 7→ (a, b, c⊕ (a ∧ b)). (2)

Indeed, (2) is a reversible 3-bit gate that flips the third bit if the first

two both take the value 1 and does nothing otherwise. Hence, the

third output bit becomes the NAND of a and b in case c = 1. The

price paid to get reversibility consisted in adding a new variable c.

Question: Why NAND? Reason: a single NAND gate is as good as

having both AND and NOT, they are universal! (Prove it!)

Similar tricks can be used to produce reversible versions of the

binary addition, (a, b) 7→ (a, a⊕ b, a ∧ b) and real addition

(x, y) 7→ (x+ y, x− y). In the first case we replicated the first

variable a; in the second case we added a new component storing

some additional value.
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A computer may be fully reversible and yet dissipate energy! The

important point is that the laws of physics allow for technologies to

make reversible computers operate with negligible dissipation. To

build a reversible computer one needs only two types of logical

gates, say AND and NOT. Clearly, the NOT gate is reversible as its

composition with itself gives the initial input. However, the AND

gate is irreversible.

To make a reversible variant of the gate AND we need to ensure

that we have the same number of output lines as input ones, so, in

principle, we can just add some “garbage” output lines to solve the

problem. However, this may not be enough, as we want to guarantee

also universality! One possibility is Toffoli’s reversible 3-bit gate

which uses in addition to a, b a control bit c. Input bits a and b do

not change their states; the control bit, however, will change its

state, but only when a = b = 1. Toffoli’s truth table is the following:

input output

a b c a b c

0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 1

input output

a b c a b c

0 0 1 0 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Toffoli’s gate.
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Fredkin’s reversible 3-bit gate also uses in addition to a, b a control

bit c in the following way: a) if c = 0, then the values of a, b are

transmitted unaltered, i.e., the output is the pair (a, b), b) if c = 1,

then the values of a, b are switched to the opposite output, i.e., the

output is the pair (b, a). Its truth table is the following:

input output

a b c a b c

0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 0

input output

a b c a b c

0 0 1 0 0 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 1 1 1 1

Fredkin’s gate.

Fredkin’s gate is universal (prove it!). Fredkin’s gate has often been

used for photon based gates where a 1 represents a photon and a 0

simply denotes the absence of a photon; non-linear optics is used to

control the output of an interferometer. The number of ones cannot

change as the number of photons cannot change–absorption is not

allowed for reversible gates.
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To achieve reversibility we added more outputs than are required for

the computed functions: these outputs, called garbage bits, are a

necessary consequence of reversible logic. Consequently, one may

wonder whether we have only postponed the energy cost; garbage

bits can be irreversibly erased, but that would require to pay

Landauer’s price . . .

We do not need to erase the garbage bits!

Bennett realised that reversible computer can run forward to the

end of a computation, print out a copy of the answer (a logically

reversible operation) and then reverse all of its steps to return to its

initial configuration. So we can remove the garbage without any

energy cost.

In practice, Landauer’s limit seems not to be an important

engineering principle. But as computing hardware continues to

shrink in size, it may become important to beat Landauer’s limit,

for example, to prevent the components from melting. Then

reversible computation may be one, if not the only one, option.
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The following problem illustrates the “quantum” approach to

problem solving.

Merchant’s Problem

A merchant learns than one of his five stacks of coins contains only

false coins, 0.01 grams heavier than normal ones. Can he find the

odd stack by a single “weighing”?

Coin selection
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What about the case when more than one stack of coins contains

false coins: can we, again with only one single weighting find all

stacks containing false coins?

Solution: choose 1,2,4,8,16 coins from each stack!

• What are the limits of the above solutions?

• What about the case when we are allowed to take only just one

coin from each stack?

• What about the case when we have infinitely many stacks?
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A Bit of Mathematics

Real and Complex Numbers

Let R denote the set of real numbers. By C we denote the set of

complex numbers, i.e. pairs of reals: z = (x, y) (x, y ∈ R). Here are

the rules to operate with complex numbers:

• addition: z1 + z2 = (x1 + x2, y1 + y2), if z1 = (x1, y1),

z2 = (x2, y2),

• multiplication: z1 · z2 = (x1y1 − x2y2, x1y2 + x2y1),

• conjugation: z∗ = (x1,−y1),

• norm: |z| =
√

x2 + y2.

Matrices

A 2× 2 matrix is a table of the form

M =





α β

γ δ



 .
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An m× n matrix has m rows and n columns. The first column of M

is the 2× 1 matrix





α

γ



 ,

and the second column is the the 2× 1 matrix





β

δ



 ,

Similarly, the first row is the 1× 2 matrix (α, β) and the second row

is the 1× 2 matrix (γ, δ).

The i, j–component of a matrix is the element sitting on the column

i and row j. For example, the 1,2–element of M is β; the

2,2–element is δ.

The rules to operate with matrices are:

• transposition: (αi,j)
t
i=1,...,m,j=1,...,n = (αj,i)j=1,...n,i=1,...,m,

• addition: (αi,j)i=1,...,m,j=1,...,n + (βi,j)i=1,...,m,j=1,...,n =

(αi,j + βi,j)i=1,...,m,j=1,...,n,

• product: (αi,j)i=1,...,m,j=1,...,n · (βj,k)j=1,...,n,k=1,...,r =

(αi,1β1,k + αi,2β2,k + . . .+ αi,nβn,k)i=1,...,m,k=1,...,r,

• scalar multiplication:

a(αi,j)
t
i=1,...,m,j=1,...,n = (aαi,j)i=1,...,m,j=1,...,n,

• dagger: ((αi,j)i=1,...,m,j=1,...,n)† = (αj,i)
∗
j=1,...,n,i=1,...,m.
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Examples





α β

γ δ





t

=





α γ

β δ



 ,





α1,1 α1,2

α2,1 α2,2



+





β1,1 β1,2

β2,1 β2,2



 =





α1,1 + β1,1 α1,2 + β1,2

α2,1 + β2,1 α2,2 + β2,2



 ,





α1,1 α1,2

α2,1 α2,2



·





β1,1 β1,2

β2,1 β2,2





=





α1,1β1,1 + α1,2β2,1 α1,1β1,2 + α1,2β2,2

α2,1β1,1 + α2,2β2,1 α2,1β1,2 + α2,2β2,2



 ,





α β

γ δ





†

=





α∗ γ∗

β∗ δ∗



 ,

I1 = ((1, 0)) , I2 =





(1, 0) (0, 0)

(0, 0) (1, 0)



 .

37



A unitary matrix of type m× n is a matrix M such that

M †M = In. Here In is the identity matrix of type n× n; obviously,

In is a unitary matrix.

Properties

1. Multiplying a matrix by the appropriate identity matrix leaves

the matrix unchanged.

2. For every matrices A,B of types m× n and n× r, respectively,

we have:

(AB)† = B†A†.

3. Let

V =

















v1,1

v2,1

...

vn,1

















,

be an n× 1 unitary matrix (a column). Then,

|v1,1|2 + |v2,1|2 + . . .+ |vn,1|2 = 1.
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Rudiments of Quantum Theory

Quantum mechanics, one of the pillars of the 20th century physics,

describes closed (i.e. perfectly isolated from the world) physical

systems, usually small systems, of the size of atoms or smaller.

We will use the following postulates:

A. State Postulate: The state of a closed physical system is

completely described by a unitary n× 1 matrix of complex numbers.

Explicitly, a state is given by a column of n complex numbers

V =

















v1,1

v2,1

...

vn,1

















,

such that V †V = I1. The column V is a unitary matrix of type

n× 1 (or, normalised).

State vectors are typically written with a special angular bracket

notation, the “ket vector” V = |ψ〉. The word “ket” was invented by

Paul Dirac, one of the founders of quantum mechanics.
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Figure 1: Paul Dirac
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Example: Quantum-like coin. A coin can be in two states, head �
and tail ⊕ represented by the following two columns:

� =





(1, 0)

(0, 0)



 , ⊕ =





(0, 0)

(1, 0)



 .

If the coin was shut into a perfectly closed box, then it would start

behaving like a truly quantum coin, hence

�+⊕ =





( 1√
2
, 0)

( 1√
2
, 0)



 ,

is a legitimate quantum state: the coin is in a superposition of �
and ⊕, that is, it can be both head and tail at the same time.

B. Evolution Postulate: A closed physical system in state V

evolves in time into a new state W = UV , where U is an n× n
unitary matrix.

In other words, the system changes its states in time and each

change is obtained by multiplying the current state with a square

unitary matrix U (recall, this means U †U = In).

We have to check that the resulting column vector W is also a valid

quantum state, i.e. W †W = I1.
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C. Born’s Measurement Postulate: When a closed physical

system in state

V =

















v1,1

v2,1

...

vn,1

















,

is measured it yields outcome i with probability |vi,1|2. Whenever

outcome i occurs, the system is left in the state

V =



































(0, 0)
...

(0, 0)

(1, 0)

(0, 0)
...

(0, 0)



































← ithrow

(which contains no trace of the information in the pre-measurement

state).

Example continued: Quantum-like coin. Assume the coin is in the

closed box in the state

�+⊕ =





( 1√
2
, 0)

( 1√
2
, 0)



 ,
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and we measure its state: with probability p1 = | 1√
2
|2 = 1

2 we will

get the outcome 1, which means that the system will be left in the

state

� =





(1, 0)

(0, 0)



 ,

and with probability p2 = | 1√
2
|2 = 1

2 we will get the outcome 2,

which means that the system will be left in the state

⊕ =





(0, 0)

(1, 0)



 .

We have to check that Born’s Measurement Postulate is

probabilistically sound, i.e. probabilities sum up to one:

p1 + p2 + . . .+ pn = 1.

Two essential consequences of the Born’s Measurement Postulate

are:

• Randomness: A measurement is fundamentally a probabilistic

process: When a physical state that is in a superposition of

states is measured, then it collapses into one of its possible

states in a completely unpredictable way—we can only evaluate

the probability of obtaining various possible outcomes.

According to Milburn, physical reality is irreducible random.

• State Change: A measurement irrevocably disturbs the state. If

the state is initially unknown, then there is no way to determine

it with any conceivable measurement.
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From Cbits to Qbits

Classical bits are abstractly denoted by 0 and 1. A classical

physical system used to represent a bit will be called Cbit. For

example, the position of gear teeth in Babbage’s differential engine,

a memory element or wire carrying a binary signal, in contemporary

machines, are examples of Cbits.

A Cbit is a system comprising many atoms. Typically, the system is

described by one or more continuous parameters, for example,

voltage. Such a parameter is used to separate the space into two

well-defined regions chosen to represent 0 and 1. Manufacturing

imperfections, local perturbations may affect, so signals are

periodically restored toward these regions to prevent them from

drifting away.

An n-bit register of memory can exist in any of 2n logical states,

from 00 . . . 0 (n zeros) to 11 . . . 1 (n ones).

There are only two unary reversible operations with bits: the

identity (0 7→ 0, 1 7→ 1) and the flip (0 7→ 1, 1 7→ 0). The “erase”

operation (0 7→ 0, 1 7→ 0) is irreversible. Less trivial reversible

operations are available for two bits.
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The information derived from an elementary act of observation of a

quantum system with only two possible outcomes is no more than a

single bit, but there is more on it than that. To mark this difference

Schumaker has coined the name quantum bit.

An abstract quantum bit is a unitary column in C2:

|x〉 =





a

b



 . (3)

If we adopt the notation:

|0〉 =





(1, 0)

(0, 0)



 , |1〉 =





(0, 0)

(1, 0)



 ,

then we can write

|x〉 = a|0〉+ b|1〉, (4)

where a, b ∈ C are such that |a|2 + |b|2 = 1.

For brevity we will sometime write:

|0〉 =





1

0



 , |1〉 =





0

1



 .

Mathematically, the set {|0〉, |1〉} forms a basis for C2: every |x〉 can

be written in an unique way in the form (4).
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The quantum-like coin is an example of quantum bit:





( 1√
2
, 0)

( 1√
2
, 0)



 .

A Qbit is a (typically microscopic) system, such that when

measured is always found to be in one of two possible states. For

example, an atom or nuclear spin or polarised photon. For example,

the state of a spin- 1
2 particle, represented as

|+ 1

2
〉 (spin-up) or | − 1

2
〉 (spin-down).

Unlike the intermediate states of a classical bit (for example, any

voltages between the “standard” representations of 0 and 1) which

can be distinguished from 0 and 1, but do not exist from an

informational point of view, quantum intermediate states cannot be

reliably distinguished, even in principle, from the basis states, but

do have an informational “existence”.
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To handle systems of more than one Qbit we need a new operation,

the tensor product:





a

b



⊗





c

d



 =















ac

ad

bc

bd















,

A two Qbit system can be represented by a unitary vector in the

tensor product of two copies of C2, i.e., the space C2 ⊗ C2. If |0〉 and

|1〉 is the basis for C2, then denoting

|00〉 =















1

0

0

0















, |01〉 =















0

1

0

0















,

|10〉 =















0

0

1

0















, |11〉 =















0

0

0

1















.

we obtain a basis {|00〉, |01〉, |10〉, |11〉} for C2 ⊗ C2 (hint:

|0〉 ⊗ |0〉 = |00〉, |0〉 ⊗ |1〉 = |01〉, |1〉 ⊗ |0〉 = |10〉, |1〉 ⊗ |1〉 = |11〉).
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For three Qbits we have:





a

b



⊗





c

d



⊗





e

f



 =





































ace

acf

ade

adf

bce

bcf

bde

bdf





































,

so for example





0

1



⊗





1

0



⊗





0

1



 =





































0

0

0

0

0

1

0

0





































.

In general, a system containing exactly n ≥ 2 Qbits is represented

by n copies of C2 tensored together. Therefore, the state space is 2n

dimensional.
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A natural basis for this space consists of 2n tensor products:

|0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉,

|0〉 ⊗ |0〉 ⊗ . . .⊗ |1〉,
...

|1〉 ⊗ |1〉 ⊗ . . .⊗ |1〉.

A classical string of bits i1i2 . . . in with ik ∈ {0, 1}, 1 ≤ k ≤ n,

corresponds to the quantum state |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉 which is

simply denoted by |i1i2 . . . in〉.
The set

{|i1i2 . . . in〉|ik ∈ {0, 1}, 1 ≤ k ≤ n}
is a basis in C2 ⊗ C2 ⊗ . . .⊗ C2.

Note that a Cbit i is “mirrored” in the quantum system via the map

i 7→ |i〉.
An n Qbit system can exist in any superposition of the form

Ψ =

11...1
∑

x=00...0

cx|x〉, (5)

where cx are (complex) numbers such that
∑

x |cx|2 = 1. The

exponential “explosion” represented by formula (5) distinguishes

quantum systems from classical ones: In a classical system we need

2n states to represent n Cbits, but, quantum mechanically, we need

only n states.
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In contrast with the classical physics, where the state of a system is

completely defined by describing the state of each of its component

pieces separately, in a quantum system the state cannot always be

described considering only the component pieces.

The state
1√
2
(|00〉+ |11〉)

cannot be written as a tensor product of two single Qbits.

Indeed, let us assume for the sake of a contradiction, that there

exist two Qbits |x〉 and |y〉 in C2 such that

1√
2
(|00〉+ |11〉) = |x〉 ⊗ |y〉.

Since each single Qbit is in a superposition of |0〉 and |1〉, there exist

four complex numbers a1, b1, a2, b2 such that

|x〉 = a1|0〉+ b1|1〉 and |y〉 = a2|0〉+ b2|1〉.

It follows that

|x〉 ⊗ |y〉 = (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉)
= a1a2|00〉+ a1b2|01〉+ b1a2|10〉+ b1b2|11〉,

hence a1b2 = 0 and a1a2 = 1√
2

= b1b2, which is impossible.

A state that cannot be expressed as a tensor product is called an

entangled state. One can easily find entangled states in an n Qbit

system, for any integer n ≥ 2.
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More about Evolution

According to the Evolution Postulate the quantum evolution

(quantum transformation, operator) of (on) a Qbit is described by

multiplication with a unitary matrix.

Considering the basis {|0〉, |1〉}, the transformation is fully specified

by its effect on the basis vectors. In order to obtain the associated

matrix of an operator Ũ : C2 → C2, we put the coordinates of Ũ |0〉
in the first column and the coordinates of Ũ |1〉 in the second one.

So, the general form of a transformation that acts on a single Qbit

is a 2× 2 unitary matrix

U =





a b

c d



 ,

which transforms the Qbit state

α|0〉+ β|1〉

into the state

(αa+ βb)|0〉+ (cα+ dβ)|1〉 :





a b

c d









α

β



 =





αa+ βb

cα+ dβ



 .
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Examples

For θ ∈ [0, 2π), the rotation Rθ is given by

Rθ =





cos θ −sin θ
sin θ cos θ



 .

Hence, Rθ acts as follows:

|0〉 7→ cos θ|0〉+ sin θ|1〉, |1〉 7→ −sin θ|0〉+ cos θ|1〉.

One can easily verify that R†
θRθ = I2, hence Rθ is unitary.

Note that in the special case θ = 0 we get the identity

transformation of C2:

R0 = I2 =





1 0

0 1



 .
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The NOT transformation interchanges the vectors |0〉 and |1〉, is

given by the matrix

NOT =





0 1

1 0



 .

It flips that state of its input,

NOT |0〉 =





0 1

1 0









1

0



 =





0

1



 = |1〉,

and

NOT |1〉 =





0 1

1 0









0

1



 =





1

0



 = |0〉.
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The phase shift gate Shift is defined by

Shift |0〉 = |0〉, Shift |1〉 = −|1〉,
so

Shift =





1 0

0 −1



 .

Since NOT† ·NOT = I2 and Shift† · Shift = I2, the operators NOT

and Shift are also unitary.

The operator Shift ·NOT is also a unitary and we have:

Shift ·NOT |0〉 = Shift |1〉 = −|1〉,

Shift ·NOT |1〉 = Shift |0〉 = |0〉.

Therefore, its associated matrix is

R3π/2 =





0 1

−1 0



 .
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The square-root of NOT (introduced by Deutsch) is the

transformation

√
NOT :

|0〉 → 1
2 (1 + i)|0〉+ 1

2 (1− i)|1〉,

|1〉 → 1
2 (1− i)|0〉+ 1

2 (1 + i)|1〉,

√
NOT =

1

2





1 + i 1− i
1− i 1 + i



 .

√
NOT ·

√
NOT = NOT , (6)

and

√
NOT

† ·
√

NOT =
1

4





1 + i 1− i
1− i 1 + i









1− i 1 + i

1 + i 1− i



 = I2.
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The square-root of NOT is a typical “quantum” gate in the sense

that it is impossible to have a single-input/single-output classical

binary logic gate that satisfies (6). Indeed, any classical binary

√
NOT classical

gate is going to output a 0 or a 1 for each possible input 0/1.

Assume that we have such a classical square-root of NOT gate

acting as a pair of transformations

√
NOT classical(0) = 1,

√
NOT classical(1) = 0.

Then, two consecutive applications of it will not flip the input!

Figure 2: David Deutsch
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Finally we consider the Hadamard transformation H is defined by

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

,

H =
1√
2





1 1

1 −1



 .

This transformation has a number of important applications. When

applied to |0〉, H creates a superposition state

1√
2
(|0〉+ |1〉).

Applied to n bits individually, H generates a superposition of all 2n

possible states.
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More Examples

The Controlled-NOT Gate

A useful transformation on C2 ⊗ C2 is the “controlled-NOT” gate,

CNOT defined as follows:

CNOT :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

,

CNOT =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















.
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Given the input state |ij〉, i, j ∈ {0, 1}, the output state produced

by CNOT is |ik〉, where

k = i⊕ j( mod 2) =







0 if 2 divides i+ j,

1 otherwise.

The first bit is not disturbed (it is a control bit) and the second one

interchanges 0 and 1 iff the first bit is 1, which corresponds to the

logical exclusive-OR (XOR).

The controlled-NOT gate CNOT can be represented by a circuit of

the form specified in the following Figure.

a x

b y

h

Figure 4: The controlled-NOT gate
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The oplus indicates the control bit; the opposite symbol indicates

the conditional negation of the second bit. If the input states at a

and b are in bases states |0〉 or |1〉, then the output state at x is the

same as the input state at a, and the output state at y is the

exclusive-OR of the two input states.

The transformation CNOT is unitary since

C†
NOTCNOT = I4

and

C2
NOT = I4

(the 4× 4 identity matrix).

More importantly,

CNOT cannot be written as a tensor product of two

operators.

For the proof you assume the contrary, take two unitary matrices

A,B and prove that the equality CNOT = A⊗B is impossible.
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The Controlled-controlled-NOT Gate

The “controlled-controlled-NOT” transformation, CCNOT,

operates on three Qbits: it negates the rightmost bit iff the first two

are both 1:

CCNOT :

|000〉 → |000〉, |100〉 → |100〉
|001〉 → |001〉, |101〉 → |101〉
|010〉 → |010〉, |110〉 → |111〉
|011〉 → |011〉, |111〉 → |110〉

,

CCNOT =





































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0





































.

We have CC†
NOT · CCNOT = I8, hence CCNOT is also unitary.
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Deutsch’s Problem

The simplest way to illustrate the power of quantum computing is

to solve the so-called Deutsch’s problem. Consider a Boolean

function f : {0, 1} → {0, 1} and suppose that we have a black box to

compute it. We would like to know whether f is constant (that is,

f(0) = f(1)) or balanced (f(0) 6= f(1)). To make this test

classically, we need to compute f(0) and f(1) and to compare the

results. Is it possible to do it better, i.e with only one computation

of f? The answer is affirmative, and here is a possible solution.

We note that the problem can be stated in an equivalent way by

asking to compute the value of XOR(f(0), f(1)) with just one use of

the black box computing f .

Suppose that we have a quantum black box to compute f . We will

need to use the quantum states |00〉, |01〉, |10〉, |11〉 (which you recall

form the basis of C2).

We assume that we have access only once to the black box

computing f .

Consider the transformation Uf which applies to two Qbits, |x〉 and

|y〉, and produces |x〉|y ⊕ f(x)〉. This transformation flips the second

Qbit if f acting on the first Qbit is 1, and does nothing if f acting

on the first Qbit is 0.
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The quantum evolution Uf can be presented equivalently in matrix

form as:

Uf =















(1− f(0), 0) (f(0), 0) (0, 0) (0, 0)

(f(0), 0) (1− f(0), 0) (0, 0) (0, 0)

(0, 0) (0, 0) (1− f(1), 0) (f(1), 0)

(0, 0) (0, 0) (f(1), 0) (1− f(1), 0)















.

Indeed, the first column of the matrix is obtained from

Uf |00〉 = |0〉|0⊕ f(0)〉 = |0f(0)〉.

There are two cases: if f(0) = 0, then

|0f(0)〉 =















(1, 0)

(0, 0)

(0, 0)

(0, 0)















=















(1− f(0), 0)

(f(0), 0)

(0, 0)

(0, 0)















,

and if f(0) = 1, then

|0f(0)〉 =















(0, 0)

(1, 0)

(0, 0)

(0, 0)















=















(1− f(0), 0)

(f(0), 0)

(0, 0)

(0, 0)















.
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Whatever the values of f(0) and f(1), the matrix Uf is unitary,

U †U = I4, so according to the Evolution Postulate, Uf is a

legitimate quantum black box.

Next we are going to use the Hadamard transformation H to

generate a superposition of states:

H =















(1
2 , 0) ( 1

2 , 0) ( 1
2 , 0) ( 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) ( 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) ( 1

2 , 0) (− 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) (− 1
2 , 0) ( 1

2 , 0)















.

We are now in a position to describe the quantum algorithm solving

Deutsch’s problem:

1. Start with a closed physical system prepared in the

quantum state |01〉.
2. Evolve the system according to H.

3. Evolve the system according to Uf.

4. Evolve the system according to H.

5. Measure the system.

If XOR(f(0), f(1)) = 0, then the quantum measurement yields the

outcome 2; if XOR(f(0), f(1)) = 1, then the quantum measurement

yields the outcome 4, hence, computing XOR(f(0), f(1)) with only

one use of Uf .
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To prove the correctness of the quantum algorithm, let us follow

step-by-step its evolution.

In Step 1 we start with a closed physical system prepared in the

quantum state |01〉:

V =















(0, 0)

(1, 0)

(0, 0)

(0, 0)















.

After Step 2 the system has evolved in the state:

HV =















(1
2 , 0) ( 1

2 , 0) ( 1
2 , 0) ( 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) ( 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) ( 1

2 , 0) (− 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) (− 1
2 , 0) ( 1

2 , 0)















·















(0, 0)

(1, 0)

(0, 0)

(0, 0)















=















(1
2 , 0)

(− 1
2 , 0)

(1
2 , 0)

(− 1
2 , 0)















.
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After Step 3 the quantum system is in the state

UfHV =















(1− f(0), 0) (f(0), 0) (0, 0) (0, 0)

(f(0), 0) (1− f(0), 0) (0, 0) (0, 0)

(0, 0) (0, 0) (1− f(1), 0) (f(1), 0)

(0, 0) (0, 0) (f(1), 0) (1− f(1), 0)















·















(1
2 , 0)

(− 1
2 , 0)

(1
2 , 0)

(− 1
2 , 0)















=















(1
2 − f(0), 0)

(− 1
2 + f(0), 0)

(1
2 − f(1), 0)

(− 1
2 + f(1), 0)















.

Note that at this stage the state of the system depends upon f !

After Step 4, the quantum state of the system has become:

HUfHV =















(1
2 , 0) ( 1

2 , 0) ( 1
2 , 0) ( 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) ( 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) ( 1

2 , 0) (− 1
2 , 0) (− 1

2 , 0)

(1
2 , 0) (− 1

2 , 0) (− 1
2 , 0) ( 1

2 , 0)















·















(1
2 − f(0), 0)

(− 1
2 + f(0), 0)

(1
2 − f(1), 0)

(− 1
2 + f(1), 0)















=















(0, 0)

(1− f(0)− f(1), 0)

(0, 0)

(f(1)− f(0), 0)















.
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Finally, in Step 5 we measure the current state of the system, that is

we measure the state HUfHV , and according to Born’s

Measurement Postulate we get:

1. outcome 1 with probability p1 = 0,

2. outcome 2 with probability p2 = (1− f(0)− f(1))2,

3. outcome 3 with probability p3 = 0,

4. outcome 4 with probability p4 = (f(1)− f(0))2.

To conclude:

• if XOR(f(0), f(1)) = 0, then f(0) = f(1), so

f(0) + f(1) = 0(mod 2), f(1)− f(0) = 0; consequently,

p2 = 1, p4 = 0.

• if XOR(f(0), f(1)) = 1, then f(0) 6= f(1), so f(0) + f(1) = 1,

f(1)− f(0) = −1 or f(1)− f(0) = 1; consequently,

p2 = 0, p4 = 1.
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A compact mathematically formulation of the above quantum

algorithm is the following: Start with Uf and evolve it on a

superposition of |0〉 and |1〉. Assume first that the second Qbit is

initially prepared in the state 1√
2
(|0〉 − |1〉). Then,

Uf

(

|x〉 1√
2
(|0〉 − |1〉)

)

= |x〉 1√
2
(|0⊕ f(x)〉 − |1⊕ f(x)〉)

= (−1)f(x)|x〉 1√
2
(|0〉 − |1〉).

Next take the first Qbit to be 1√
2
(|0〉+ |1〉). The black box will

produce

Uf

(

1√
2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉)

)

=
1√
2
((−1)f(0)|0〉+ (−1)f(1)|1〉) 1√

2
(|0〉 − |1〉)

=
1

2
(−1)f(0)(|0〉+ (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉).
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Next will perform a measurement that projects the first Qbit onto

the basis
1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉).

We will obtain 1√
2
(|0〉 − |1〉) if the function f is balanced and

1√
2
(|0〉+ |1〉) in the opposite case.

So, Deutsch’s problem was solved with only one computation of f .

The explanation consists in the ability of a quantum computer to be

in a blend of states: we can compute f(0) and f(1), but also, and

more importantly, we can extract some information about f which

tells us whether f(0) is equal or not to f(1).

We finish this issue with the following question: Can any function

f : {0, 1} → {0, 1} be implemented by a quantum gate array Uf?
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The answer is affirmative. Identifying the values 0 and 1 with the

kets |0〉 respectively |1〉, Uf may be defined as the linear operator

Uf : C4 → C4, which satisfies, for any x, y ∈ {0, 1}, the equality

Uf |x, y〉 = |x, y ⊕ f(x)〉. (7)

|x〉 |x〉

Uf

|y〉 |y ⊕ f(x)〉

Figure 3: Quantum gate array Uf .

To compute f(x) we apply Uf to |x0〉. We shall prove that

for any function f : {0, 1} → {0, 1}, Uf is a unitary

transformation.

We have

UfUf |x, y〉 = Uf |x, y ⊕ f(x)〉 = |x, (y ⊕ f(x))⊕ f(x)〉 = |x, y〉,

hence, in view of the equality UfUf = I2, it suffices to prove that

U †
f = Uf .
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The function f can be defined in four ways:

1. f(0) = f(1) = 0,

2. f(0) = 0, f(1) = 1,

3. f(0) = 1, f(1) = 0, and

4. f(0) = f(1) = 1.

We will investigate the matrix Uf in each situation, taking into

account the correspondences:

0→ |0〉 =





1

0



 , 1→ |1〉 =





0

1



 .

In the first case, we have Uf |x, y〉 = |x, y ⊕ 0〉 = |x, y〉, hence

Uf = I2 = U †
f .

In the second case, Uf |00〉 = |00〉, Uf |01〉 = |01〉, Uf |10〉 = |11〉,
Uf |11〉 = |10〉, so it follows that

Uf =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















= U †
f .
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A direct computation shows that in the third case, Uf |00〉 = |01〉,
Uf |01〉 = |00〉, Uf |10〉 = |10〉 and Uf |11〉 = |11〉, therefore,

Uf =















0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1















= U †
f .

Finally, Uf |x, y〉 = |x, y ⊕ 1〉, i.e., Uf |x0〉 = |x1〉 and Uf |x1〉 = |x0〉,
hence we have again

Uf =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















= U †
f .
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Quantum states cannot be cloned, as Wooters and Zurek, and Dieks

have proved as an application of the linearity of unitary

transformations. It is not possible to create the state

(a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉) from an unknown state a|0〉+ b|1〉.
In other words, there is no unitary transformation U such that

U |ϕ0〉 = |ϕϕ〉 for all quantum states |ϕ〉.

Indeed, assume the contrary and let |ϕ〉 and |ψ〉 be two orthogonal

vectors in C2 and take |x〉 = 1√
2
(|ϕ〉+ |ψ〉). Then, U |ϕ0〉 = |ϕϕ〉

and U |ψ0〉 = |ψψ〉. On the one hand,

U |x0〉 = |xx〉

=
1√
2
(|ϕ〉+ |ψ〉)⊗ 1√

2
(|ϕ〉+ |ψ〉)

=
1

2
(|ϕϕ〉+ |ϕψ〉+ |ψϕ〉+ |ψψ〉).

On the other hand,

U |x0〉 = U(
1√
2
(|ϕ0〉+ |ψ0〉))

=
1√
2
(U |ϕ0〉+ U |ψ0〉)

=
1√
2
(|ϕϕ〉+ |ψψ〉).
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Since the vectors ϕ and ψ are orthogonal, the vectors |ϕϕ〉, |ϕψ〉,
|ψϕ〉, |ψψ〉 constitute a basis in C2 ⊗C2 and the vector

|xx〉 = U |x0〉 has been written in two different ways as a linear

combination of this basis vectors, an impossibility.

The no cloning principle states the impossibility of reliably cloning

an unkown quantum state: it is possible to clone a known quantum

state. It is possible to obtain n particles in an entangled state

a|00 . . . 0〉+ b|11 . . .〉 from an unknown state a|0〉+ b|1〉. Each

particles will behave in exactly the same way when measured with

respect to the basis {|00 . . . 0〉, |00 . . .01〉, . . . |11 . . . 1〉}, but not when

measured with respect to other bases. It is not possible to create

the n particle state

(a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉)⊗ . . . (a|0〉+ b|1〉)

from an unkown state a|0〉+ b|1〉.
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In a sense, the no cloning principle seems to announce “bad news”:

we loose one of the most important facilities of classical

computation, the unlimited possibility to copy. There are “good

news” derived from this principle, for example, the possibility of

unconditional secure key generation (see Section 6.2 in Gruska’s

book). New techniques open possibilites to produce “approximate”

copies of qubits: imperfect, but very close to real copies of qubits

can be produced with a “quality” no depending upon the qubits to

be copied. Of course, there is price to be paid: copies produced in

this way are entangled.

The measurement of one or more particles in a quantum system

results in a projection of the state of the system prior to

measurement onto the subspace of the state space compatible with

the measured values. The amplitude of the projection is rescaled to

make sure that the resulting state vector has length one. The

probability that the result of the measurement is a given value is the

sum of the squares of the absolute values of the amplitudes of all

components compatible with that value of the measurement.
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A simple example of measurement in a two qubit system will

illustrate the above points. Let’s fix the basis {|0〉, |1〉}, and assume

that all measurements of individual qubits will be done with respect

to this basis. An arbitrary state of a two qubit system can be

written as

a|00〉+ b|01〉+ c|10〉+ d|11〉,

where a, b, c and d are complex numbers such that

|a|2 + |b|2 + |c|2 + |d|2 = 1.

When the first qubit is measured, then the probability that the

result is |0〉 is |a|2 + |b|2.
Assume now that the measurement gives the first qubit exactly that

value, that is, |0〉. Consequently, the state is projected onto the

subspace compatible with the measurement which is the subspace

spanned by |00〉 and |01〉 and the result of this projection is

a|00〉+ b|01〉. Renormalizing we get:

1
√

|a|2 + |b|2
· (a|00〉+ b|01〉).
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In general, consider a system containing n qubits (n ≥ 2). Any state

|x〉 of the system can be expressed as

∑

i1,i2,...,in=0,1

ci1i2...in
|i1i2 . . . in〉,

where
∑

i1,i2,...,in=0,1

|ci1i2...in
|2 = 1.

When the first qubit is measured with respect to the basis {|0〉, |1〉},
then the result |0〉 is obtained with probability

P =
∑

i2,...in=0,1

|0i2 . . . in〉|2.a

After rescaling, the new state obtained after the measurement is

1
√

∑

i2,...,in=0,1 |c0i2...in
|2
·





∑

i2,...,in=0,1

c0i2...in
|0i2 . . . in〉



 .

aWe used the projection onto the space spanned by {|0i2 . . . in〉|ik ∈ {0, 1}, 2 ≤

k ≤ n}.
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Similarly, the measurement gives the outcome |1〉 with the

probability

1− P =
∑

i2,...,in=0,1

|c1i2...in
|2,

and the state changes correspondingly.

What is the price of measurement? According to Landauer

If it [measurement] is simply information transfer, that is

done all the time inside the computer, and can be done with

arbitrarily little dissipation.

There are many speculations about the “collapse of the wave

function (state)” due to an irreversible interaction of the

microphysical quantum system with the macroscopic measurement

apparatus. Some authors (Greenberg and YaSin or Herzog, Kwiat

Weinfuter and Zeilinger) have argued that it is, in fact, possible to

reconstruct the state of the physical system before the

measurement, that is, to “reverse the collapse of the wave function”

if the process of measurement is reversible. After “reconstruction”

no information about the measurement is left.
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The act of measurement gives another perspective about entangled

particles. Particles are not entangled if the measurement of one has

no effect on the other. For instance, the state

1√
2
(|00〉+ |11〉)

is entangled since the probability that the first bit is measured to be

|0〉 is 1/2 if the second bit has not been measured. However, if the

second bit had been measured, then the probability that the first bit

is measured as |0〉 is different from 1/2, it is either 1 or 0, depending

on whether the second bit was measured as |0〉 or |1〉, respectively.

Hence, the probability of measuring the first bit has been changed

by the measurement of the second bit.

In contrast, the state

1√
2
(|00〉+ |01〉) = |0〉 ⊗ 1√

2
(|0〉+ |1〉)

is not entangled. Reason: any measure of the first qubit will

produce the result |0〉 independently whether a measurement is

performed or not on the second qubit, and the second qubit has

probability 1/2 to be measured to |0〉 regardless of whether the first

qubit was measured or not.
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In a sense, entangled states can be equivalently presented in

mathematical terms (they cannot be represented as a tensor

product of two states) or in physical terms (the measurement on one

affects the other); however, the physical meaning is reacher than the

mathematical formalism.

An important consequence of the existence of entangled states is the

fact that if a quantum memory register exists in an entangled state,

one can change the state of one part of the register simply by

measuring another part of it. This is a unique feature of quantum

physicsa which has no parallel in classical physics. Entanglement is

one of the most important features which distinguishes Quantum

from conventional Computing.

aWhich is crucial in many quantum algorithms, teleportation, information

transmission, etc.
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How to produce entangled quantum states?

One possibility is to create a source which, by construction, is such

that the quantum states emerging already have the

indistinguishability feature. For example, consider the decay of a

spin-0 particle into two spin-1/2 particles under conservation of the

internal angular momentum. The two spins of the emerging

particles have to be opposite, so the emerging quantum state is

|ψ〉12 =
1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2),

where | ↑〉1 means particle 1 with spin up.

The above state is rotationally invariant, so the two spins are

anti-parallel along whichever direction we choose to measure.
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The EPR Conundrum and Bell’s Theorem

According to the philosophical view called realism, reality exists and

has definite properties irrespective of whether they are observed by

some agent. Motivated by this view point, Einstein, Podolsky and

Rosen suggested a classical argument to “show” that quantum

mechanics is incomplete.

EPR assumed:

(a) the non-existence of action-at-a-distance,

(b) that some of the statistical predictions of quantum mechanics

are correct, and

(c) a reasonable criterion defining the existence of “an element of

physical reality”.

If, without in any way disturbing a system, we can predict with

certainty (i.e. with probability equal to unity) the value of a

physical quantity, then there exists an element of physical reality

corresponding to this physica quantity.
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They considered a system of two spatially separated but quantum

mechanically correlated particles. A “mysterious” feature appears:

By counterfactual reasoning, quantum mechanical experiments yield

outcomes which cannot be predicted by quantum theory; hence the

quantum mechanical description of the system is incomplete!

One possibility to complete the quantum mechanical description is

to postulate additional “hidden-variables” in the hope that

completeness, determinism and causality will be thus restored. But

then, another conundrum occurs: Using basically the same

postulates as those of EPR, Bell showed that no deterministic local

hidden-variables theory can reproduce all statistical predictions of

quantum mechanics.
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Mermin’s EPR Device

Mermin’s EPR device has three “completely unconnected” parts

(there are no relevant connections, neither mechanical nor

electromagnetic), two detectors (D1) and (D2) and a source (S)

emitting particles. The source is placed between the detectors:

whenever a button is pushed on (S), shortly thereafter two particles

emerge, moving off toward detectors (D1) and (D2). Each detector

has a switch that can be set in one of three possible positions –

labelled 1,2,3 – and a bulb that can flash a red (R) or a green (G)

light. The purpose of lights is to “communicate” information to the

observer. Each detector flashes either red or green whenever a

particle reaches it. Because of the lack of any relevant connections

between any parts of the device, the link between the emission of

particles by (S), i.e. as a result of pressing a button, and the

subsequent flashing of detectors, can only be provided by the

passage of particles from (S) to (D1) and (D2). Additional tools can

be used to check and confirm the lack of any communication.
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Mermin’s experiment
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The device is repeatedly operated as follows:

1. the switch of either detector (D1) and (D2) is set randomly to 1

or 2 or 3, i.e. the settings or states 11, 12, 13, 21, 22, 23, 31, 32,

33 are equally likely,

2. pushing a button on (S) determines the emission toward both

(D1) and (D2),

3. sometime later, (D1) and (D2) flash one of their lights, G or R,

4. every run is recorded in the form ijXY , meaning that (D1) was

set to state i and flashed X and (D2) was set to j and flashed Y.
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For example, the record 31GR means “(D1) was set to 3 and flashed

G and (D2) was set to 1 and flashed R”.

Long recorded runs show the following pattern:

(a) For records starting with ii, i.e. 11, 22, 33, both (D1) and (D2)

flash the same colours, RR,GG, with equal frequency; RG and

GR are never flashed.

(b) For records starting with ij, i 6= j, i.e. 12, 13, 21, 23, 31, 32,

both (D1) and (D2) flash the same colour only 1/4 of the time

(RR and GG come with equal frequencies); the other 3/4 of the

time, they flash different colours (RG,GR), occurring again

with equal frequencies.
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Of course, the above patterns are statistical, that is they are subject

to usual fluctuations expected in every statistical prediction:

patterns are more and more “visible” as the number of runs

becomes larger and larger.

The conundrum posed by the existence of Mermin’s device reveals

as soon as we notice that the seemingly simplest physical

explanation of the pattern (a) is incompatible with pattern (b).

Indeed, as (D1) and (D2) are unconnected there is no way for one

detector to “know”, at any time, the state of the other detector or

which colour the other is flashing. Consequently, it seems plausible

to assume that the colour flashed by detectors is determined only by

some property, or group of properties of particles, say speed, size,

shape, etc. What properties determine the colour does not really

matter; only the fact that each particle carries a “program” which

determines which colour a detector will flash in some state is

important.
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So, we are led to the following two hypotheses:

H1 Particles are classified into eight categories:

GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR.a

H2 Two particles produced in a given run carry identical programs.

According to H1–H2, if particles produced in a run are of type

RGR, then both detectors will flash R in states 1 and 3; they will

flash G if both are in state 2. Detectors flash the same colours when

being in the same states because particles carry the same programs.

aA particle of type XY Z will cause a detector in state 1 to flash X; a detector

in state 2 will flash Y and a detector in state 3 will flash Z.
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It is clear that from H1–H2 it follows that programs carried by

particles do not depend in any way on the specific states of

detectors: they are properties of particles not of detectors.

Consequently, both particles carry the same program whether or not

detectors (D1) and (D2) are in the same states. The emitting source

(S) has no knowledge about the states of (D1) and (D2) and there is

no communication among any parts of the device.

We are ready to argue that

[L] For each type of particle, in runs of type (b) both detectors flash

the same colour at least one third of the time.
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If both particles are of types GGG or RRR, then detectors will flash

the same colour all the time. For particles carrying programs

containing one colour appearing once and the other colour

appearing twice, only in two cases out of six possible combinations

both detectors will flash the same light. For example, for particles of

type RGR, both detectors will flash R if (D1) is in state 1 and (D2)

is in state 3 and vice versa. In all remaining cases detectors will

flash different lights. The argument remains the same for all

combinations as the conclusion was solely based on the fact that one

colour appears once and the other twice. So, the lights are the same

one third of the time.

The conundrum reveals as a significant difference appears between

the data dictated by particle programs (colours agree at least one

third of the time) and the quantum mechanical prediction (colours

agree only one quarter of the time):

under H1–H2, the observed pattern (b) is incompatible with [L].
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Mermin’s GHZ Device

Mermin’s GHZ device is based on Greenberg, Horne and Zeilinger’s

version of EPR experiment. The device has a source and three

widely separated detectors (A), (B), (C), each of which has only two

switch settings, 1 and 2. Any detector, when triggered, flashes red

(R) or green (G). Again, detectors are supposed to be far away from

the source and there are no connections between the source and

detectors (except those induced by a group of particles flying from

the source to each detector).

The experiment runs as follows. Each detector is in a randomly

chosen state (1 or 2) and then by pressing a button at the source a

trio of particles are released towards detectors; each particle will

reach a detector and, consequently, each detector will flash a light,

green or red.
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There are eight possible states, but for the argument we need to

take into consideration only those for which the number of 1’s is

odd, i.e. 111, 122, 212, 221.

(a) If one detector is set to 1 (and the others to 2), then an odd

number of red lights always flash, i.e. RRR,RGG,GRG,GGR, and

they are equally likely.

(b) If all detectors are set to 1, then an odd number of red lights is

never flashed: GRR,RGR,RRG,GGG.

93



It is immediate that in case (a) knowing the colour flashed by two

detectors, say (A) and (B), determines uniquely the colour flashed

by the third detector, (C). The explanation can come only because

particles are emitted by the same source (there are no connections

between detectors). A similar conclusion as in the case of EPR

device reveals: particles carry programs instructing their detectors

what colour to flash. Any particle carries a program of the form XY

telling its detector to flash colour X if in state 1 and colour Y if in

state 2. There are four types of programs: GG,GR,RG,RR. A run

in which programs carried by the trio of particles are of types

(RG,GR,GG) will result in RRG if the states were 122, in GGG if

the states were 212, and in GRG if the states were 221. This is an

illegal set of programs as the number of R’s is not odd (in RRG, for

example).
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A legal set of programs is (RG,GR,GR) as it produces

RRR,GGR,GRG on 122, 212, 221. There are eight legal programs,

(RR,RR,RR), (RR,GG,GG), (GG,RR,GG),

(GG,GG,RR), (RG,GR,GR), (RG,RG,RG),

(GR,GR,RG), (GR,RG,GR)

out of 64 possible programs.

The conundrum reveals again as none of the above programs

respects (b), i.e. it is compatible with the case 111. A single 111 run

suffices to prove inconsistency!

Particle programs require an odd number of R’s to be flashed on 111,

but quantum mechanics prohibits this in every 111 run.
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Bell’s Theorem

Bell showed, using basically the same postulates as those of EPR,

that no deterministic local hidden-variables theory can reproduce all

statistical predictions of quantum mechanics. The setting is the

following. We consider two physical systems; on one two types of

measurements are made (A,B), and on the other one two other

types (C,D). The results are binary, so they will be denoted by “+”

and “−”. We will repeat these measurements to ensure statistically

relevant results. Correlations appear when measurements give the

same outcome, that is, “++” and “−−”. The basic result is that in

almost all cases, more “++” and “−−” (and less “+−” and “−−”)

coincidences are recorded than one can explain by any local classical

analysis.
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Let p(x|i) be the probability that, by taking the measure i ∈ {A,B}
on the first system, the outcome will be x ∈ {+,−}; p(x|ij) is the

probability that by taking the measure i ∈ {A,B} on the first

system and the measure j ∈ {C,D} on the second, the outcome of

the first system alone will be x; p(xy|ij) is the probability that by

taking the measure i on the first system and measure j on the

second system, the outcomes will be respectively, x ∈ {+,−} and

y ∈ {+,−}; finally, p(x|ijy) is the probability that when taking the

measures i ∈ {A,B} on the first system and j ∈ {C,D} on the

second one, and having outcome y on the second, the outcome of

the first will be x.
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The main result can be stated as follows:

If the outcomes of the experiments on both systems are

independent, that is

p(xy|ij) = p(x|i) · p(y|j),

then the lack of correlation in one of the two types of

measures cannot exceed the lack of correlation in the

remaining types, that is, the following quadrangular

inequality holds true:

p(+− |AC) + p(−+ |AC)

≤ p(+− |AD) + p(−+ |AD)

+ p(+− |BD) + p(−+ |BD)

+ p(+− |BC) + p(−+ |BC). (8)
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It is remarkable that this inequality can be obtained with just an

elementary manipulation of binary variables. To see this, let’s

denote p(+|A) by a, p(−|A) by 1− a (due to the bivalence nature of

measurements we have p(+|A) + p(−|A) = 1), and so on. Using the

independence hypothesis, that is,

p(+− |AC) = p(+|A) · p(−|C) = a(1− c),

and the like, the inequality (8) can be re-written as

a (1− c) + (1− a) c ≤ a (1− d) + (1− a) d+ b (1− d)
+(1− b) d+ b (1− c) + (1− b) c,

or, equivalently,

ab+ bd+ bc ≤ ac+ b+ d,

where a, b, c, d ∈ [0, 1].
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To finish we consider the following three cases:

• if b ≤ a, then c(b− a) ≤ 0, so ad+ bd+ c(b− a) ≤ ad+ bd, and

(8) follows as ad ≤ d and bd ≤ b;

• if d ≤ c, then a(d− c) + bd+ bc ≤ b+ d, so (8) follows;

• if a ≤ b and c ≤ d, then either b ≤ d and in this case

d(a+ b) + c(b− a) ≤ b+ d, or d ≤ b and in this case

a(d− c) + b(d+ c) ≤ b+ d, and in each case we deduce (8).

The probabilistic hypothesis of independence can actually be

decomposed in the conjunction of two hypotheses with more

physical significance:

Separability: The statistical outcomes performed on one system are

independent of the outcomes performed on the other system:

p(x|ijy) = p(x|ij) and p(y|ijx) = p(y|ij).

Locality: The statistical outcomes performed an experiment on one

system are independent of the types of experiments performed on the

other system:

p(x|ij) = p(x|i) and p(y|ij) = p(y|j).
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Separability says that the spatio-temporal separation between the

two systems makes them reducible to individual parts, the “whole”

is no more than the “sum of parts”; locality forbids any

instantaneous interaction.

Separability and locality implies independence as

p(xy|ij) = p(xy|ijy) · p(y|ij) = p(x|ij) · p(y|ij) = p(x|i) · p(y|j).

Consequently, if the outcomes of the experiments on both systems

are separable and local, then the lack of correlation in one of the

two types of measures cannot exceed the lack of correlation in the

remaining types.

Probabilities can be interpreted as truth-values of elementary

propositions, so the above analysis can be reformulated in the

language of “classical logic”. Indeed, let’s write A for p(+|A) and

¬A for p(−|A), and similarly for B,C. Further on, let’s notice that

the elementary operations with probabilities can be reformulated as

logical operations, namely, conjunction ∧ will correspond to

product, disjunction ∨ to sum, and implication → to ≤.
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A “logical” version of the quadrangular inequality can be deduced:

If the conjunction is distributive with respect to disjunction

for all propositions A,¬A,B,¬B,C,¬C, that is,

α ∧ (β ∨ γ)→ (α ∧ β) ∨ (α ∧ γ),

then the following quadrangular implication holds true:

(A ∧ ¬C) ∨ (¬A ∧ C) → (A ∧ ¬D) ∨ (¬A ∧D)

∨ (D ∧ ¬B) ∨ (¬D ∧B)

∨ (B ∧ ¬C) ∨ (¬B ∧ C).
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First, use the following weak form of distributivity

α ∧ (¬β ∨ β)→ (α ∧ ¬β) ∨ (α ∧ β),

for α = X ∧ ¬Y , and β = Z:

(X ∧ ¬Y ) ∧ (¬Z ∨ Z)→ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z),

so by the law of excluded middle we get:

(X ∧ ¬Y )→ (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z).

Weakening the conclusion we get:

(X ∧ ¬Y )→ (X ∧ ¬Z) ∨ (Z ∧ ¬Y ). (9)
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Using (9) for the triples (X,Y, Z) = (A,C,D), (D,C,B) we get

(A ∧ ¬C)→ (A ∧ ¬D) ∨ (D ∧ ¬C),

and

(D ∧ ¬C)→ (D ∧ ¬B) ∨ (B ∧ ¬C),

which imply

(A ∧ ¬C)→ (A ∧ ¬D) ∨ (D ∧ ¬B) ∨ (B ∧ ¬C).

Similarly, we obtain the implication

(¬A ∧ C)→ (¬A ∧D) ∨ (¬D ∧B) ∨ (¬B ∧ C),

which concludes the argument.
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Both quadrangular inequality and implication have been

experimentally falsified, hence no theory satisfying their hypotheses

can be physically correct. So, locality and separability cannot be

simultaneously adopted. Quantum mechanics has chosen to drop

separability. The failure of independence affects Reichenbach’s

causality principle: two correlated (non independent) events have a

common cause, that there exists an event in their “past” with

respect to which they are independent.

So, we arrive at the idea of synchronicity that has important

implication for Quantum Computation:

there exist events which are correlated in a way which is

neither casual nor causal.

Finally, the failure of distributivity – the “mark” of quantum logic,

has been proved to be more pervasive than the universe of quantum

mechanics statements: it is excluded from any logic aiming to

describe the physical world. Is any hope to rescue classical logic,

which seems to be so brutally excluded . . .
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A Probabilistic Automaton Simulating Mermin’s EPR

Device

The states of the automaton are all combinations of states of

detectors (D1) and (D2), Q = {11, 12, 13, 21, 22, 23, 31, 32, 33}, the

input alphabet models the lights, red and green, Σ = {G,R}, the

output alphabet captures all combinations of lights flashed by (D1)

and (D2), O = {GG,GR,RG,RR}, and the output function

f : Q→ O, modeling all combinations of green/red lights flashed by

(D1) and (D2) in all their possible states, is probabilistically defined

by:

f(ii) = XX, with probability 1/2, for i = 1, 2, 3,

X ∈ {G,R},
f(ii) = XY, with probability 0, for i = 1, 2, 3,

X, Y ∈ {G,R}, X 6= Y,

f(ij) = XX, with probability 1/8, for i, j = 1, 2, 3,

i 6= j,X ∈ {G,R},
f(ij) = XY, with probability 3/8, for i, j = 1, 2, 3,

i 6= j,X, Y ∈ {G,R},
X 6= Y.
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For example, f(11) = RR with probability 1/2, f(11) = GR with

probability 0, f(11) = RG with probability 0, f(11) = RR with

probability 1/2, f(12) = GG with probability 1/8, f(12) = GR with

probability 3/8, f(12) = RG with probability 3/8, f(12) = RR with

probability 1/8, etc.

The automaton transition δ : Q×Σ→ Q is not specified. In fact,

varying all transition functions δ we get a class of Mermin EPR

automata:

M
(EPR) = (Q,Σ, O, δ, (pXY

ij , i, j = 1, 2, 3, X, Y ∈ {G,R})),

where

pXX
ii = 1/2, pXY

ii = 0, X 6= Y, pXX
ij = 1/8, pXY

ij = 3/8, X 6= Y .
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Are there two identical, spatially separated, probabilistic automata

with identical initial states, whose direct product “simulates” a

Mermin’s EPR automaton? More formally, are there two

probabilistic automata

Mi

= ({1, 2, 3}, {G,R}, {G,R}, δi, (α
X
i,j , j = 1, 2, 3, X ∈ {G,R}))

such that their direct productM1 ⊗ M2 is isomorphic to a

Mermin’s automatonM (EPR), i.e.,

δ(ij,X) = δ1(i,X)δ2(j,X), and pXY
ij = αX

1,iα
Y
2,j , for all

j = 1, 2, 3, X, Y ∈ {G,R}?
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The answer is negative. In fact, a stronger result is true:

no single state of any Mermin’s EPR probabilistic

automaton M (EPR) can be simulated by the product of the

corresponding states of any probabilistic automata Mi.

Indeed, αG
i,j = 1− αR

i,j . For a state ii we get the following

contradictory relations:

αG
1,i α

G
2,i = (1− αG

1,i)(1− αG
2,i) = 1/2,

αG
1,i (1− αG

2,i) = (1− αG
1,i) α

G
2,i = 0.

For a state kl with k 6= l we, again, get two contradictory relations:

αG
1,k α

G
2,l = (1− αG

1,k)(1− αG
2,l) = 1/8,

αG
1,k (1− αG

2,l) = (1− αG
1,k) αG

2,l = 3/8.

Every Mermin’s EPR probabilistic automatonM (EPR) has strong

correlations preventing it from being decomposed as a direct

product of two independent probabilistic automata, no matter what

transitions and output functions.
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Let’s turn our attention to Mermin’s GHZ device and to this aim

consider a probabilistic automaton simulating Mermin’s GHZ

device. The states of the Mermin’s GHZ automaton are all

combinations of states of detectors (A), (B) and (C),

Q = {111, 112, 121, 122, 211, 212, 221, 222},
the input alphabet models the lights, red and green, Σ = {G,R},
the output alphabet captures all combinations of lights flashed by

(A), (B) and (C),

O = {GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR},
and the output function f : Q→ O, modeling all combinations of

green/red lights flashed by (A), (B) and (C), is determined by the

following conditions. (Note that the following conditions do not

determine uniquely the output function.)
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f(ijk) = XY Z, with probability 1/4, for

ijk ∈ {122, 212, 221},
XY Z ∈ {RRR,RGG,GRG,GGR},

f(ijk) = XY Z, with probability 0, for

ijk ∈ {122, 212, 221},
XY Z ∈ {GRR,RGR,RRG,GGG},

f(111) = XY Z, with probability 0, for

XY Z ∈ {RRR,RGG,GRG,GGR},
f(111) = XY Z, with probability 1/4, for

XY Z ∈ {GRR,RGR,RRG,GGG}.
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Again, the transition function δ : Q×Σ→ Q is not specified. We

get a class of Mermin GHZ automata

M (GHZ) = (Q,Σ, O, δ, (pXY Z
ijk , i, j,

k = 1, 2, X, Y, Z ∈ {G,R})),

where

pXY Z
ijk = 1/4, for ijk ∈ {122, 212, 221}, XY Z ∈ {RRR, RGG, GRG,
GGR} or i = j = k = 1, XY Z ∈ {GRR, RGR, RRG, GGG},
and

pXY Z
ijk = 0, for ijk ∈ {122, 212, 221}, XY Z ∈ {GRR, RGR, RRG,
GGG} or i = j = k = 1, XY Z ∈ {RRR, RGG, GRG, GGR}.
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Is there any Mermin’s GHZ automaton which can be decomposed

into three identical, spatially separated, probabilistic automata with

identical initial values? Rephrased, are there three probabilistic

automata

Mi = ({1, 2}, {G,R}, {G,R}, δi, (α
X
i,j , j = 1, 2, X ∈ {G,R}))

such that their direct productM1 ⊗ M2 ⊗ M3 is isomorphic to a

Mermin’s automatonM (GHZ):

δ(ijk,XY Z) = δ1(i,X)δ2(j, Y )δ3(k, Z) and pXY Z
ijk = αX

1,iα
Y
2,jα

Z
3,k, for

all j = 1, 2, X, Y ∈ {G,R}?
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The answer is again negative:

no single state of any Mermin’s GHZ probabilistic

automaton M (GHZ) can be simulated by the product of

the corresponding states of any probabilistic automata Mi.

We have αG
i,j = 1− αR

i,j . Take the output XY Z = GGR. As

pGGR
111 = 0 we deduce that

αG
1,1α

G
i2,1(1− αG

3,1) = 0,

which contradicts the system of equalities

pGGR
122 = pGGR

212 = pGGR
221 = 1/4,

and the same conclusion can be derived for any output.

Again, due to strong correlations, every Mermin’s GHZ probabilistic

automatonM (EPR) cannot be decomposed as a direct product of

three independent probabilistic automata, no matter what

transitions and output functions.
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We continue with an analysis using Meal automata.

First we deal with Mermin EPR device. To this aim we discuss a

configuration in which two identical deterministic Mealy automata.

(recall that in a Mealy automaton the output function depends both

on the current state and input letter.) M1 andM2 with unknown

but identical initial states are detected in (D1) and (D2),

respectively.

More precisely, let us assume that each automatonMj , j = 1, 2, has

three states Q = {1, 2, 3}, the input alphabet Σ = {1, 2, 3}, the

output alphabet O = {G,R}, as well as a(n) (irreversible, i.e.,

many-to-one) transition function δj(q, i) = i and output function

λj(q, i) = G, if q = i and λj(q, i) = R, otherwise; q ∈ Q and i ∈ Σ.

Let us further assume that there is an equidistribution of initial

states, i.e., each one occurs with equal probability 1/3.
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We can construct a joint output function by the Cartesian product

λ : Q× Σ→ O ×O, λ(q, i) = (λ1(q, i), λ2(q, i)).

Since bothM1 andM2 are in an identical initial value, there are

just three allowed categories GRR,RGR,RRG out of the

conceivable ones GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR.

A straightforward combinatorial argument shows that with these

assumptions one obtains the following probabilities:

λ(i, i) = GG, with probability 1/3, for i = 1, 2, 3,

λ(i, i) = RR, with probability 2/3, for i = 1, 2, 3,

λ(i, i) = XY, with probability 0, for i = 1, 2, 3,

X, Y ∈ {G,R}, X 6= Y,

λ(i, j) = GG, with probability 0, for i, j = 1, 2, 3, i 6= j,

λ(i, j) = GR, with probability 1/3, for i, j = 1, 2, 3,

i 6= j,

λ(i, j) = RG, with probability 1/3, for i, j = 1, 2, 3,

i 6= j,

λ(i, j) = RR, with probability 1/3, for i, j = 1, 2, 3,

i 6= j.

116



The automata flash the same colour (red) 1/3 of the time and

different colours 2/3 of the time. This is not exactly the classical

case as discussed by Mermin, but it comes close to it in terms of

classicality and locality of the automata arrangement. To

understand why, let us define the notion of correlation function in

the automaton context. Assume again two output symbols, say R

and G, and three input symbols, say 1, 2 and 3.

Associate the numbers nt(i,Mj) = +1 and nt(i,Mj) = −1 with the

outcomes R and G of the experiment with input i at discrete time t,

respectively. In analogy to physical correlation functions we can

define a correlation function C as the weighted average over the

product of the numbers associated with the outcomes of the first

and second automataM1,M2, i.e.,

C(i, j) = 1
N

∑N
t=1 nt(i,M1) · nt(j,M2).
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We always get −1 ≤ C(i, j) ≤ +1. In the above case, for identical

inputs, C(i, i) = 1, i = 1, 2, 3. For nonidentical input i 6= j,

C(ij) = −1/3. The “Bell inequality” is considered a measure for

classicality and locality; in particular

|C(1, 2)− C(1, 3)| ≤ 1 + C(2, 3). (10)

is always satisfied for classical systems. The automaton correlation

functions always satisfy this inequality and the others obtained by

permuting the inputs. This is an indication (although no sufficient

condition) that the corresponding classical system behaves locally in

the sense used in physics. That is, no causal influence such as a light

signal originating from a measurement on one particle can influence

the measurement on the other particle and vice versa. This comes

as no surprise, because the way the two-automaton setup was

conceived, both automata are causally separated in a classical sense.

These results are independent of the particular transition function δ

involved, provided it is not a permutation (one-to-one).
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An automaton realization which comes close to Mermin’s treatment

of the GHZ experiment can be given by three identical automata

M1,M2,M3 with identical initial value, given by the following

table (q ∈ Q, i ∈ Σ, o ∈ O):

q/i, o 1 2 1 2

1 1 1 R R

2 1 1 R G

Here, in configurations like 122, there always occurs an odd number

of R’s, whereas for 111, only a single result RRR emerges, which

has an odd number of R’s and is distinct from the quantum

mechanical result containing an even number of R’s.

Again, the argument is independent of the transition function as

long as it is not a permutation.
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Quantum teleportation

It is possible to transmit qubits without sending qubits!

What does this mean? It’s pun? According to Bennetta

“It’s a mean by which you can take apart an unknown quantum

state into classical information and purely quantum information,

send them through two separate channels, put them back together,

and get back the original quantum state”.

Teleportation, as it is commonly understood, is a fictional procedure

of transferring an object from one location to another location in a

three stage process: a) dissociation, b) information transmission, c)

reconstitution. The point is that, in contrast with fax

transmission–where the original object remains intact at the initial

location, only an approximate replica is constructed at destination,b

in teleportation the original object is destroyed after enough

information about it has been extracted, the object is not traversing

in any way the space between locations, but it is reconstructed, as

an exact replica, at the destination.

aA co-author of a 1993 paper that proposed quantum teleportation.
bAt the end, two “identical” versions of the original object result.
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Fax transmission
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Quantum teleportation allows for the transmission of quantum

information to a distant location. The objective is to transmit the

quantum state of a particle using classical bits and reconstruct the

state at the receiver.
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Quantum teleportation
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Locality

Locality interaction is

• mediated by another entity (particle, field),

• propagates no faster than light,

• its strength drops off with distance.

All known forces in the universe (electromagnetic, gravitational,

strong/weak nuclear) are local. So, what’s left? The collapse of the

state vector. Nothing explains, mediates or determines the exact

mechanism of the collapse. In particular, the collapse involves no

forces of any kind.

Let’s assume that Alice wishes to communicate with Bob a single

qubit in an unknown state ϕ = a|0〉+ b|1〉; she wants to make the

transmission through classical channels. Alice cannot know with

certainty the state as any measurement she may perform may

change it; she cannot clone it because of the no cloning result! So, it

seems that the only way to send Bob the qubit is to send him the

physical qubit, or to swap the state into another quantum system

and then send Bob that system.
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Alice and Bob use an entangled pair

ψ0 =
1√
2
(|00〉+ |11〉).

Alice controls the first half of the pair and Bob controls the second

one. The input state is

ϕ⊗ ψ0 = (a|0〉+ b|1〉)⊗ 1√
2
(|00〉+ |11〉)

=
1√
2
(a|0〉 ⊗ |00〉+ a|0〉

⊗|11〉+ b|1〉 ⊗ |00〉+ b|1〉 ⊗ |11〉)

=
1√
2
(a|000〉+ a|011〉+ b|100〉+ b|111〉).

Alice now applies the transformation (H ⊗ I ⊗ I) ◦ (Cnot ⊗ I) to this

state. The third bit is left unchanged; only the first two bits belong

to Alice and the rightmost one belongs to Bob.
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Applying now H ⊗ I ⊗ I, we have:

(H ⊗ I ⊗ I) ◦ (Cnot ⊗ I)(ϕ⊗ ψ0)

=
1√
2
H ⊗ I ⊗ I(a|000〉+ a|011〉

+b|110〉+ b|101〉)

=
1√
2
(aH |0〉 ⊗ (I ⊗ I)|00〉

+aH |0〉 ⊗ (I ⊗ I)|11〉+
+bH |1〉 ⊗ (I ⊗ I)|10〉+ bH |1〉
⊗(I ⊗ I)|01〉)

=
1√
2
(a

1√
2
(|0〉+ |1〉)⊗ |00〉+ a

1√
2
(|0〉

+|1〉)⊗ |11〉+ b
1√
2
(|0〉 − |1〉)⊗ |10〉

+b
1√
2
(|0〉 − |1〉)⊗ |01〉)

=
1

2
(a(|000〉+ |100〉+ |011〉+ |111〉) + b(|010〉

−|110〉+ |001〉 − |101〉)).

This state may be re-written by regrouping terms:

(H ⊗ I ⊗ I) ◦ (Cnot ⊗ I)(ϕ⊗ ψ0)

=
1

2
(|00〉(a|0〉+ b|1〉)

+|01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉)
+|11〉(a|1〉 − b|0〉)).
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Alice then measures her two qubits, obtaining four possible results:

|00〉, |01〉, |10〉, or |11〉 with equal probability 1/4. Depending on the

result of the measurement, the quantum state of Bob’s qubit is

projected to a|0〉+ b|1〉, a|1〉+ b|0〉, a|0〉 − b|1〉, a|1〉 − b|0〉,
respectively. Alice sends the result of her measurement as two

classical bits to Bob. He will know what has happened, and can

apply the decoding transformation T ∈ {I,X, Y, Z} to fix his qubit.

Received State Transfor- Result

bits mation Result

00 a|0〉+ b|1〉 I a|0〉+ b|1〉
01 a|1〉+ b|0〉 X a|0〉+ b|1〉
10 a|0〉 − b|1〉 Z a|0〉+ b|1〉
11 a|1〉 − b|0〉 Y a|0〉+ b|1〉

The final output state is ϕ = a|0〉+ b|1〉, which, as desired, is the

unknown qubit that Alice wanted to send.
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1. The above scheme teleports the “quantum state” not the object.

2. We cannot use the scheme for teleporting an electron, for

example; rather we can teleport the “spin” orientation of one

electron.

3. The scheme is limited by the classical component.

4. According to S. Braunstein, the current technology would need

100 million centuries to transmit a human body (described

down to atomic structure) via a single channel!

5. So, why teleport a quantum state? One reason is that this type

of communication may be used inside a quantum computer or

between quantum computers.
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Recently, important teleportation experiments have been performed

in Vienna (A. Zeilinger), Rome (F. De Martini) and Caltech (J.

Kimble). There is a lot of controversy about the nature of quantum

teleportation and what criteria should be met by a successful

experiment. The following criteria for evaluating a quantum

teleportation procedure have been proposed:

• How well can it teleport any arbitrary quantum state it is

intended to teleport? (fidelity of teleportation)

• How often does it succeed to teleport, when it is given an input

state within the set of states it is designed to teleport?

(efficiency of teleportation)

• If given a state the scheme is not intended to teleport, how well

does it reject such a state? (cross-talk rejection efficiency)

Let us close this discussion with another controversial statement of

the same Bennett:

“I think it’s quite clear that anything approximating teleportation

of complex living beings, even bacteria, is so far away

technologically that it’s not really worth thinking about it.”
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Quantum Cryptography

While classical cryptography employs various mathematical

techniques to restrict eavesdroppers from learning the contents of

encrypted messages, in quantum mechanics the information is

protected by the laws of physics. The Heisenberg uncertainty

principle and quantum entanglement can be exploited in a system of

secure communication, often referred to as “quantum

cryptography”.

There are three main types of quantum cryptosystems:

• Cryptosystems with encoding based on two non-commuting

observables proposed by Wiesner (1970), and by Bennett and

Brassard (1984),

• Cryptosystems with encoding built upon quantum entanglement

and the Bell Theorem proposed by Ekert (1990),

• Cryptosystems with encoding based on two non-orthogonal

state vectors proposed by Bennett (1992).
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The system includes a transmitter and a receiver.

A sender may use the transmitter to send photons in one of four

polarisations: 0, 45, 90, or 135 degrees.

A recipient at the other end uses the receiver to measure the

polarisation.

According to the laws of quantum mechanics, the receiver can

distinguish between rectilinear polarisations (0 and 90), or it can

quickly be reconfigured to discriminate between diagonal

polarisations (45 and 135); it can never, however, distinguish both

types.

The key distribution requires several steps:

• The sender sends photons with one of the four polarisations

which are chosen at random.

• For each incoming photon, the receiver chooses at random the

type of measurement: either the rectilinear type or the diagonal

type.

• The receiver records the results of the measurements but keeps

them secret.

• Subsequently the receiver publicly announces the type of

measurement (but not the results).

• The sender tells the receiver which measurements were of the

correct type.

• The two parties (the sender and the receiver) keep all cases in

which the receiver measurements were of the correct type.

These cases are then translated into bits (1’s and 0’s) and

thereby become the key.
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An eavesdropper is bound to introduce errors to this transmission

because she does not know in advance the type of polarisation of

each photon and quantum mechanics does not allow her to acquire

sharp values of two non-commuting observables (here rectilinear and

diagonal polarisations).

The two legitimate users of the quantum channel test for

eavesdropping by revealing a random subset of the key bits and

checking (in public) the error rate. Although they cannot prevent

eavesdropping, they will never be fooled by an eavesdropper because

any, however subtle and sophisticated, effort to tap the channel will

be detected. Finally, they can try to set up the key distribution

again.

For the first time in 1992 a photon polarization measurement

scheme has been used to make a working quantum key distribution

system in a laboratory at the IBM Thomas J. Watson Research

Center, which transmits over the admittedly modest length of 30 cm

at a rate of 10 bits/second.
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Is it Possible to Break

Turing’s Barrier?

Turing’s halting problem (THP), i.e. the problem to decide whether

an arbitrary Turing machine (TM)

halts on an arbitrary input, is arguably the most (in)famous

unsolvable (by any TM) mathematical problem.

The essence of the proof is the impossibility in answering in a finite

time the infinite set of questions

“does T(x) stop in t steps”, for t = 1, 2, . . .

It is essential that HALT is a TM, so Q is itself a TM.

So, what about trying to prove that HALT is “computable by some

other type of machine”?

Three natural ideas come to mind:

• relativistic machines

• quantum machines

• biological schemes
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Relativistic Computing

Accelerate machines, which execute their n-th instruction in 2−n

seconds, may not be impossible as the same physical theory which

limits the speed of information processing by the velocity of light

maintains that time is relative to the observer.

So, if a satellite revolving with instantaneous tangential velocity

c(1− e−2t)
1

2 (c is the speed of light, t is the earth time scale) and

local time scale T , the time interval dT = e−tdt, then one second in

the satellite’s time scale corresponds to an eternity on earth as
∫ ∞
0
e−tdt = 1.

In 2002 Etesi and Németi observed that in Malament-Hogarth

space-times, due to infinite time contraction, it may be possible for

a computer to receive, in finite time, the answer to a yes-or-no

question from an infinite computation.
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A Quantum Strategy

In 2002 Calude and Pavlov have proposed the following attack on

the infinite Merchant Problem.

We are given θ = 2−n and we assume that we work with a quantum

“device” with sensitivity ε = 2−m.

• First, we compute classically a time T = Tθ,ε,

• Then, we run the “device” on a random input for the time T .

The quantum “device” may or may not produce a click.

• If we get a click, then the system has false coins (in the finite

case the stack containing false coins can be located).

• If we don’t get a click, then with probability greater than 1− θ
all coins are true.

An essential part of the method is the requirement that the time

limit T is computable in a classical way.
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A Biological Strategy

In 2003 Calude and Păun have proposed two biological hypotheses

which have as consequences the possibility of building “accelerated

P systems” capable of solving the HP.

The idea came from Russell and Weyl (early 30s) who observed that

a process that performs its first step in one unit of (global) time, the

second step in 1/2 unit of (global) time, and, in general, each

subsequent step in half the (global) time of the step before, is able

to complete an infinity of steps in just two global units of time since

1 +
1

2
+

1

4
+ · · · = 2.

Grounded on suggestions coming from cell and brain biology we

assume that acceleration is a part of the hardware (not a quality of

the environment) and it is realised either by decreasing the size of

“reactors” (thus making possible that reactants find each other and

react in a shorter time), or by training, by speeding-up the

communication channels
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The general scenario is suggested in Figure 4: we have two scales of

time, an external, global one, of the “user” of the accelerated device

(the black box in the figure), and the internal, local time of the

device. The problem is formulated in global time, at some moment

t, and introduced into the accelerated device, which is able to

perform an ‘inner’ infinite computation in a finite number, T , of

external time units, when the “user” gets the answer to the problem.

-

6

?

-

t t+ T

(M,n) [yes]

global time

AccUT

Figure 4: The interplay between local and global time used for solving

the Halting Problem by means of an accelerated device
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