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COMPSCI 755: Unconventional

Models of Computation

Lecturer: Professor Cristian S. Calude, Room 252, ext

5751, e-mail : cristian@cs.auckland.ac.nz

Teaching Assistant: Joshua Arulanandham, Room 116,

ext 7595, e-mail : hi josh@hotmail.com
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Topics

• Fundamental mathematical constraints on computation

• Fundamental physical constraints on computation

• Potential future computing technologies

• Implications for the mind theories
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Format

The course will consist of:

1. Lectures introducing each topic and reviewing the

readings

2. Reading assignments from the primary research literature

3. Written assignments to encourage and verify

participation

4. Open-discussion and question-and-answer sessions

5. Written exam with questions from the topics discussed in

class
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Course Work: 60%

You will have weekly reading assignments, fortnightly

written assignments, and two open-discussion and

question-and-answer sessions.

You will be given a few papers from the primary research

literature to read every week. Skim through the readings,

and read more thoroughly, at your leisure, the ones that you

think you will get most out of. Don’t worry if you don’t

understand every bit of what you read. In this course we

will be reading materials that span a wide range of levels of

depth and sophistication, and not everyone will understand

every phrase and formula in every paper.
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In the written assignments (1-2 pages) you may do one of

the following:

1. Summarize what you learned from the fortnight’s

lectures and/or readings.

2. Write a summary, review, or critique of one or more of

the articles/chapters that you read.

3. Describe and elaborate on any creative or interesting

ideas/thoughts relating to the subject matter that

might have been stimulated in your mind as you were

listening to/reading/reflecting on the material.

4. Set up and carry out any interesting analysis,

calculation or simulation relating to any of the

quantitative/technical ideas covered during the

fortnight.
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5. Correct any statement that was made in class or in one

of the readings which in your opinion is wrong or

inaccurate (explain why).

6. Do a bit of research on your own. Summarize what you

learned and cite your references.
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Textbook

C. S. Calude, G. Păun. Computing with Cells and Atoms,

Taylor & Francis Publishers, London, 2001.

Recommended Books

• J. Gruska. Quantum Computing, McGraw-Hill, London,

1999.

The most comprehensive textbook in Quantum Computing.

• J. G. Hey and R. W. Allen, (eds.). Feynman Lectures

on Computation, Addison-Wesley, Reading,

Massachusetts, 1996.

Feynman’s lecture notes from the course “The Potentialities

and Limitations of Computing Machines” taught at Caltech

in the early eighties.
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• J. G. Hey (ed.). Feynman and Computation. Exploring

the Limits of Computers, Perseus Books, Reading,

Massachusetts, 1999.

Companion volume to Feynman Lectures on Computation,

this book collects old and recent articles on the physics of

computing by Feynman and his colleagues in physics,

electrical engineering, and computer science who were guest

lecturers in his course.

• Gh. Păun, G. Rozenberg, A. Salomaa. DNA

Computing. New Computing Paradigms,

Springer-Verlag, Berlin, 1998.

The best textbook in DNA Computing.

• C. P. Williams, S. H. Clearwater. Explorations in

Quantum Computing, Springer-Verlag, New York, 1997.

A very good book in Quantum Computing which comes

with software which some may be interested in playing with.
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• C. P. Williams, S. H. Clearwater. Ultimate Zero and

One: Computing at the Quantum Frontier,

Springer-Verlag, Heidelberg, 2000.

A continuation of Explorations in Quantum Computing.
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Why UMC?

The computer seems to be the only important instrument

ever to get exponentially better as it gets cheaper. Its

capacity for handling information has been growing about

ten million times faster than it did in nervous systems

during our entire evolution. The power

• doubled every two years up until 1980s,

• doubled every 18 months in the 1980s (Gordon Moore’s

1965 law), and

• is now doubling each year.

By 1993 personal computers provided 10 MIPS (MIPS =

million of instructions per second), by 1995 it was 30 MIPS,

in 1997 it was over 100 MIPS, now it’s about 200 MIPS.
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For the sake of a comparison: the human retina uses about

1,000 MIPS to handle edge and motion detectors, while the

whole human brain—which is roughly 100,000 times larger

than the retina—is worth perhaps 100 million MIPS.

Computers are reading text, recognizing speech, and robots

are driving themselves across Mars.

Yet, this exponential race will not guarantee solutions to

the many intractable/undecidable problems challenging

computer science.

Even worse, it is predictable that this trend of conventional

technology will hit the wall in less than 20 years. This is a

reason to believe that conventional computation is

approaching a critical phase where new technologies will be

required to provide significant further progress.
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Fundamental Mathematical

Constraints on Computation

Church-Turing Thesis

Church-Turing Thesis, a prevailing paradigm in classical

computation theory, states that no realizable computing

device can be “globally” more powerful, that is, aside from

relative speedups, than a universal Turing machine. The

modern form of Church-Turing Thesis states that

any “reasonable” model of computation can be

effectively simulated by a (probabilistic) Turing

machine.
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The above statement is a thesis, and not a theorem, as it

relates an informal notion–a realizable computing device–to

the mathematical notion of (probabilistic) Turing machine.

Here are some reasons supporting Church-Turing Thesis:

• Philosophical argument: Due to Turing’s analysis it

seems very difficult to imagine some other method

which falls outside the scope of his description.

• Mathematical evidence: Every mathematical notion of

computability which has been proposed was proven

equivalent to Turing computability.

• Sociological evidence: No example of classical computing

device which cannot be simulated by a Turing machine

has been given, i.e., the thesis has not been disproved

despite having been proposed for more than 60 years.
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Church-Turing’s Thesis includes a syntactic as well a

physical claim. In particular, it specifies which types of

computations are physically realisable. According to

Deutsch (1982):

The reason why we find it possible to construct, say,

electronic calculators, and indeed why we can

perform mental arithmetic, cannot be found in

mathematics or logic. The reason is that the laws of

physics “happen” to permit the existence of

physical models for the operations of arithmetic

such as addition, subtraction and multiplication. If

they did not, these familiar operations would be

non-computable functions. We might still know of

them and invoke them in mathematical proofs

(which would be presumably called

“non-constructive”) but we could not perform them.
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Church-Turing Thesis was challenged by logicians (Kalmar,

Davis, Kreisel), computer scientists (Rosen, Hogarth,

Siegelmann) and physicists (Landauer, Svozil). For

example, Davis asks himself:

“. . . how can we ever exclude the possibility of our

presented, some day (perhaps by some

extraterrestrial visitors), with a (perhaps extremely

complex) device or “oracle” that “computes” an

uncomputable function?”

Thinking is an essential, if not the most essential,

component of human life–it is a mark of “intelligence”.

Descartes placed the essence of being in thinking.

Church-Turing Thesis has been used to approach formally

the notion of “intelligent being”. In simple terms,

Church-Turing Thesis was stated as follows:

What is human computable is computable by a

universal Turing machine.
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Fundamental Physical

Constraints on Computation

An operation is “logically reversible” if it can be undone, if

it can be run backwards, that is, if its inputs can always be

deduced from the outputs. Most logical gates are

irreversible; a typical example is the NAND gate

(a, b) 7→ ¬(a ∧ b) (1)

which has two input bits and only one output bit. We

cannot recover a unique input from the output bit because

the result 1 can be obtained from three distinct inputs:

(0, 0), (0, 1), (1, 0).
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Assume we operate the gate NAND with two Boolean

variables, a, b, and suppose that the four initial states,

(0, 0), (0, 1), (1, 0), (1, 1), have the same probability

distribution, 1
4 . Then, the initial entropy, which is

calculated with Shannon’s formula:

H = −
∑

i

pi · log pi,

is then

Hinitial = −4 · (1

4
log

1

4
) = 2 bits.

The result will be a system with only two possible states, 0

and 1, the outcome 0 appearing with probability 1
4 and the

outcome 1 appearing with probability 3
4 . Consequently, the

final entropy is

Hfinal = −(
3

4
log

3

4
+

1

4
log

1

4
) = 2− 3

4
log 3 bits,

which means a loss of

Hinitial −Hfinal =
3

4
log 3 bits.
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Assume now that we operate the gate

(a, b) 7→ (a ∨ b, a ∧ b),

and, again, suppose that the four initial states of the

Boolean variables a, b have the same probability

distribution, 1
4 . This gate has finally only three final states,

namely (0, 0), (1, 0), (1, 1), two of them with probability 1
4

and one with probability 1/2. Consequently, the final

entropy is

Hfinal = −(2 · 1

4
log

1

4
+

1

2
log

1

2
) = 1.5 bits.

In this case, the gate decreases the entropy by 0.5 bits.

The first gate is “more irreversible” than the second one,

since it decreases more the entropy.

In thermodynamics the entropy is defined by

S = −k ·
∑

i

pi · ln (pi),

where k ≈ 1.38× 10−23 joule/◦kelvin is Boltzmann’s

constant.
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This notion is coupled to energy through the temperature T

of the system: when the entropy of a system is decreased by

some amount, then the system dissipates energy equal to

the amount of entropy reduction times the temperature.

Von Neumann noticed that the two entropies are related by

some constant factor, so they are in fact the same notion.

When the probability distribution of the system is changed

so that the entropy H is decreased by 1 bit, then the

entropy S is decreased by k · ln2 joule/◦kelvin, and the

system dissipates kT · ln2 joules of energy in the form of

heat. So, a challenging question arises:

what is the minimum energy required to carry out a

computation?
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Does the above analysis apply to computation? In 1961

Landauer has produced evidence for the affirmative answer.

To operate a computer we have to make sure that distinct

logical states are represented by distinct physical states.

Each bit has two values, 0, 1, so it has one degree of

freedom; it corresponds to one or more degrees of freedom

of physical states. In general, a set of n bits has n degrees

of freedom; they correspond to 2n physical states. If we

erase n bits, say we reset all to 0, then we have compressed

2n logical states into a single state, a loss of entropy. The

irreversible loss information increases temperature of the

system, which means, heat dissipation. Consequently,

operations which are not one-to-one, which map distinct

logical states into a common one, cost energy. This cost is

expressed by Landauer’s principle:

erasure of information is a dissipative process.
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Here is a simple “home” example. We need two basketballs

to design a system of representing information. Put one on

the floor by your left foot and hold the other in your (right)

hand.

Zero (0) is represented by the ball on the floor; one (1) is

represented by the ball in your hand.

Assume that we want to erase the bit 1, that is the bit in

your hand. To do this you have to drop the ball. Simple?
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Not really, as the ball does not get directly into the floor (to

become a 0), but in fact bounces for a while. With a

perfectly elastic basketball and a good hard floor the ball

may bounce close to your hand, i.e. to the 1 position!

To settle down into 0 the ball has to encounter friction,

with the air molecules and the floor. Eventually friction

slows down the ball, so 1 has been erased. We could do it

because the energy from bouncing the ball has been

transmitted to the floor and the air. In a vacuum with a

perfect frictionless floor erase would be impossible! Energy

is consumed in the process of erasure.
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A more elaborate example. One can store one bit of

information by placing a single molecule in a box, either on

the left side or the right side of a partition that divides the

box. In this context, erasure means that we choose to move

the molecule to the left (or right) side irrespective of

whether it started out on the left or right. However, one

can suddenly remove the partition, and then slowly

compress the one-molecule “gas” with a piston until the

molecule reaches the left side. This procedure reduces the

entropy of the gas by ∆S = k· ln 2, and a flow of heat from

the box to the environment is produced. Assume now that

the process is isothermal at temperature T .
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Then work

W = kT · ln2 (2)

is performed on the box, and this work has to be provided.

If one decides to erase information, then “a power bill will

be generated” and should be paid. For example, according

to formula (2), the execution of the gate

(a, b) 7→ (a ∨ b, a ∧ b) dissipates at least 1
2kT · ln2 joules of

energy. This is a theoretical limit expressing how long the

gate can be operated with finite resources of energy.

The energy dissipation has been reduced by approximately

a factor of ten every five years, so a rough extrapolation

suggests that a reduction of the energy dissipation per logic

operation below kT (thermal noise, that is of the order of

10−18 picojoule at room temperature) may become relevant

in about 10 years. This issue may cause a variety of

problems for classical computers, e.g., cooling may be

difficult (according to current day knowledge/technology).
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Irreversible operations, as the NAND gate, the binary

addition (a, b) 7→ (a⊕ b, a ∧ b) (sum and carry) and the real

addition (x, y) 7→ x+ y, dissipate energy. Is logical

reversibility dissipation free?

The above irreversible operations can be easily simulated by

reversible ones. A reversible version of the NAND gatea is,

for example, Toffoli’s gate

(a, b, c) 7→ (a, b, c⊕ (a ∧ b)).b (3)

aA single NAND gate is as good as having both AND

and NOT: ¬a =NAND(a, 1), AND(a, b) = ¬(NAND (a, b)) =

NAND(NAND(a, b), 1).
bRecall that a ⊕ b is 1 only if a and b have different values, i.e.,

a = 0, b = 1 or a = 1, b = 0.
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Indeed, (3) is a reversible 3-bit gate that flips the third bit

if the first two both take the value 1 and does nothing

otherwise. Hence, the third output bit becomes the NAND

of a and b in case c = 1. The price paid to get reversibility

consisted in adding a new variable c.

Similar tricks can be used to produce reversible versions of

the binary addition, (a, b) 7→ (a, a⊕ b, a ∧ b) and real

addition (x, y) 7→ (x+ y, x− y). In the first case we

replicated the first variable a; in the second case we added a

new component storing some additional value.
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A computer may be fully reversible and yet dissipate

energy! The important point is that the laws of physics

allow for technologies to make reversible computers operate

with negligible dissipation. To build a reversible computer

one needs only two types of logical gates, say AND and

NOT (because any other gate can be constructed from

these two types–they are universal). Clearly, the NOT gate

is reversible as its composition with itself gives the initial

input. However, the AND gate is irreversible. Reason: it

has two inputs and only one output, so it has to lose

information (it is impossible to tell exactly what inputs

must have been if all one is told is the output 0: any of the

three combinations (0, 0), (0, 1), (1, 0), could have been the

“real input”).

To make a reversible variant of the gate AND we need to

make sure that we have the same number of output lines as

input ones, so, in principle, we can just add some “garbage”

output lines to solve the problem. However, this may not be

enough, as we want to guarantee also universality! One

possibility is Toffoli’s reversible 3-bit gate which uses in

addition to a, b a control bit c. Input bits a and b do not

change their states; the control bit, however, will change its

state, but only when a = b = 1.
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Toffoli’s truth table is the following:

input output

a b c a b c

0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 1

input output

a b c a b c

0 0 1 0 0 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0

Toffoli’s gate.
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Fredkin’s reversible 3-bit gate also uses in addition to a, b a

control bit c in the following way: a) if c = 0, then the

values of a, b are transmitted unaltered, i.e., the output is

the pair (a, b), b) if c = 1, then the values of a, b are

switched to the opposite output, i.e., the output is the pair

(b, a). Its truth table is the following:

input output

a b c a b c

0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 0

input output

a b c a b c

0 0 1 0 0 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 1 1 1 1

Fredkin’s gate.
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Fredkin’s gate is universal in the sense that it can be used

to construct reversible variants of all Boolean gates, and

satisfies one additional requirement: the number of 1s and

0s never changes. To prove universality it is enough to show

that the gates NOT and AND can be represented using

Fredkin’s gate FREDKIN with particular inputs. It is not

difficult to check that the following formulae work:

FREDKIN (a, b, c)

= ((((¬c) ∧ a) ∨ (c ∧ b)), ((a ∧ c) ∨ (b ∧ (¬c)), c),

FREDKIN (1, 0, c) = (¬c, c, c), (4)

and

FREDKIN (0, b, c) = (b ∧ c, b ∧ (¬c), c), (5)

So, both NOT and AND can be simulated by FREDKIN.
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Fredkin’s gate has often been used for photon based gates

where a 1 represents a photon and a 0 simply denotes the

absence of a photon; nonlinear optics is used to control the

output of an interferometer. The number of ones cannot

change as the number of photons cannot change–absorption

is not allowed for reversible gates.

In both formulae (4) and (5) there are more outputs than

are required for the computed functions (one for NOT and

two for AND): these outputs, called garbage bits, are a

necessary consequence of reversible logic. Consequently, one

may wonder whether we have only postponed the energy

cost; garbage bits can be irreversibly erased, but that would

require to pay Landauer’s price . . .
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Bennett found in 1973 that any computation can be

performed using only reversible steps, and so “in principle”

requires no dissipation and no power expenditure: we do

not need to erase the garbage bits! By pointing out that a

reversible computer can run forward to the end of a

computation, print out a copy of the answer (a logically

reversible operation) and then reverse all of its steps to

return to its initial configuration, Bennett invented a

procedure to remove the garbage without any energy cost.

Here is a simple illustration of this technique:

INPUT00000 7→ COMPUTER00000

7→ INPUTOUTPUT 7→ COPYOUTPUT

7→ RETUPMOC 7→ INPUT00000 7→ OUTPUT
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The inevitability of handling garbage bits implies the

necessity to allow more input bits than are needed in an

irreversible computation (INPUT 7→ INPUT00000); of

course, some garbage bits may be useful only for internal

computation, but still, a certain additional bits will be

required.

In principle, we need not pay any “power bill” to compute

reversibly. In practice, the (irreversible) computers in use

today dissipate energy of orders of magnitude more than (2)

per gate, so today Landauer’s limit seems not to be an

important engineering principle. But as computing

hardware continues to shrink in size, it may become

important to beat Landauer’s limit, for example, to prevent

the components from melting. Then reversible computation

may be one, if not the only one, option.
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The following problem illustrates the “quantum” approach

to problem solving.

Merchant’s Problem

A merchant learns than one of his five stacks of coins

contains only false coins, 0.01 grams heavier than normal

ones. Can he find the odd stack by a single “weighing”?

Coin selection
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What about the case when more than one stack of coins

contains false coins: can we, again with only one single

weighting find all stacks containing false coins?

Solution: choose 1,2,4,8,16 coins from each stack!

• What are the limits of the above solutions?

• What about the case when we are allowed to take only

just one coin from each stack?

• What about the case when we have infinitely many

stacks?
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Bits and Qubits

A classical bit (e.g., the position of gear teeth in Babbage’s

differential engine, a memory element or wire carrying a

binary signal, in contemporary machines) is a system

comprising many atoms. Typically, the system is described

by one or more continuous parameters, for example,

voltage. Such a parameter is used to separate the space into

two well-defined regions chosen to represent 0 and 1.

Manufacturing imperfections, local perturbations may

affect, so signals are periodically restored toward these

regions to prevent them from drifting away. An n-bit

register of memory can exist in any of 2n logical states,

from 00 . . . 0 (n zeros) to 11 . . . 1 (n ones).
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A quantum event in which we have two possible mutually

exclusive outcomes is the elementary act of observation: all

knowledge of the physical world is based upon such acts.

An elementary act of observation is simultaneously like a

coin-toss and not like a coin-toss. The information derived

from an elementary act of observation is no more than a

single bit, but there is more on it than that. To mark this

difference Schumaker has coined the name qubit.

A quantum bit, qubit, is typically a microscopic system,

such as an atom or nuclear spin or polarized photon. For

example, the state of a spin- 1
2 particle, when measured, is

always found to be in one of two possible states, represented

as

|+ 1

2
〉 (spin-up) or | − 1

2
〉 (spin-down).
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One can use one spin state to represent 0, and the other

spin state to represent 1. There is nothing special about

spin systems–any 2-state quantum system can be equally

used to represent 0 and 1. What is really special here is the

existence of a continuum of intermediate states which are

superpositions of 0s and 1s. Mathematically they are just

linear combinations of the basis states.

Unlike the intermediate states of a classical bit (for

example, any voltages between the “standard”

representations of 0 and 1) which can be distinguished from

0 and 1, but do not exist from an informational point of

view, quantum intermediate states cannot be reliably

distinguished, even in principle, from the basis states, but

do have an informational “existence”.
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An n-qubit system can exist in any superposition of the

form

Ψ =
11...1
∑

x=00...0

cx|x〉, (6)

where cx are (complex) numbers such that
∑

x |cx|2 = 1.

The exponential “explosion” represented by formula (6)

distinguishes quantum systems from classical ones: in a

classical system a state is described by a number of

parameters growing only linearly with the size of the system

(classical systems are completely described locally, that is,

via each state in part), but, as we shall see later, quantum

systems may not admit such a description (because

quantum states may be “entangled”).
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We present some rudiments of (finite dimensional) Hilbert

space theory. A Hilbert space is a mathematical model for

representing vectors. The state of a quantum system can be

described by a column vector in a Hilbert space of wave

functions; as the system evolves, its state vector rotates

with its base anchored to the origin of axes. Vectors can be

added and multiplied by (complex) numbers. State vectors

are typically written with a special angular bracket

notation, the “ket vector” |Ψ〉. The word “ket” was

invented by Paul Dirac. Row vectors, such as 〈Ψ|, are

known as “bra” vectors; when you put together a column

and a bra vector, you get a bracket, that is the inner

product of the two vectors, 〈Ψ||Ψ〉, also written as 〈Ψ|Ψ〉.
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A simple 2-state quantum system (the basic block of a

quantum memory register) can, by definition, be in one of

two possible states. To model it we need the smallest

non-trivial Hilbert space C2, a two dimensional space.

Assume that a particular complete orthonormal basis,

denoted by {|0〉, |1〉}, has been fixed.a These vectors, |0〉
and |1〉, correspond to the classical bit values 0 and 1,

respectively.

aHere “complete” refers to the fact that every state vector in the

Hilbert space can be represented in the form (7), and “orthonormal”

means that vectors are perpendicular to one another, and normalized.

For example, the vectors |0〉 and |1〉 may correspond to the horizontal

polarization | →〉 and the vertical polarization | ↑〉 of a photon, respec-

tively.
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A qubit is a unit vector in the space C2, so for each qubit

|x〉, there are two (complex) numbers a, b ∈ C such that

|x〉 = a|0〉+ b|1〉 =





a

b



 , (7)

where

|0〉 =





1

0



 , |1〉 =





0

1



 ,

and |a|2 + |b|2 = 1.

The angle which a qubit makes with the vertical axis

describes the relative contributions of |0〉 and |1〉. The angle

through which the vector is rotated about the vertical axis

induce to so-called “phase”. So, different qubits may have

the same proportion of |0〉 and |1〉, but with different phase

factors. Phase is irrelevant for the whole states but it’s

crucial for “quantum interference effects”.
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We can perform a measurement that projects the qubit

onto the basis {|0〉, |1〉}. Then we will obtain the outcome

|1〉 with probability |b|2, and the outcome |0〉 with

probability |a|2. With the exception of limit cases a = 0 and

b = 0, the measurement irrevocably disturbs the state: If the

value of the qubit is initially unknown, then there is no way

to determine a and b with any conceivable measurement.

However, after performing the measurement, the qubit has

been prepared in a known state (either |0〉 or |1〉); this state

is typically different from the previous state.

The above facts point out an important difference between

qubits and classical bits. There is no problem in measuring

a classical bit without disturbing it, so we can decode all of

the information that it encodes. If we have a classical bit

with a fixed, but unknown value (0 or 1), then we can only

say that there is a probability that the bit has the value 0,

and a probability that the bit has the value 1, and these

two probabilities add up to 1. When we measure the bit, we

acquire additional information; after measurement, we will

know completely the value of the bit.
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The ability of quantum systems to exist in a “blend” of all

their allowed states simultaneously is known as the

Principle of Superposition. Even though a qubit can be put

in a superposition (7), it contains no more information than

a classical bit, in spite of its having infinitely many states.

The reason is that information can be extracted only by

measurement. But, as we have argued, for any measurement

of a qubit with respect to a given orthonormal basis, there

are only two possible results, corresponding to the two

vectors of the basis. On the other hand, it is not possible to

capture more information measuring in two different bases

because the measurement changes the state. Even worse,

quantum states cannot be cloned, hence it’s impossible to

measure a qubit in two different ways (even, indirectly, by

using a copy trick, that is copying and measuring the copy).
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Is a qubit identical to a probabilistic classical bit? The

answer is negative and an argument is that the numbers a

and b in (7) encode more than just the probabilities of the

outcomes of a measurement in the {|0〉, |1〉} basis. For

example, the relative phase of a and b is crucial.

For example, consider the qubits |ϕ〉 = a|0〉+ b|1〉 and

|ψ〉 = a|0〉 − b|1〉, which are similar in amplitudes (as the

relative proportions of |0〉 and |1〉 are the same), but differ

by a phase. Consider the quantum transformation

α|0〉+ β|1〉 7→ [(α+ β)
√

2/2]|0〉+ [(α− β)
√

2/2]|1〉.

For a = b =
√

2/2, |ϕ〉 produces surely |0〉 while |ψ〉
produces surely |1〉. Hence, the final result is acutely

sensitive to the phase factors.
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Systems of more than one qubit need a Hilbert space which

captures the interaction of the qubits. A two qubit system

can be represented by a unit vector in the tensor product of

two copies of C2, i.e., the space C2 ⊗C2. Using Dirac

notation, if |0〉 and |1〉 are the vectors of a basis in C2 then,

the set

{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

= {|00〉, |01〉, |10〉, |11〉}
is a basis in C2 ⊗C2.
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More precisely,

|00〉 =















1

0

0

0















, |01〉 =















0

1

0

0















,

|10〉 =















0

0

1

0















, |11〉 =















0

0

0

1















.
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In general, a system containing exactly n ≥ 2 qubits is

represented by n copies of C2 tensored together. Therefore,

the state space is 2n dimensional. A natural basis for this

space consists of 2n tensor products:

|0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉,

|0〉 ⊗ |0〉 ⊗ . . .⊗ |1〉,
...

|1〉 ⊗ |1〉 ⊗ . . .⊗ |1〉.

A classical string of bits i1i2 . . . in with ik ∈ {0, 1},
1 ≤ k ≤ n, corresponds to the quantum state

|i1〉⊗ |i2〉⊗ . . .⊗ |in〉 which is simply denoted by |i1i2 . . . in〉.
If |0〉 and |1〉 are orthogonal unit vectors in C2, then the set

{|i1i2 . . . in〉|ik ∈ {0, 1}, 1 ≤ k ≤ n}

is an orthonormal basis in C2 ⊗C2 ⊗ . . .⊗C2.
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In contrast with the classical physics, where the state of a

system is completely defined by describing the state of each

of its component pieces separately, in a quantum system the

state cannot always be described considering only the

component pieces. For instance, the state

1√
2
(|00〉+ |11〉)

cannot be decomposed into separate states for each of the

two bits. This means that we cannot express this state as a

tensor product of two single qubits. Indeed, let’s assume for

the sake of a contradiction, that there exist two kets |x〉 and

|y〉 in C2 such that

1√
2
(|00〉+ |11〉) = |x〉 ⊗ |y〉.



2002 COMPSCI 755 50'

&

$

%

Since each single qubit is in a superposition of |0〉 and |1〉,
there exist four complex numbers a1, b1, a2, b2 such that

|x〉 = a1|0〉+ b1|1〉

and

|y〉 = a2|0〉+ b2|1〉.
It follows that

|x〉 ⊗ |y〉 = (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉)
= a1a2|00〉+ a1b2|01〉+ b1a2|10〉

+b1b2|11〉,

hence a1b2 = 0 and a1a2 = 1√
2

= b1b2, which is impossible.
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A state that cannot be expressed as a tensor product is

called an entangled state. Since the space C2 ⊗C2 is

spanned by the set {|x〉 ⊗ |y〉| x, y ∈ C2}, the existence of

entangled states proves that the previous set is not a linear

space. One can easily find entangled states in an n qubit

system, for any integer n ≥ 2.

Note that it would require vast resources to simulate even a

small quantum system on a conventional computer, as such

a simulation would require keeping track of exponentially

many states: the dimension of the cartesian product of

multiple classical particles grows linearly with the number

of particles, while the dimension of the tensor product of

quantum systems grows exponentially. A reason for the

(potential) power of quantum computers is the ability of

exploiting the quantum state evolution as a computational

mechanism.
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Qubit Evolution

The quantum evolution (quantum transformation, operator)

of (on) a qubit is described by a “unitary operator”, that is

an operator induced by a unitary matrix.a

Any unitary operator U : C2 → C2 can be viewed as a

single qubit gate. Considering the basis {|0〉, |1〉}, the

transformation is fully specified by its effect on the basis

vectors. In order to obtain the associated matrix of an

operator U , we put the coordinates of U |0〉 in the first

column and the coordinates of U |1〉 in the second one. So,

the general form of a transformation that acts on a single

qubit is a 2× 2 matrix

A =





a b

c d



 ,

which transforms the qubit state α|0〉+ β|1〉 into the state

(αa+ βb)|0〉+ (cα+ dβ)|1〉:





a b

c d









α

β



 =





αa+ βb

cα+ dβ



 .

aA quadratic matrix A of order n over C is unitary if AA† = I (the

identity n× n matrix); A† is the transposed conjugate matrix of A.
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For θ ∈ [0, 2π), the rotation Rθ is given by

Rθ =





cos θ −sin θ
sin θ cos θ



 .

Hence, Rθ acts as follows:

|0〉 7→ cos θ|0〉+ sin θ|1〉, |1〉 7→ −sin θ|0〉+ cos θ|1〉.

One can easily verify that RθR
†
θ = RθR

T
θ = I, hence Rθ is

unitary. Note that in the special case θ = 0 we get the

identity transformation of C2:

R0 = I =





1 0

0 1



 .
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We may think of logic gates as transformations. For

example, the NOT transformation which interchanges the

vectors |0〉 and |1〉, is given by Rπ, that is the matrix

NOT =





0 1

1 0



 .

It flips that state of its input,

NOT |0〉 =





0 1

1 0









1

0



 =





0

1



 = |1〉,

and

NOT |1〉 =





0 1

1 0









0

1



 =





1

0



 = |0〉.
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The phase shift gate Shift is defined as follows:

Shift |0〉 = |0〉, Shift |1〉 = −|1〉, so

Shift =





1 0

0 −1



 .

Since NOT ·NOT † = I and Shift · Shift† = I, the

operators NOT and Shift are also unitary. The operator

Shift ·NOT is also a unitary transformation and we have:

Shift ·NOT |0〉 = Shift |1〉 = −|1〉,

Shift ·NOT |1〉 = Shift |0〉 = |0〉.
Therefore, its associated matrix is

R3π/2 =





0 1

−1 0



 .
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The square-root of NOT (introduced by Deutsch) is the

transformation

√
NOT :

|0〉 → 1
2 (1 + i)|0〉+ 1

2 (1− i)|1〉,

|1〉 → 1
2 (1− i)|0〉+ 1

2 (1 + i)|1〉,

√
NOT =

1

2





1 + i 1− i

1− i 1 + i



 .

√
NOT ·

√
NOT = NOT , (8)

and √
NOT ·

√
NOT

†

=
1

4





1 + i 1− i

1− i 1 + i









1− i 1 + i

1 + i 1− i



 = I.
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The square-root of NOT is a typical “quantum” gate in the

sense that it is impossible to have a

single-input/single-output classical binary logic gate that

satisfies (8). Indeed, any classical binary

√
NOT classical

gate is going to output a 0 or a 1 for each possible input

0/1. Assume that we have such a classical square-root of

NOT gate acting as a pair of transformations

√
NOT classical(0) = 1,

√
NOT classical(1) = 0.

Then, two consecutive applications of it will not flip the

input!
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Finally we consider the Hadamard transformation H is

defined by

H :

|0〉 → 1√
2
(|0〉+ |1〉)

|1〉 → 1√
2
(|0〉 − |1〉)

,

H =
1√
2





1 1

1 −1



 .

This transformation has a number of important

applications. When applied to |0〉, H creates a

superposition state

1√
2
(|0〉+ |1〉).

Applied to n bits individually, H generates a superposition

of all 2n possible states. To see this we need some

rudiments on tensor products.
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Consider two operators A : Cn → Cm and B : Cq → Cp.

The tensor product of A and B is the operator

A⊗B : Cn ⊗Cq → Cm ⊗Cp, with the property

A⊗B(x⊗ y) = Ax⊗By, for any x ∈ Cn and y ∈ Cq. A

convenient way is, again, to work with matrices. Let A be a

(m× n) matrix and B a (p× q) matrix. The (right)

Kronecker product of A and B is the (mp× nq) matrix

defined as follows:

A⊗B =

















a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB

















.
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For example, if

A =





a11 a12

a21 a22



 , B =





b11 b12

b21 b22



 ,

are two 2× 2 matrices, then we have:

A⊗B =















a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22














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Two important mathematical results are useful:

a) If A and B are matrices associated to the

operators A and B, then the matrix associated to

A⊗B is the Kronecker product of A and B.

b) The tensor products of two unitary

transformations is also unitary.

Consequently, considering the tensor product of n single

qubit transformations, we can obtain examples of unitary

transformations acting on n qubits.
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For instance, let (|00〉, |01〉, |10〉, |11〉) be the basis in

C2 ⊗C2 and consider the following transformations:

I ⊗ I :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 → |11〉

, I ⊗ I =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















.
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I ⊗NOT :

|00〉 → |01〉
|01〉 → |00〉
|10〉 → |11〉
|11〉 → |10〉

,

I ⊗NOT =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















.

NOT⊗ I :

|00〉 → |10〉
|01〉 → |11〉
|10〉 → |00〉
|11〉 → |01〉

,

NOT⊗ I =















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0















.
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NOT⊗NOT :

|00〉 → |11〉
|01〉 → |10〉
|10〉 → |01〉
|11〉 → |00〉

,

NOT⊗NOT =















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0















.

Shift ⊗NOT :

|00〉 → |01〉
|01〉 → |00〉
|10〉 → −|11〉
|11〉 → −|10〉

,

Shift ⊗NOT =















0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0















.
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We come back to binary representations of the numbers

from 0 to 2n − 1 via Hadamard operator. The

Walsh-Hadamard transformation is defined recursively by

Wn = H, if n = 1 and Wn = H ⊗Wn−1,

for any n ≥ 2. For example, if n = 2 then

W2|00〉 = (H ⊗H)|00〉
= H |0〉 ⊗H |0〉

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1

2
(|00〉+ |01〉+ |10〉+ |11〉),

W2|01〉 = (H ⊗H)|01〉
= H |0〉 ⊗H |1〉

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉)

=
1

2
(|00〉 − |01〉+ |10〉 − |11〉),
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W2|10〉 = (H ⊗H)|10〉
= H |1〉 ⊗H |0〉

=
1√
2
(|0〉 − |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1

2
(|00〉+ |01〉 − |10〉 − |11〉),

W2|11〉 = (H ⊗H)|11〉
= H |1〉 ⊗H |1〉

=
1√
2
(|0〉 − |1〉)⊗ 1√

2
(|0〉 − |1〉)

=
1

2
(|00〉 − |01〉 − |10〉+ |11〉),

so the associated matrix is

W2 =
1

2















1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1















.
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For n = 3, we have

W3|000〉 = (H ⊗W2)|000〉
= H |0〉 ⊗W2|00〉

=
1√
2
(|0〉+ |1〉)⊗ 1

2
(|00〉+ |01〉

+|10〉+ |11〉)

=
1

2
√

2
(|000〉+ |001〉+ |010〉+ |011〉

+|100〉+ |101〉+ |110〉+ |111〉),

W3|001〉 = (H ⊗W2)|001〉
= H |0〉 ⊗W2|01〉

=
1√
2
(|0〉+ |1〉)⊗ 1

2
(|00〉 − |01〉

+|10〉 − |11〉)

=
1

2
√

2
(|000〉 − |001〉+ |010〉 − |011〉

+|100〉 − |101〉+ |110〉 − |111〉),

and so on.
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The associated matrix is W3 = H ⊗W2:

W3 =
1√
2





1 1

1 −1



⊗ 1

2















1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1















=
1

2
√

2





































1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1





































.
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If we apply the Walsh-Hadamard transformation to

|00 . . . 0〉 we get a superposition of all possible states:

Wn|00 . . . 0〉 = (H2 ⊗H2 ⊗ . . .⊗H2)|00 . . . 0〉

=
1√
2n

((|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗

. . .⊗ (|0〉+ |1〉))

=
1√
2n

2n−1
∑

i=0

|i〉.

For many quantum algorithms the state

|ψ〉 =
1√
2n

2n−1
∑

i=0

|i〉 (9)

is very convenient to be an “initial state” because it

contains an equal weighted distribution of all basis states.

An “empty” register can be “set” in the above state by an

application of the Walsh-Hadamard transformation. In this

way, using a linear number of operations we can transform

one basis state into an exponentially large, equally weighted

superposition of all basis states.



2002 COMPSCI 755 70'

&

$

%

A useful transformation on C2 ⊗C2 is the

“controlled-NOT” gate, CNOT defined as follows:

CNOT :

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

,

CNOT =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















.
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Given the input state |ij〉, i, j ∈ {0, 1}, the output state

produced by CNOT is |ik〉, where k = i⊕ j (mod 2). The

first bit is not disturbed (it is a control bit) and the second

one interchanges 0 and 1 iff the first bit is 1, which

corresponds to the logical exclusive-OR (XOR).

The controlled-NOT gate CNOT can be represented by a

circuit of the form specified in the following Figure.

a x

b y

h

The controlled-NOT gate.
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The oplus indicates the control bit; the opposite symbol

indicates the conditional negation of the second bit. If the

input states at a and b are in bases states |0〉 or |1〉, then

the output state at x is the same as the input state at a,

and the output state at y is the exclusive-OR of the two

input states.

The transformation CNOT is unitary since

C†
NOT

= CNOT

and

C2
NOT = I4

(the 4× 4 identity matrix). On the other hand,

CNOT cannot be written as a tensor product of two

operators.

Indeed, assume the contrary, and take two operators A,B

such that CNOT = A⊗B. Assume that the associated

matrices are

A =





a11 a12

a21 a22



 , B =





b11 b12

b21 b22





so, the matrix A⊗B corresponds to CNOT and we have
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A⊗B =















a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22















= CNOT =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















.
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Since a11b11 = 1 and a11b12 = 0 it follows that a11 6= 0 and

b12 = 0, which is impossible because a22b12 = 1.

Similarly, one can define the “controlled-controlled-NOT”

transformation, CCNOT, operating on three qubits, which

negates the rightmost bit if and only if the first two are

both 1:

CCNOT :

|000〉 → |000〉
|001〉 → |001〉
|010〉 → |010〉
|011〉 → |011〉
|100〉 → |100〉
|101〉 → |101〉
|110〉 → |111〉
|111〉 → |110〉

,
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CCNOT =





































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0





































.

We have CCNOT · CC†
NOT

= CC†
NOT

· CCNOT = I8,

hence CCNOT is also unitary.
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Quantum states cannot be cloned, as Wooters and Zurek,

and Dieks have proved as an application of the linearity of

unitary transformations. It is not possible to create the

state (a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉) from an unknown state

a|0〉+ b|1〉.
In other words, there is no unitary transformation U such

that U |ϕ0〉 = |ϕϕ〉 for all quantum states |ϕ〉.
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Indeed, assume the contrary and let |ϕ〉 and |ψ〉 be two

orthogonal vectors in C2 and take |x〉 = 1√
2
(|ϕ〉+ |ψ〉).

Then, U |ϕ0〉 = |ϕϕ〉 and U |ψ0〉 = |ψψ〉. On the one hand,

U |x0〉 = |xx〉

=
1√
2
(|ϕ〉+ |ψ〉)⊗ 1√

2
(|ϕ〉+ |ψ〉)

=
1

2
(|ϕϕ〉+ |ϕψ〉+ |ψϕ〉+ |ψψ〉).

On the other hand,

U |x0〉 = U(
1√
2
(|ϕ0〉+ |ψ0〉))

=
1√
2
(U |ϕ0〉+ U |ψ0〉)

=
1√
2
(|ϕϕ〉+ |ψψ〉).
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Since the vectors ϕ and ψ are orthogonal, the vectors |ϕϕ〉,
|ϕψ〉, |ψϕ〉, |ψψ〉 constitute a basis in C2 ⊗C2 and the

vector |xx〉 = U |x0〉 has been written in two different ways

as a linear combination of this basis vectors, an

impossibility.

The no cloning principle states the impossibility of reliably

cloning an unkown quantum state: it is possible to clone a

known quantum state. It is possible to obtain n particles in

an entangled state a|00 . . . 0〉+ b|11 . . .〉 from an unknown

state a|0〉+ b|1〉. Each particles will behave in exactly the

same way when measured with respect to the basis

{|00 . . . 0〉, |00 . . . 01〉, . . . |11 . . . 1〉}, but not when measured

with respect to other bases. It is not possible to create the

n particle state

(a|0〉+ b|1〉)⊗ (a|0〉+ b|1〉)⊗ . . . (a|0〉+ b|1〉)

from an unkown state a|0〉+ b|1〉.
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In a sense, the no cloning principle seems to announce “bad

news”: we loose one of the most important facilities of

classical computation, the unlimited possibility to copy.

There are “good news” derived from this principle, for

example, the possibility of unconditional secure key

generation (see Section 6.2 in Gruska’s book). New

techniques open possibilites to produce “approximate”

copies of qubits: imperfect, but very close to real copies of

qubits can be produced with a “quality” no depending upon

the qubits to be copied. Of course, there is price to be paid:

copies produced in this way are entangled.

The measurement of one or more particles in a quantum

system results in a projection of the state of the system

prior to measurement onto the subspace of the state space

compatible with the measured values. The amplitude of the

projection is rescaled to make sure that the resulting state

vector has length one. The probability that the result of the

measurement is a given value is the sum of the squares of

the absolute values of the amplitudes of all components

compatible with that value of the measurement.
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A simple example of measurement in a two qubit system

will illustrate the above points. Let’s fix the basis {|0〉, |1〉},
and assume that all measurements of individual qubits will

be done with respect to this basis. An arbitrary state of a

two qubit system can be written as

a|00〉+ b|01〉+ c|10〉+ d|11〉,

where a, b, c and d are complex numbers such that

|a|2 + |b|2 + |c|2 + |d|2 = 1.

When the first qubit is measured, then the probability that

the result is |0〉 is |a|2 + |b|2.
Assume now that the measurement gives the first qubit

exactly that value, that is, |0〉. Consequently, the state is

projected onto the subspace compatible with the

measurement which is the subspace spanned by |00〉 and

|01〉 and the result of this projection is a|00〉+ b|01〉.
Renormalizing we get:

1
√

|a|2 + |b|2
· (a|00〉+ b|01〉).
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In general, consider a system containing n qubits (n ≥ 2).

Any state |x〉 of the system can be expressed as

∑

i1,i2,...,in=0,1

ci1i2...in |i1i2 . . . in〉,

where
∑

i1,i2,...,in=0,1

|ci1i2...in |2 = 1.

When the first qubit is measured with respect to the basis

{|0〉, |1〉}, then the result |0〉 is obtained with probability

P =
∑

i2,...in=0,1

|0i2 . . . in〉|2.a

After rescaling, the new state obtained after the

measurement is

1
√

∑

i2,...,in=0,1 |c0i2...in |2
·





∑

i2,...,in=0,1

c0i2...in |0i2 . . . in〉



 .

aWe used the projection onto the space spanned by {|0i2 . . . in〉 | ik ∈

{0, 1}, 2 ≤ k ≤ n}.
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Similarly, the measurement gives the outcome |1〉 with the

probability

1− P =
∑

i2,...,in=0,1

|c1i2...in |2,

and the state changes correspondingly.

What is the price of measurement? According to Landauer

If it [measurement] is simply information transfer,

that is done all the time inside the computer, and

can be done with arbitrarily little dissipation.
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There are many speculations about the “collapse of the

wave function (state)” due to an irreversible interaction of

the microphysical quantum system with the macroscopic

measurement apparatus. Some authors (Greenberg and

YaSin or Herzog, Kwiat Weinfuter and Zeilinger) have

argued that it is, in fact, possible to reconstruct the state of

the physical system before the measurement, that is, to

“reverse the collapse of the wave function” if the process of

measurement is reversible. After “reconstruction” no

information about the measurement is left.
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The act of measurement gives another perspective about

entangled particles. Particles are not entangled if the

measurement of one has no effect on the other. For

instance, the state

1√
2
(|00〉+ |11〉)

is entangled since the probability that the first bit is

measured to be |0〉 is 1/2 if the second bit has not been

measured. However, if the second bit had been measured,

then the probability that the first bit is measured as |0〉 is

different from 1/2, it is either 1 or 0, depending on whether

the second bit was measured as |0〉 or |1〉, respectively.

Hence, the probability of measuring the first bit has been

changed by the measurement of the second bit.

In contrast, the state

1√
2
(|00〉+ |01〉) = |0〉 ⊗ 1√

2
(|00〉+ |11〉)

is not entangled. Reason: any measure of the first qubit will

produce the result |0〉 independently whether a

measurement is performed or not on the second qubit, and

the second qubit has probability 1/2 to be measured to |0〉
regardless of whether the first qubit was measured or not.
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In a sense, entangled states can be equivalently presented in

mathematical terms (they cannot be represented as a tensor

product of two states) or in physical terms (the

measurement on one affects the other); however, the

physical meaning is reacher than the mathematical

formalism.

An important consequence of the existence of entangled

states is the fact that if a quantum memory register exists

in an entangled state, one can change the state of one part

of the register simply by measuring another part of it. This

is a unique feature of quantum physicsa which has no

parallel in classical physics. Entanglement is one of the

most important features which distinguishes Quantum from

conventional Computing.

aWhich is crucial in many quantum algorithms, teleportation, infor-

mation transmission, etc.



2002 COMPSCI 755 86'

&

$

%

How to produce entangled quantum states?

One possibility is to create a source which, by construction,

is such that the quantum states emerging already have the

indistinguishability feature. For example, consider the

decay of a spin-0 particle into two spin-1/2 particles under

conservation of the internal angular momentum. The two

spins of the emerging particles have to be opposite, so the

emerging quantum state is

|ψ〉12 =
1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2),

where | ↑〉1 means particle 1 with spin up.

The above state is rotationally invariant, so the two spins

are anti-parallel along whichever direction we choose to

measure.
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Quantum teleportation

It is possible to transmit qubits without sending qubits!

What does this mean? It’s pun? According to Bennetta

“It’s a mean by which you can take apart an unknown

quantum state into classical information and purely

quantum information, send them through two separate

channels, put them back together, and get back the original

quantum state”.

Teleportation, as it is commonly understood, is a fictional

procedure of transferring an object from one location to

another location in a three stage process: a) dissociation, b)

information transmission, c) reconstitution. The point is

that, in contrast with fax transmission–where the original

object remains intact at the initial location, only an

approximate replica is constructed at destination,b in

teleportation the original object is destroyed after enough

information about it has been extracted, the object is not

traversing in any way the space between locations, but it is

reconstructed, as an exact replica, at the destination.

aA co-author of a 1993 paper that proposed quantum teleportation.
bAt the end, two “identical” versions of the original object result.
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Fax transmission
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Quantum teleportation allows for the transmission of

quantum information to a distant location. The objective is

to transmit the quantum state of a particle using classical

bits and reconstruct the state at the receiver.
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Quantum teleportation
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Locality

Locality interaction is

• mediated by another entity (particle, field),

• propagates no faster than light,

• its strength drops off with distance.

All known forces in the universe (electromagnetic,

gravitational, strong/weak nuclear) are local. So, what’s

left? The collapse of the state vector. Nothing explains,

mediates or determines the exact mechanism of the collapse.

In particular, the collapse involves no forces of any kind.

Let’s assume that Alice wishes to communicate with Bob a

single qubit in an unknown state ϕ = a|0〉+ b|1〉; she wants

to make the transmission through classical channels. Alice

cannot know with certainty the state as any measurement

she may perform may change it; she cannot clone it because

of the no cloning result! So, it seems that the only way to

send Bob the qubit is to send him the physical qubit, or to

swap the state into another quantum system and then send

Bob that system.
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Alice and Bob use an entangled pair

ψ0 =
1√
2
(|00〉+ |11〉).

Alice controls the first half of the pair and Bob controls the

second one. The input state is

ϕ⊗ ψ0 = (a|0〉+ b|1〉)⊗ 1√
2
(|00〉+ |11〉)

=
1√
2
(a|0〉 ⊗ |00〉+ a|0〉

⊗|11〉+ b|1〉 ⊗ |00〉+ b|1〉 ⊗ |11〉)

=
1√
2
(a|000〉+ a|011〉+ b|100〉+ b|111〉).

Alice now applies the transformation

(H ⊗ I ⊗ I) ◦ (Cnot ⊗ I) to this state. The third bit is left

unchanged; only the first two bits belong to Alice and the

rightmost one belongs to Bob.
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Applying now H ⊗ I ⊗ I, we have:

(H ⊗ I ⊗ I) ◦ (Cnot ⊗ I)(ϕ⊗ ψ0)

=
1√
2
H ⊗ I ⊗ I(a|000〉+ a|011〉

+b|110〉+ b|101〉)

=
1√
2
(aH |0〉 ⊗ (I ⊗ I)|00〉

+aH |0〉 ⊗ (I ⊗ I)|11〉+

+bH |1〉 ⊗ (I ⊗ I)|10〉+ bH |1〉
⊗(I ⊗ I)|01〉)

=
1√
2
(a

1√
2
(|0〉+ |1〉)⊗ |00〉+ a

1√
2
(|0〉

+|1〉)⊗ |11〉+ b
1√
2
(|0〉 − |1〉)⊗ |10〉

+b
1√
2
(|0〉 − |1〉)⊗ |01〉)

=
1

2
(a(|000〉+ |100〉+ |011〉+ |111〉) + b(|010〉

−|110〉+ |001〉 − |101〉)).
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This state may be re-written by regrouping terms:

(H ⊗ I ⊗ I) ◦ (Cnot ⊗ I)(ϕ⊗ ψ0)

=
1

2
(|00〉(a|0〉+ b|1〉)

+|01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉)
+|11〉(a|1〉 − b|0〉)).
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Alice then measures her two qubits, obtaining four possible

results: |00〉, |01〉, |10〉, or |11〉 with equal probability 1/4.

Depending on the result of the measurement, the quantum

state of Bob’s qubit is projected to a|0〉+ b|1〉, a|1〉+ b|0〉,
a|0〉 − b|1〉, a|1〉 − b|0〉, respectively. Alice sends the result of

her measurement as two classical bits to Bob. He will know

what has happened, and can apply the decoding

transformation T ∈ {I,X, Y, Z} to fix his qubit.

Received State Transfor- Result

bits mation Result

00 a|0〉+ b|1〉 I a|0〉+ b|1〉
01 a|1〉+ b|0〉 X a|0〉+ b|1〉
10 a|0〉 − b|1〉 Z a|0〉+ b|1〉
11 a|1〉 − b|0〉 Y a|0〉+ b|1〉

The final output state is ϕ = a|0〉+ b|1〉, which, as desired,

is the unknown qubit that Alice wanted to send.



2002 COMPSCI 755 96'

&

$

%

1. The above scheme teleports the “quantum state” not

the object.

2. We cannot use the scheme for teleporting an electron,

for example; rather we can teleport the “spin”

orientation of one electron.

3. The scheme is limited by the classical component.

4. According to S. Braunstein, the current technology

would need 100 million centuries to transmit a human

body (described down to atomic structure) via a single

channel!

5. So, why teleport a quantum state? One reason is that

this type of communication my be used inside a

quantum computer or between quantum computers.
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Recently, important teleportation experiments have been

performed in Innsbruck (A. Zeilinger), Rome (F. De

Martini) and Caltech (J. Kimble). There is a lot of

controversy about the nature of quantum teleportation and

what criteria should be met by a successful experiment.

The following criteria for evaluating a quantum

teleportation procedure have been proposed:

• How well can it teleport any arbitrary quantum state it

is intended to teleport? (fidelity of teleportation)

• How often does it succeed to teleport, when it is given

an input state within the set of states it is designed to

teleport? (efficiency of teleportation)

• If given a state the scheme is not intended to teleport,

how well does it reject such a state? (cross-talk

rejection efficiency)
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Let us close this discussion with another controversial

statement of the same Bennett:

“I think it’s quite clear that anything approximating

teleportation of complex living beings, even bacteria, is so

far away technologically that it’s not really worth thinking

about it.”
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The old “are you sure?”
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The EPR Conundrum and Bell’s Theorem

According to the philosophical view called realism, reality

exists and has definite properties irrespective of whether

they are observed by some agent. Motivated by this view

point, Einstein, Podolsky and Rosen suggested a classical

argument to “show” that quantum mechanics is incomplete.

EPR assumed:

(a) the non-existence of action-at-a-distance,

(b) that some of the statistical predictions of quantum

mechanics are correct, and

(c) a reasonable criterion defining the existence of “an

element of physical reality”.

If, without in any way disturbing a system, we can predict

with certainty (i.e. with probability equal to unity) the

value of a physical quantity, then there exists an element of

physical reality corresponding to this physica quantity.



2002 COMPSCI 755 101'

&

$

%

They considered a system of two spatially separated but

quantum mechanically correlated particles. A “mysterious”

feature appears: By counterfactual reasoning, quantum

mechanical experiments yield outcomes which cannot be

predicted by quantum theory; hence the quantum

mechanical description of the system is incomplete!

One possibility to complete the quantum mechanical

description is to postulate additional “hidden-variables” in

the hope that completeness, determinism and causality will

be thus restored. But then, another conundrum occurs:

Using basically the same postulates as those of EPR, Bell

showed that no deterministic local hidden-variables theory

can reproduce all statistical predictions of quantum

mechanics.
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Mermin’s EPR Device

Mermin’s EPR device has three “completely unconnected”

parts (there are no relevant connections, neither mechanical

nor electromagnetic), two detectors (D1) and (D2) and a

source (S) emitting particles. The source is placed between

the detectors: whenever a button is pushed on (S), shortly

thereafter two particles emerge, moving off toward detectors

(D1) and (D2). Each detector has a switch that can be set

in one of three possible positions – labelled 1,2,3 – and a

bulb that can flash a red (R) or a green (G) light. The

purpose of lights is to “communicate” information to the

observer. Each detector flashes either red or green whenever

a particle reaches it. Because of the lack of any relevant

connections between any parts of the device, the link

between the emission of particles by (S), i.e. as a result of

pressing a button, and the subsequent flashing of detectors,

can only be provided by the passage of particles from (S) to

(D1) and (D2). Additional tools can be used to check and

confirm the lack of any communication.
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Mermin’s experiment
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The device is repeatedly operated as follows:

1. the switch of either detector (D1) and (D2) is set

randomly to 1 or 2 or 3, i.e. the settings or states 11,

12, 13, 21, 22, 23, 31, 32, 33 are equally likely,

2. pushing a button on (S) determines the emission toward

both (D1) and (D2),

3. sometime later, (D1) and (D2) flash one of their lights,

G or R,

4. every run is recorded in the form ijXY , meaning that

(D1) was set to state i and flashed X and (D2) was set

to j and flashed Y.
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For example, the record 31GR means “(D1) was set to 3

and flashed G and (D2) was set to 1 and flashed R”.

Long recorded runs show the following pattern:

(a) For records starting with ii, i.e. 11, 22, 33, both (D1)

and (D2) flash the same colours, RR,GG, with equal

frequency; RG and GR are never flashed.

(b) For records starting with ij, i 6= j, i.e. 12, 13, 21, 23, 31,

32, both (D1) and (D2) flash the same colour only 1/4

of the time (RR and GG come with equal frequencies);

the other 3/4 of the time, they flash different colours

(RG,GR), occurring again with equal frequencies.
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Of course, the above patterns are statistical, that is they

are subject to usual fluctuations expected in every

statistical prediction: patterns are more and more “visible”

as the number of runs becomes larger and larger.

The conundrum posed by the existence of Mermin’s device

reveals as soon as we notice that the seemingly simplest

physical explanation of the pattern (a) is incompatible with

pattern (b). Indeed, as (D1) and (D2) are unconnected

there is no way for one detector to “know”, at any time, the

state of the other detector or which colour the other is

flashing. Consequently, it seems plausible to assume that

the colour flashed by detectors is determined only by some

property, or group of properties of particles, say speed, size,

shape, etc. What properties determine the colour does not

really matter; only the fact that each particle carries a

“program” which determines which colour a detector will

flash in some state is important.
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So, we are led to the following two hypotheses:

H1 Particles are classified into eight categories:

GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR.a

H2 Two particles produced in a given run carry identical

programs.

According to H1–H2, if particles produced in a run are of

type RGR, then both detectors will flash R in states 1 and

3; they will flash G if both are in state 2. Detectors flash

the same colours when being in the same states because

particles carry the same programs.

aA particle of type XY Z will cause a detector in state 1 to flash X;

a detector in state 2 will flash Y and a detector in state 3 will flash Z.
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It is clear that from H1–H2 it follows that programs carried

by particles do not depend in any way on the specific states

of detectors: they are properties of particles not of

detectors. Consequently, both particles carry the same

program whether or not detectors (D1) and (D2) are in the

same states. The emitting source (S) has no knowledge

about the states of (D1) and (D2) and there is no

communication among any parts of the device.

We are ready to argue that

[L] For each type of particle, in runs of type (b) both

detectors flash the same colour at least one third of the

time.
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If both particles are of types GGG or RRR, then detectors

will flash the same colour all the time. For particles

carrying programs containing one colour appearing once

and the other colour appearing twice, only in two cases out

of six possible combinations both detectors will flash the

same light. For example, for particles of type RGR, both

detectors will flash R if (D1) is in state 1 and (D2) is in

state 3 and vice versa. In all remaining cases detectors will

flash different lights. The argument remains the same for all

combinations as the conclusion was solely based on the fact

that one colour appears once and the other twice. So, the

lights are the same one third of the time.

The conundrum reveals as a significant difference appears

between the data dictated by particle programs (colours

agree at least one third of the time) and the quantum

mechanical prediction (colours agree only one quarter of the

time):

under H1–H2, the observed pattern (b) is incompatible with

[L].
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Mermin’s GHZ Device

Mermin’s GHZ device is based on Greenberg, Horne and

Zeilinger’s version of EPR experiment. The device has a

source and three widely separated detectors (A), (B), (C),

each of which has only two switch settings, 1 and 2. Any

detector, when triggered, flashes red (R) or green (G).

Again, detectors are supposed to be far away from the

source and there are no connections between the source and

detectors (except those induced by a group of particles

flying from the source to each detector).

The experiment runs as follows. Each detector is in a

randomly chosen state (1 or 2) and then by pressing a

button at the source a trio of particles are released towards

detectors; each particle will reach a detector and,

consequently, each detector will flash a light, green or red.
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There are eight possible states, but for the argument we

need to take into consideration only those for which the

number of 1’s is odd, i.e. 111, 122, 212, 221.

(a) If one detector is set to 1 (and the others to 2), then an

odd number of red lights always flash, i.e.

RRR,RGG,GRG,GGR, and they are equally likely.

(b) If all detectors are set to 1, then an odd number of red

lights is never flashed: GRR,RGR,RRG,GGG.
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It is immediate that in case (a) knowing the colour flashed

by two detectors, say (A) and (B), determines uniquely the

colour flashed by the third detector, (C). The explanation

can come only because particles are emitted by the same

source (there are no connections between detectors). A

similar conclusion as in the case of EPR device reveals:

particles carry programs instructing their detectors what

colour to flash. Any particle carries a program of the form

XY telling its detector to flash colour X if in state 1 and

colour Y if in state 2. There are four types of programs:

GG,GR,RG,RR. A run in which programs carried by the

trio of particles are of types (RG,GR,GG) will result in

RRG if the states were 122, in GGG if the states were 212,

and in GRG if the states were 221. This is an illegal set of

programs as the number of R’s is not odd (in RRG, for

example).
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A legal set of programs is (RG,GR,GR) as it produces

RRR,GGR,GRG on 122, 212, 221. There are eight legal

programs,

(RR,RR,RR), (RR,GG,GG), (GG,RR,GG),

(GG,GG,RR), (RG,GR,GR), (RG,RG,RG),

(GR,GR,RG), (GR,RG,GR)

out of 64 possible programs.

The conundrum reveals again as none of the above

programs respects (b), i.e. it is compatible with the case

111. A single 111 run suffices to prove inconsistency!

Particle programs require an odd number of R’s to be flashed

on 111, but quantum mechanics prohibits this in every 111

run.



2002 COMPSCI 755 114'

&

$

%

Bell’s Theorem

Bell showed, using basically the same postulates as those of

EPR, that no deterministic local hidden-variables theory

can reproduce all statistical predictions of quantum

mechanics. The setting is the following. We consider two

physical systems; on one two types of measurements are

made (A,B), and on the other one two other types (C,D).

The results are binary, so they will be denoted by “+” and

“−”. We will repeat these measurements to ensure

statistically relevant results. Correlations appear when

measurements give the same outcome, that is, “++” and

“−−”. The basic result is that in almost all cases, more

“++” and “−−” (and less “+−” and “−−”) coincidences

are recorded than one can explain by any local classical

analysis.
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Let p(x|i) be the probability that, by taking the measure

i ∈ {A,B} on the first system, the outcome will be

x ∈ {+,−}; p(x|ij) is the probability that by taking the

measure i ∈ {A,B} on the first system and the measure

j ∈ {C,D} on the second, the outcome of the first system

alone will be x; p(xy|ij) is the probability that by taking the

measure i on the first system and measure j on the second

system, the outcomes will be respectively, x ∈ {+,−} and

y ∈ {+,−}; finally, p(x|ijy) is the probability that when

taking the measures i ∈ {A,B} on the first system and

j ∈ {C,D} on the second one, and having outcome y on the

second, the outcome of the first will be x.
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The main result can be stated as follows:

If the outcomes of the experiments on both systems

are independent, that is

p(xy|ij) = p(x|i) · p(y|j),

then the lack of correlation in one of the two types

of measures cannot exceed the lack of correlation in

the remaining types, that is, the following

quadrangular inequality holds true:

p(+− |AC) + p(−+ |AC)

≤ p(+− |AD) + p(−+ |AD)

+ p(+− |BD) + p(−+ |BD)

+ p(+− |BC) + p(−+ |BC). (10)
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It is remarkable that this inequality can be obtained with

just an elementary manipulation of binary variables. To see

this, let’s denote p(+|A) by a, p(−|A) by 1− a (due to the

bivalence nature of measurements we have

p(+|A) + p(−|A) = 1), and so on. Using the independence

hypothesis, that is,

p(+− |AC) = p(+|A) · p(−|C) = a(1− c),

and the like, the inequality (10) can be re-written as

a (1− c) + (1− a) c ≤ a (1− d) + (1− a) d+ b (1− d)

+(1− b) d+ b (1− c) + (1− b) c,

or, equivalently,

ab+ bd+ bc ≤ ac+ b+ d,

where a, b, c, d ∈ [0, 1].
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To finish we consider the following three cases:

• if b ≤ a, then c(b− a) ≤ 0, so

ad+ bd+ c(b− a) ≤ ad+ bd, and (10) follows as ad ≤ d

and bd ≤ b;

• if d ≤ c, then a(d− c) + bd+ bc ≤ b+ d, so (10) follows;

• if a ≤ b and c ≤ d, then either b ≤ d and in this case

d(a+ b) + c(b− a) ≤ b+ d, or d ≤ b and in this case

a(d− c) + b(d+ c) ≤ b+ d, and in each case we deduce

(10).

The probabilistic hypothesis of independence can actually

be decomposed in the conjunction of two hypotheses with

more physical significance:

Separability: The statistical outcomes performed on one

system are independent of the outcomes performed on the

other system:

p(x|ijy) = p(x|ij) and p(y|ijx) = p(y|ij).

Locality: The statistical outcomes performed an experiment

on one system are independent of the types of experiments

performed on the other system:

p(x|ij) = p(x|i) and p(y|ij) = p(y|j).
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Separability says that the spatio-temporal separation

between the two systems makes them reducible to

individual parts, the “whole” is no more than the “sum of

parts”; locality forbids any instantaneous interaction.

Separability and locality implies independence as

p(xy|ij) = p(xy|ijy)·p(y|ij) = p(x|ij)·p(y|ij) = p(x|i)·p(y|j).

Consequently, if the outcomes of the experiments on both

systems are separable and local, then the lack of correlation

in one of the two types of measures cannot exceed the lack

of correlation in the remaining types.

Probabilities can be interpreted as truth-values of

elementary propositions, so the above analysis can be

reformulated in the language of “classical logic”. Indeed,

let’s write A for p(+|A) and ¬A for p(−|A), and similarly

for B,C. Further on, let’s notice that the elementary

operations with probabilities can be reformulated as logical

operations, namely, conjunction ∧ will correspond to

product, disjunction ∨ to sum, and implication → to ≤.
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A “logical” version of the quadrangular inequality can be

deduced:

If the conjunction is distributive with respect to

disjunction for all propositions

A,¬A,B,¬B,C,¬C, that is,

α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ),

then the following quadrangular implication holds

true:

(A ∧ ¬C) ∨ (¬A ∧ C) → (A ∧ ¬D) ∨ (¬A ∧D)

∨ (D ∧ ¬B) ∨ (¬D ∧B)

∨ (B ∧ ¬C) ∨ (¬B ∧ C).
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First, use the following weak form of distributivity

α ∧ (¬β ∨ β) → (α ∧ ¬β) ∨ (α ∧ β),

for α = X ∧ ¬Y , and β = Z:

(X ∧ ¬Y ) ∧ (¬Z ∨ Z) → (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z),

so by the law of excluded middle we get:

(X ∧ ¬Y ) → (X ∧ ¬Y ∧ ¬Z) ∨ (X ∧ ¬Y ∧ Z).

Weakening the conclusion we get:

(X ∧ ¬Y ) → (X ∧ ¬Z) ∨ (Z ∧ ¬Y ). (11)
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Using (11) for the triples (X,Y, Z) = (A,C,D), (D,C,B) we

get

(A ∧ ¬C) → (A ∧ ¬D) ∨ (D ∧ ¬C),

and

(D ∧ ¬C) → (D ∧ ¬B) ∨ (B ∧ ¬C),

which imply

(A ∧ ¬C) → (A ∧ ¬D) ∨ (D ∧ ¬B) ∨ (B ∧ ¬C).

Similarly, we obtain the implication

(¬A ∧ C) → (¬A ∧D) ∨ (¬D ∧B) ∨ (¬B ∧ C),

which concludes the argument.
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Both quadrangular inequality and implication have been

experimentally falsified, hence no theory satisfying their

hypotheses can be physically correct. So, locality and

separability cannot be simultaneously adopted. Quantum

mechanics has chosen to drop separability. The failure of

independence affects Reichenbach’s causality principle: two

correlated (non independent) events have a common cause,

that there exists an event in their “past” with respect to

which they are independent.

So, we arrive at the idea of synchronicity that has

important implication for Quantum Computation:

there exist events which are correlated in a way

which is neither casual nor causal.

Finally, the failure of distributivity – the “mark” of

quantum logic, has been proved to be more pervasive than

the universe of quantum mechanics statements: it is

excluded from any logic aiming to describe the physical

world. Is any hope to rescue classical logic, which seems to

be so brutally excluded . . .
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A Probabilistic Automaton Simulating Mermin’s

EPR Device

The states of the automaton are all combinations of states

of detectors (D1) and (D2),

Q = {11, 12, 13, 21, 22, 23, 31, 32, 33}, the input alphabet

models the lights, red and green, Σ = {G,R}, the output

alphabet captures all combinations of lights flashed by (D1)

and (D2), O = {GG,GR,RG,RR}, and the output function

f : Q→ O, modeling all combinations of green/red lights

flashed by (D1) and (D2) in all their possible states, is

probabilistically defined by:

f(ii) = XX, with probability 1/2, for i = 1, 2, 3,

X ∈ {G,R},
f(ii) = XY, with probability 0, for i = 1, 2, 3,

X, Y ∈ {G,R}, X 6= Y,

f(ij) = XX, with probability 1/8, for i, j = 1, 2, 3,

i 6= j,X ∈ {G,R},
f(ij) = XY, with probability 3/8, for i, j = 1, 2, 3,

i 6= j,X, Y ∈ {G,R},
X 6= Y.
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For example, f(11) = RR with probability 1/2, f(11) = GR

with probability 0, f(11) = RG with probability 0,

f(11) = RR with probability 1/2, f(12) = GG with

probability 1/8, f(12) = GR with probability 3/8,

f(12) = RG with probability 3/8, f(12) = RR with

probability 1/8, etc.

The automaton transition δ : Q×Σ → Q is not specified. In

fact, varying all transition functions δ we get a class of

Mermin EPR automata:

M (EPR) = (Q,Σ, O, δ, (pXYij , i, j = 1, 2, 3, X, Y ∈
{G,R})),

where pXXii = 1/2, pXYii = 0, X 6= Y, pXXij = 1/8, pXYij =

3/8, X 6= Y .
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Are there two identical, spatially separated, probabilistic

automata with identical initial states, whose direct product

“simulates” a Mermin’s EPR automaton? More formally,

are there two probabilistic automata

Mi = ({1, 2, 3}, {G,R}, {G,R}, δi, (αXi,j , j =

1, 2, 3, X ∈ {G,R}))

such that their direct product M1 ⊗ M2 is isomorphic to a

Mermin’s automaton M (EPR), i.e.,

δ(ij,X) = δ1(i,X)δ2(j,X), and pXYij = αX1,iα
Y
2,j , for all

j = 1, 2, 3, X, Y ∈ {G,R}?
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The answer is negative. In fact, a stronger result is true:

no single state of any Mermin’s EPR probabilistic

automaton M (EPR) can be simulated by the

product of the corresponding states of any

probabilistic automata Mi.

Indeed, αGi,j = 1− αRi,j . For a state ii we get the following

contradictory relations:

αG1,i α
G
2,i = (1− αG1,i)(1− αG2,i) = 1/2,

αG1,i (1− αG2,i) = (1− αG1,i) α
G
2,i = 0.

For a state kl with k 6= l we, again, get two contradictory

relations:

αG1,k α
G
2,l = (1− αG1,k)(1− αG2,l) = 1/8,

αG1,k (1− αG2,l) = (1− αG1,k) α
G
2,l = 3/8.

Every Mermin’s EPR probabilistic automaton M (EPR)

has strong correlations preventing it from being decomposed

as a direct product of two independent probabilistic

automata, no matter what transitions and output functions.
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Let’s turn our attention to Mermin’s GHZ device and to this

aim consider a probabilistic automaton simulating Mermin’s

GHZ device. The states of the Mermin’s GHZ automaton

are all combinations of states of detectors (A), (B) and (C),

Q = {111, 112, 121, 122, 211, 212, 221, 222},
the input alphabet models the lights, red and green,

Σ = {G,R}, the output alphabet captures all combinations

of lights flashed by (A), (B) and (C),

O = {GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR},
and the output function f : Q→ O, modeling all

combinations of green/red lights flashed by (A), (B) and

(C), is determined by the following conditions. (Note that

the following conditions do not determine uniquely the

output function.)
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f(ijk) = XY Z, with probability 1/4, for

ijk ∈ {122, 212, 221},
XY Z ∈ {RRR,RGG,GRG,GGR},

f(ijk) = XY Z, with probability 0, for

ijk ∈ {122, 212, 221},
XY Z ∈ {GRR,RGR,RRG,GGG},

f(111) = XY Z, with probability 0, for

XY Z ∈ {RRR,RGG,GRG,GGR},
f(111) = XY Z, with probability 1/4, for

XY Z ∈ {GRR,RGR,RRG,GGG}.
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Again, the transition function δ : Q×Σ → Q is not

specified. We get a class of Mermin GHZ automata

M (GHZ) = (Q,Σ, O, δ, (pXY Zijk , i, j,

k = 1, 2, X, Y, Z ∈
{G,R})),

where

pXY Zijk = 1/4, for ijk ∈ {122, 212, 221}, XY Z ∈ {RRR,
RGG, GRG, GGR} or i = j = k = 1, XY Z ∈ {GRR,
RGR, RRG, GGG},
and

pXY Zijk = 0, for ijk ∈ {122, 212, 221}, XY Z ∈ {GRR, RGR,
RRG, GGG} or i = j = k = 1, XY Z ∈ {RRR, RGG,
GRG, GGR}.
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Is there any Mermin’s GHZ automaton which can be

decomposed into three identical, spatially separated,

probabilistic automata with identical initial values?

Rephrased, are there three probabilistic automata

Mi = ({1, 2}, {G,R}, {G,R}, δi, (αXi,j , j = 1, 2, X ∈
{G,R}))

such that their direct product M1 ⊗ M2 ⊗ M3 is

isomorphic to a Mermin’s automaton M (GHZ):

δ(ijk,XY Z) = δ1(i,X)δ2(j, Y )δ3(k, Z) and

pXY Zijk = αX1,iα
Y
2,jα

Z
3,k, for all j = 1, 2, X, Y ∈ {G,R}?
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The answer is again negative:

no single state of any Mermin’s GHZ probabilistic

automaton M (GHZ) can be simulated by the

product of the corresponding states of any

probabilistic automata Mi.

We have αGi,j = 1− αRi,j . Take the output XY Z = GGR. As

pGGR111 = 0 we deduce that

αG1,1α
G
i2,1(1− αG3,1) = 0,

which contradicts the system of equalities

pGGR122 = pGGR212 = pGGR221 = 1/4,

and the same conclusion can be derived for any output.

Again, due to strong correlations, every Mermin’s GHZ

probabilistic automaton M (EPR) cannot be decomposed

as a direct product of three independent probabilistic

automata, no matter what transitions and output functions.
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We continue with an analysis using Meal automata.

First we deal with Mermin EPR device. To this aim we

discuss a configuration in which two identical deterministic

Mealy automata. (recall that in a Mealy automaton the

output function depends both on the current state and

input letter.) M1 and M2 with unknown but identical

initial states are detected in (D1) and (D2), respectively.

More precisely, let us assume that each automaton Mj ,

j = 1, 2, has three states Q = {1, 2, 3}, the input alphabet

Σ = {1, 2, 3}, the output alphabet O = {G,R}, as well as

a(n) (irreversible, i.e., many-to-one) transition function

δj(q, i) = i and output function λj(q, i) = G, if q = i and

λj(q, i) = R, otherwise; q ∈ Q and i ∈ Σ. Let us further

assume that there is an equidistribution of initial states,

i.e., each one occurs with equal probability 1/3.
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We can construct a joint output function by the Cartesian

product λ : Q×Σ → O ×O, λ(q, i) = (λ1(q, i), λ2(q, i)).

Since both M1 and M2 are in an identical initial value,

there are just three allowed categories GRR,RGR,RRG

out of the conceivable ones

GGG,GGR,GRG,GRR,RGG,RGR,RRG,RRR.

A straightforward combinatorial argument shows that with

these assumptions one obtains the following probabilities:

λ(i, i) = GG, with probability 1/3, for i = 1, 2, 3,

λ(i, i) = RR, with probability 2/3, for i = 1, 2, 3,

λ(i, i) = XY, with probability 0, for i = 1, 2, 3,

X, Y ∈ {G,R}, X 6= Y,

λ(i, j) = GG, with probability 0, for i, j = 1, 2, 3, i 6= j,

λ(i, j) = GR, with probability 1/3, for i, j = 1, 2, 3,

i 6= j,

λ(i, j) = RG, with probability 1/3, for i, j = 1, 2, 3,

i 6= j,

λ(i, j) = RR, with probability 1/3, for i, j = 1, 2, 3,

i 6= j.
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The automata flash the same colour (red) 1/3 of the time

and different colours 2/3 of the time. This is not exactly

the classical case as discussed by Mermin, but it comes close

to it in terms of classicality and locality of the automata

arrangement. To understand why, let us define the notion of

correlation function in the automaton context. Assume

again two output symbols, say R and G, and three input

symbols, say 1, 2 and 3.

Associate the numbers nt(i,Mj) = +1 and nt(i,Mj) = −1

with the outcomes R and G of the experiment with input i

at discrete time t, respectively. In analogy to physical

correlation functions we can define a correlation function C

as the weighted average over the product of the numbers

associated with the outcomes of the first and second

automata M1,M2, i.e.,

C(i, j) = 1
N

∑N
t=1 nt(i,M1) · nt(j,M2).
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We always get −1 ≤ C(i, j) ≤ +1. In the above case, for

identical inputs, C(i, i) = 1, i = 1, 2, 3. For nonidentical

input i 6= j, C(ij) = −1/3. The “Bell inequality” is

considered a measure for classicality and locality; in

particular

|C(1, 2)− C(1, 3)| ≤ 1 + C(2, 3). (12)

is always satisfied for classical systems. The automaton

correlation functions always satisfy this inequality and the

others obtained by permuting the inputs. This is an

indication (although no sufficient condition) that the

corresponding classical system behaves locally in the sense

used in physics. That is, no causal influence such as a light

signal originating from a measurement on one particle can

influence the measurement on the other particle and vice

versa. This comes as no surprise, because the way the

two-automaton setup was conceived, both automata are

causally separated in a classical sense.

These results are independent of the particular transition

function δ involved, provided it is not a permutation

(one-to-one).
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An automaton realization which comes close to Mermin’s

treatment of the GHZ experiment can be given by three

identical automata M1,M2,M3 with identical initial value,

given by the following table (q ∈ Q, i ∈ Σ, o ∈ O):

q/i, o 1 2 1 2

1 1 1 R R

2 1 1 R G

Here, in configurations like 122, there always occurs an odd

number of R’s, whereas for 111, only a single result RRR

emerges, which has an odd number of R’s and is distinct

from the quantum mechanical result containing an even

number of R’s.

Again, the argument is independent of the transition

function as long as it is not a permutation.
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Deutsch’s problem

The simplest way to illustrate the power of quantum

computing is to solve the so-called Deutsch’s problem.

Consider a Boolean function f : {0, 1} → {0, 1} and suppose

that we have a black box to compute it. We would like to

know whether f is constant (that is, f(0) = f(1)) or

balanced (f(0) 6= f(1)). To make this test classically, we

need two computations of f , f(0) and f(1) and one

comparison. Is it possible to do it better? The answer is

affirmative, and here is a possible solution.

Suppose that we have a quantum black box to compute f .

Consider the transformation Uf which applies to two

qubits, |x〉 and |y〉 and produces |x〉|y ⊕ f(x)〉.a This

transformation flips the second qubit if f acting on the first

qubit is 1, and does nothing if f acting on the first qubit is

0.
aBy ⊕ we denote, as usual, the sum modulo 2.
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The black box is “quantum”, so we can chose the input

state to be a superposition of |0〉 and |1〉. Assume first that

the second qubit is initially prepared in the state
1√
2
(|0〉 − |1〉). Then,

Uf

(

|x〉 1√
2
(|0〉 − |1〉)

)

= |x〉 1√
2
(|0⊕ f(x)〉 − |1⊕ f(x)〉)

= (−1)f(x)|x〉 1√
2
(|0〉 − |1〉).

Next take the first qubit to be 1√
2
(|0〉+ |1〉). The black box

will produce

Uf

(

1√
2
(|0〉+ |1〉) 1√

2
(|0〉 − |1〉)

)

=
1√
2
((−1)f(0)|0〉+ (−1)f(1)|1〉) 1√

2
(|0〉 − |1〉)

=
1

2
(−1)f(0)(|0〉+ (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉).
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Next will perform a measurement that projects the first

qubit onto the basis 1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉): we will

obtain 1√
2
(|0〉 − |1〉) if the function f is balanced and

1√
2
(|0〉+ |1〉) in the opposite case. So, Deutsch’s problem

was solved with only one computation of f . The explanation

consists in the ability of a quantum computer to be in a

blend of states: we can compute f(0) and f(1), but also,

and more importantly, we can extract some information

about f which tells us whether f(0) is equal or not to f(1).
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Can any function f : {0, 1} → {0, 1} be implemented by a

quantum gate array Uf? The answer is affirmative.

Identifying the values 0 and 1 with the kets |0〉 respectively

|1〉, Uf may be defined as the linear operator Uf : C4 → C4,

which satisfies, for any x, y ∈ {0, 1}, the equality

Uf |x, y〉 = |x, y ⊕ f(x)〉. (13)

To compute f(x) we apply Uf to |x0〉. Graphically, the

transformation Uf is presented in the next Figure. We shall

argue that

for any function f : {0, 1} → {0, 1}, Uf is a unitary

transformation.

We have

UfUf |x, y〉 = Uf |x, y ⊕ f(x)〉
= |x, (y ⊕ f(x))⊕ f(x)〉 = |x, y〉,

hence, in view of the equality UfUf = I, it suffices to prove

that U †
f = Uf .
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|x〉 |x〉

Uf

|y〉 |y ⊕ f(x)〉

Quantum gate array Uf .
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The function f can be defined in four ways: 1.

f(0) = f(1) = 0, 2. f(0) = 0, f(1) = 1, 3. f(0) = 1,

f(1) = 0, and 4. f(0) = f(1) = 1.

We will investigate the matrix Uf in each situation, taking

into account the correspondences:

0 → |0〉 =





1

0



 , 1 → |1〉 =





0

1



 .

In the first case, we have Uf |x, y〉 = |x, y⊕ 0〉 = |x, y〉, hence

Uf = I = U †
f . In the second case, Uf |00〉 = |00〉,

Uf |01〉 = |01〉, Uf |10〉 = |11〉, Uf |11〉 = |10〉, so it follows

that

Uf =















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















= U †
f .
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A direct computation shows that in the third case,

Uf |00〉 = |01〉, Uf |01〉 = |00〉, Uf |10〉 = |10〉 and

Uf |11〉 = |11〉, therefore,

Uf =















0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1















= U †
f .

Finally, Uf |x, y〉 = |x, y ⊕ 1〉, i.e., Uf |x0〉 = |x1〉 and

Uf |x1〉 = |x0〉, hence

Uf =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















= U †
f .
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Zeno Machines

A Zeno machine is a Turing machine which computes with

“increased speed”. Two time scales act simultaneously: the

intrinsic time scale of the process of computation approaches

the infinity in a finite extrinsic (or proper) time of some

outside observer. As a consequence, certain uncomputable

functions (i.e., functions which cannot be computed by any

Turing machine) become Zeno computable. For example,

the halting problem–the most notorious unsolvable problem

in classical computation theory is Zeno solvable.
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Zeno machines have been introduced by Weyl. He wrote:

Yet, if the segment of length 1 really consists of infinitely

many subsegments of length 1/2, 1/4, 1/8, . . ., as of

‘chopped-off’ wholes, then it is incompatible with the

character of the infinite as the ‘incompletable’ that Achilles

should have been able to traverse them all. If one admits

this possibility, then there is no reason why a machine

should not be capable of completing an infinite sequence of

distinct acts of decision within a finite amount of time; say,

by supplying the first result after 1/2 minute, the second

after another 1/4 minute, the third 1/8 minute later than

the second, etc. In this way it would be possible, provided

the receptive power of the brain would function similarly, to

achieve a traversal of all natural numbers and thereby a

sure yes-or-no decision regarding any existential question

about natural numbers!
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Is it kinematically feasible for a machine to carry out an

infinite sequence of operations in a finite time?

A possible construction of a Zeno machine starts with a

normal Turing machine and considers two time scales, τ

and t as follows:

• The proper time τ measures the physical system time

by clocks in an usual way.

• A discrete cycle time t = 0, 1, 2, . . . characterizes an

“intrinsic” time scale for a process running on the

machine.

• For some unspecified reason we assume that the

machine allows us to “squeeze” its intrinsic time t with

respect to the proper time τ by a geometric progression.

For k < 1 we let any time cycle of t, if measured in

terms of τ , to be “squeezed” by a factor of k with

respect to the foregoing time cycle.
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More precisely,

τ0 = 0, τ1 = k, τt+1 − τt = k(τt − τt−1),

that is

τt+1 − τt = k(τt − τt−1)

= k2(τt−1 − τt−2)

. . .

= kt(τ1 − τ0)

= kt+1

so

τt+1 = k
kt+1 − 1

k − 1
.

In the limit when t approaches the infinity, the proper time

τ∞ approaches k/(1− k), so it remains finite.
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There is no commonly accepted classical physical principle

which would, a priori, forbid such a behaviour.a One might

argue that such an “oracle” would require a geometric

energy increase resulting in an infinite consumption of

energy. Yet, no currently accepted classical physical

principle excludes us from assuming that every geometric

decrease in cycle time could be associated with a geometric

progression in energy consumption, at least up to some

limiting (e.g., Planck) scale.

So, classical physics doesn’t forbid the existence of Zeno

machines. However, classical logic does. A simple

diagonalization argument, which mimics the undecidability

of the halting problem, shows that Zeno machines are

logically impossible. Consider an arbitrary algorithm B(x)

whose input is a binary string x. Assume, for the sake of a

contradiction, that there exists an effective halting

algorithm HALT, implementable on a Zeno machine, which is

able to decide whether B eventually stops on x or not.

aClassical mechanics postulates space and time continua as a foun-

dational principle.
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Using HALT(B(x)) we shall construct another Zeno machine

A(B), which has as an input a program B and which

proceeds as follows: Upon reading the program B as an

input, A makes a copy of it.a

In the next step, our machine uses the code #(B) as an

input string for B itself, that is, A forms B(#(B)),

henceforth denoted by B(B). The machine hands B(B)

over to its subroutine HALT. Then, A(B) proceeds as follows:

• if HALT(B(B)) decides that B(B) eventually halts, then

A does not halt,b

• if HALT(B(B)) decides that B(B) never halts, then A

halts.

aThis can be readily achieved, since the program B is presented to

A in some encoded form #(B), i.e., as a string of symbols.
bThis can be realized by an infinite loop.
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What about using A on its own code as input? Notice that

B is arbitrary, so there is no restriction to prevent us for

doing this! Consequently, A, which is representable by its

code #(A) will be applied to itself.

Assume that classically A is restricted to classical bits of

information. Then, whenever A(A) halts, HALT(A(A)) forces

A(A) not to halt, and conversely, whenever A(A) does not

halt, then HALT(A(A)) steers A(A) into the halting state. In

both cases one arrives at a contradiction, therefore, Zeno

machines are logically inconsistent.
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What about the case when A is allowed a qubit of

information. Assume that |0〉 and |1〉 are the halting and

nonhalting states, respectively. The computation can be

performed if A receives as an input a qubit corresponding to

the fixed point state |?〉 of the NOT operator:

NOT =





0 1

1 0



 ,

NOT|?〉 = |?〉.

A simple computation shows that

|?〉 = | 1√
2
,

1√
2
〉.

The qubit solution |?〉 proves the impossibility of A to

control the output as the probability to reach a halting

(nonhalting) state is exactly one half. At the level of

probability amplitudes, quantum theory permits Zeno

machines, but at the level of observable probabilities, this

super-power is nullified, as the result of the computation

appears to be random.
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Simon’s problem

Deutsch and Jozsa (1992) imagined a simple “promise

problem” that can be solved “efficiently” without error on a

quantum Turing machine, but, classically, one can perform

very “inefficiently”. Unfortunately, this problem, as well as

some other related ones suggested by various authors, can

be efficiently solved by classical probabilistic Turing

machines with exponential small error probability.
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In 1994 Simon imagined a simple problem that can be

solved in polynomial time on a quantum Turing machine,

but cannot be solved in polynomial time on any

probabilistic Turing machine. Here is Simon’s problem:

Suppose we are given a function

f : {0, 1}n → {0, 1}nand we are promised that

either f is one-to-one or there exists a non-trivial

n-bit string s such that for all distinct n-bit strings

x, x′ we have

f(x) = f(x′) iff x′ = x⊕ s,

that is, f(x) = f(x′) iff the bits of x and x′ differ in

exactly those positions where the bits of s are 1.

We wish to determine which of these two conditions

holds for f , and, in the second case, to find s.
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Let a = (a1, . . . , an), b = (b1, . . . , bn) be two n-bit strings

regarded as n-bit vectors in the Zn2 = {0, 1}n. We say that

a < b in case
n

∑

i=1

ai2
i−1 >

n
∑

i=1

bi2
i−1.

The inner product of a, b is

a · b =

n
∑

i=1

aibi (mod 2).

A set B ⊂ {0, 1}n is linearly independent if for ever b ∈ B
and every subset B′ ⊂ B \ {b} we have

(0, . . . , 0) 6=
⊕

b′∈B′

b′.

Recall the quantum gate array Uf and the

Walsh-Hadamard transformation W :

Uf (|x, y〉) = |x, f(x)⊕ y〉,

W (|x〉) =
1√
2n

∑

y∈{0,1}n

(−1)x·y|y〉.
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Simon’s solution is the following. Use two quantum

registers, both with n qubits and the initial states

|0, . . . , 0〉, |0, . . . , 0〉. Then, apply the Walsh-Hadamard

transformation on the first register, then apply Uf , then

again the Walsh-Hadamard transformation on the first

register, and, finally, observe the resulting pair of states to

get a pair (y, f(x)). More formally, the algorithm can

presented in the following form:

|(0, . . . , 0), (0, . . . , 0)〉
W→ 1√

2n

∑

x∈{0,1}n

|x, (0, . . . , 0)〉

Uf→ 1√
2n

∑

x∈{0,1}n

|x, f(x)〉

W→
(

1√
2n

)2
∑

x,y∈{0,1}n

(−1)x·y|y, f(x)〉

=
1

2n

∑

x,y∈{0,1}n

(−1)x·y|y, f(x)〉.
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If f is one-to-one, then f is bijective so all possible states

|y, f(x)〉 are distinct, so the result of applying the above

scheme n− 1 times consists of n− 1 pairs

(y1, f(x1)), . . . , (yn−1, f(xn−1)), uniformly distributed over

all pairs (y, f(x)).

However, if there is a non-trivial n-bit string s such that

f(x) = f(x′) iff x′ = x⊕ s, for all x 6= x′, then for each y, x

we have

|y, f(x)〉 = |y, f(x⊕ s)〉.

In this case we have:

1

2n

∑

x,y∈{0,1}n

(−1)x·y|y, f(x)〉

=
1

2n+1

∑

x,y∈{0,1}n

(

(−1)x·y + (−1)(x⊕s)·y
)

|y, f(x)〉

=
1

2n+1

∑

x,y∈{0,1}n

(−1)x·y (1 + (−1)s·y) |y, f(x)〉
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Consequently, after n− 1 independent applications of the

scheme we will get n− 1 independent pairs

(y1, f(x1)), . . . , (yn−1, f(xn−1)), such that for every

1 ≤ i ≤ n− 1, yi · s ≡ 0 (mod 2).

In both cases, after n− 1 repetitions of the scheme we will

get n− 1 vectors yi, i = 1, 2, . . . n− 1. There are two

possibilities according to whether the set

{yi | 1 ≤ i ≤ n− 1} is linearly independent or not.

In the first case, the linear system of n− 1 equations

yi · s = 0 can be solved in Z2 to obtain s. There are two

cases:

• if f is one-to-one, then the solution s is irrelevant.

• if f is two-to-one, then the solution s is the one

required by Simon’s problem.

To distinguish between these two cases we need to compute

and compare the values of f(0, . . . , 0) and f(s).
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In the second case, that is when the set {yi | 1 ≤ i ≤ n− 1}
is not linearly independent, we have to repeat the whole

process. However, with probability at least 1
4 , the set of

vectors {yi | 1 ≤ i ≤ n− 1} is linearly independent.a So,

after an expected O(n) repetitions, sufficiently many

linearly independent vectors yi will have been collected such

that s is uniquely determined.

aIf u is a non-zero n-bit vector, then by choosing n − 1 uniformly

distributed n-bit vectors yi, 1 ≤ i ≤ n, such that yi · u ≡ 0 (mod 2)

we obtain a linearly independent set of vectors {yi | 1 ≤ i ≤ n} with

probability at least 1

4
.
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Consequently, the time of the computation is

O(nTf (n) +G(n)), where Tf (n) is the time required to

compute f on an n-bit string and G(n) is the time required

to solve an n× n linear system of equations in Z2. Can we

do it equally better with a probabilistic Turing machine?

The answer is negative.

To prove this let construct an oracle, corresponding to a

“hard probability distribution”, as follows: for each n

uniformly generated two bit strings

s(n) ∈ {0, 1}n, b(n) ∈ {0, 1}. If b(n) = 0, then the function

fn : {0, 1}n → {0, 1}n is uniformly generated from the set of

all permutations of {0, 1}n; if b(n) = 1, then fn is uniformly

generated from the set of two-to-one functions such that

fn(x) = fn(x⊕ s(n)), for all n-bit strings x. Then, any

probabilistic Turing machine that queries the above oracle

no more than 2−n/4 times cannot correctly guess b(n) with

probability greater than 1
2 + 2−n/2. So,

any probabilistic Turing machine needs an

exponential time to solve Simon’s problem on

infinitely many inputs.
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A recent paper by Hemaspaandra, Hemaspaandra, Zimand

shows that a variant of the Simon’s problem that is still

solvable in quantum polynomial time needs on a classical

machine an exponential time on almost every input.

Simon’s quantum algorithm works in polynomial time in

the expected timea and there is no upper bound for the time

required in the worst case. Brassard and Høyer improved

Simon’s algorithm (using Grover’s database search

algorithm) and showed that Simon’s problem can be solved

in polynomial time in the worst case. We will follow Mihara

and Sung to present a simpler polynomial time algorithm

(in the worst case) for Simon’s problem.

aRecall, we need an expected O(n) repetitions to collect the linearly

independent vectors yi.
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First let f be as in Simon’s problem and let g be a non-zero

n-bit vector different from s. The following quantum

algorithm returns an n-bit vector y such that

s · y = 0, and g · y = 1.

The idea is to use Simon’s algorithm with UF instead of Uf ,

where F is an appropriately constructed function.

To define F we construct two functions

φg(x) = max{f(x), f(x⊕ g)},

ψg(x) =







0, if f(x) > f(x⊕ g),

1, otherwise,

and we put

F (x, y) = (−1)ψg(x)|x, φg(x)⊕ y〉.

It is seen that φg(x) = φg(x⊕ g), and f(x) 6= f(x⊕ g) iff

ψg(x) 6= ψg(x⊕ g).
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|(0, . . . , 0), (0, . . . , 0)〉
W→ 1√

2n

∑

x∈{0,1}n

|x, (0, . . . , 0)〉

UF→ 1√
2n

∑

x∈{0,1}n

(−1)ψg(x)|y, φg(x)〉

W→
(

1√
2n

)2
∑

x,y∈{0,1}n

(−1)x·y(−1)ψg(x)|y, φg(x)〉

=
1

2n+2

∑

x,y∈{0,1}n

(−1)x·y(−1)ψg(x)((−1)x·y

+ (−1)(x⊕s)·y − (−1)(x⊕g)·y

+ (−1)(x⊕g⊕s)·y)|y, φg(x)〉

=
1

2n+2

∑

x,y∈{0,1}n

(−1)x·y(1 + (−1)s·y

− (−1)g·y − (−1)(g⊕s)·y)|y, φg(x)〉

=
1

2n+2

∑

x,y∈{0,1}n

(−1)x·y(1 + (−1)s·y)(1−

(−1)g·y)|y, φg(x)〉.
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Hence, (1 + (−1)s·y)(1− (−1)g·y) 6= 0 iff s · y = 0 and

g · y = 1. So, by measuring the first register we can obtain y

such that s · y = 0 and g · y = 1. The total running time of

the algorithm is O(n+ Tf (n)), where Tf (n) is the time

required to compute f on an n-bit string.

We could solve Simon’s problem if one could produce

enough y’s such that s · y = 0. The above algorithm shows

how produce such an y when we use a different, non-zero g.

We next show that with certitude we can find a g for

obtaining y. To this aim we need two simple mathematical

facts:

1) There exists a polynomial time algorithm that for every

linearly independent set B ⊂ {0, 1}n, returns a non-zero

n-bit string g ∈ {0, 1}n such that g · y = 0, for every

y ∈ B. If B has exactly n− 1 elements, then g is unique.

2) Let B be a linearly independent set and g ∈ {0, 1}n such

that g · y = 0, for every y ∈ B. Then, for every y′ such

that g · y′ = 1, the set B ∪ {y′} is linearly independent.
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Using the above facts we can write the following quantum

algorithm:

• Put B = ∅.
• Select a non-zero n-bit vector g.

• Repeat the following steps while g 6= s:

• Use the above quantum algorithm to find a

non-zero n-bit vector y such that s · y = 0 and

g · y = 1 and put B = B ∪ {y}.
• Use 1) to find a non-zero g′ such that g′ · y = 0,

for every y ∈ B and set g = g′.

• Return g.

In view of 2), the set B is linearly independent, therefore we

can find a non-zero s such that s · y = 0, for all y ∈ B. The

running time of the algorithm is O(n2 + nTf (n) + nG(n)) in

the worst case: here Tf (n) is the time required to compute

f on an n-bit string and G(n) is the time required to

produce g as in 1), a polynomial in n.
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Complexity

A computation on a quantum Turing machine QTM as

described by Deutsch can be represented by a tree much in

the same way we did it for probabilistic computation. The

major change required by quantum mechanics is to replace

probabilities with amplitudes. For complexity issues it is

enough to consider only real amplitudes in the interval

[−1, 1]. The amplitude of a node is the product of the

amplitudes of the edges on the path from the root to that

node. The amplitude of a configuration at any step in the

computation is the sum of the amplitudes of all nodes

corresponding to that configuration at the level in the tree

corresponding to that step.
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When an observation is made, the probability associated

with each configuration is not the configuration’s amplitude

in the superposition, but rather the squared magnitude of

its amplitude. Hence, the probability of a configuration at

any step is the square of its amplitude. For example, the

probability of a configuration is the square of the sum of the

amplitudes of all leaf nodes corresponding to that

configuration. Some specific properties follow. For instance,

a particular configuration c may correspond to two leaf

nodes with conjugate amplitudes, α and −α, and the

probability of c being the final configuration will be zero.

Still the parent nodes of these two nodes might both have

non-zero probabilities.
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The computation produces c with probability α2 if the

configuration of one leaf is different from the other. If both

leaves have amplitude α, then the probability of c being the

final configuration is 4α2 (not just 2α2). This mutual

influence between branches is a consequence of quantum

interference.

A quantum computation tree must obey the property that

the sum of the probabilities of configurations at any level

add up to one. Note that it is not enough to ask that for

each node the sum of the squares of the amplitudes on

edges leading to its children is one! Computation steps

should be unitary, so reversible. A quantum computation

results, in just one single step, in a superposition of all its

branches tree simultaneously.
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A classical probabilistic computation tree has to be

well-defined and local, with probabilities adding up to one.

A quantum computation tree has to be well-defined, local,

and unitary.

Quantum variations of time and complexity classes have

been intensively studied. For time complexity, one-tape

multitrack QTM are considered; for space complexity,

off-line multitape QTM with one-way, read-only, input tape,

a working tape, and one-way, write-only, out-tape are used.

For time complexity it is enough to consider computations

in which the measurement is done only after the machine

halts; to study space complexity, a measurement is done

each time a symbol is written on the output tape. Many

variations of models and approaches have been considered.
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There are no essential differences between conventional and

quantum computation as concerns the space efficiency.

Things are different for time complexity. Quantum versions

of classes P and BPP are classes EQP and BQP. The class

BQP, which is regarded as the class of languages (problems)

that can be decided efficiently on QTMs, is defined as the

family of languages L such that there exists a QTM that

can decide, with probability at least 2/3, for each string x

whether x ∈ L.

The following basic relations hold true:

P ⊆ EQP ⊆ BQP,

and

BPP ⊆ BQP ⊆ PP ⊆ PSPACE.

It is an open problem to decide which inclusion is proper.

Quantum complexity classes are intimately related to

conventional complexity classes; in particular, showing that

QTM’s are more powerful than PTMs needs a breakthrough

result in classical complexity theory.
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Randomness and Quantum Computing

Randomness is at the very heart of quantum physics. When

a physical state that is in a superposition of states is

measured, then it collapses into one of its possible states in

a completely unpredictable way–we can only evaluate the

probability of obtaining various possible outcomes. An

extreme view is to claim with Peres that

in a strict sense quantum theory is a set of rules

allowing the computation of probabilities for the

outcomes of tests which follow specific preparations.

According to Milburn, a quantum priciple is

physical reality is irreducible random.

We are talking about “true” randomness, not the

“randomness” which, at times, nature appears to exhibit

and for which classical physics blames our ignorance:

meteorologists cannot predict accurately the path of a

hurricane,a for example.

aThe explanation is not difficult to obtain: the equations govern-

ing the motion of the atmosphere are nonlinear and tiny errors in the

initial conditions can immensily amplify. This behaviour is known as

“deterministic chaos”.
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A mathematical definition of randomness is provided by

algorithmic information theory. The idea is to define

(algorithmic) randomness as incompressibility. The length

of the smallest program (say, for a universal Turing

machinea) generating a binary string is the program-size

complexity of the string. This idea can be extended in an

appropriate way to infinite sequences. A random

string/sequence is incompressible as the smallest program

for generating it is the string/sequence itself!

aFor technical reasons, we use self-delimiting Turing machines, ma-

chines having a “prefix-free” domain: no proper extension of a program

that eventually halts has that property.
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Strings/sequences that can be generated by small programs

are deemed to be less random than those requiring longer

programs. For example, the digits of π(3.1415926...) can be

computed one by one; nonetheless, if examined locally,

without being aware of their provenance, they appear

“random”. People have calculated π out to a billion or more

digits. A reason for doing this is the question of whether

each digit occurs the same number of times, a sympton of

randomness. It seems, but remains unproven, that the

digits 0 through 9 each occur 10% of the time in a decimal

expansion of π. If this turns out to be true, then π would

be a so-called simply normal real number. But although π

may be random in so far as it’s “normal”, it is far from

(algoritmic) random, because its infinity of digits can be

compressed into a concise program for calculating them.
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The numbers generated by the so-called logistic map,

xn+1 = rxn(1− xn), (14)

where r is an arbitrary constant and the process starts at

some state x0 = c, may appear “random” for some values,

say x0 = 0.1 and r = 3.98; however, they are not, because of

the succintness of the rule (14) describing them. In general,

a long string of pseudo-random bits produced by a program

may pass all practical statistical tests for randomness, but

it is not (algorithmic) random: its program-size complexity

is bounded by the size of the generating program plus a few

extra bits which specify the random number seed.

Similarly, a long string of binary bits produced by any

classical physical system, of which a Turing machine or a

Java program is just an instance, is not (algorithmic)

random. The program-size complexity of such a string is

bounded by the size of the program generating it, that is,

the physical law which governs its evolution, plus the size of

the initial conditions on which the law acts. Any classical

computer can only feign randomness; thinking otherwise is

not only wrong, but as von Neumann said,

Anyone who considers arithmetical methods of

producing random digits is, of course, in a state of

sin.
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Note that human beings are not doing a better job in

generating “random” bits as Shannon has argued. Biases

observed in people’s preferences for popular lottery numbers

are manifest.

Are there any physical system that can generate arbitrarily

long (algorithmic) random strings?

It is not difficult to distroy randomness. For example, start

with a random sequence x1x2 . . . xn . . . over the alphabet

{0, 1} and define a new sequence y1y2 . . . yn . . ., over the

alphabet {0, 1, 2}, by

y1 = x1, yn = xn−1 + xn, n ≥ 2.

Then, the new sequence is not random. The motivation is

simple: the strings 02 and 20 (and, infinitely many more

others) never appear, so the sequence has clear regularities

(which can, actually, be detected by simple statistical

randomness tests).
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It is much more demanding to “generate” a truly random

long string starting from an initial state with a simple

description. Note that the condition of simplicity of the

initial state is crucial: starting from a random string one

can generate, in a pure algorithmic way, many other

random strings. For example, if x1x2 . . . x2n−1x2n is a

random binary string, then break the string into pairs and

then code 00, 01, 10, 11 by a, b, c, d: the result is again a

random sequence. So, the problem is to start from an initial

state which can be precisely controlled and has a low

program-size complexity and produce measurements of

unbounded program-size complexity out its natural

dynamical evolution.
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Quantum mechanics seems capable to produce, with

probability one, truly random strings. Here is a way to do

it. Consider the operator

Rθ =





cos θ −sin θ
sin θ cos θ



 ,

and recall that it rotates a qubit a|0〉+ b|1〉 through an

angle θ. In particular, R π
4

transforms that state |0〉 into an

equally weighted superposition of 0 and 1:

1√
2
|0〉+

1√
2
|1〉. (15)
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So, to make a quantum device to produce random bits one

needs to place a 2-state quantum system in the |0〉 state,

apply the operator R π
4

to rotate the state into the

superposition (15), and the observe the superposition. The

act of observation produces the collapse into either |0〉 or

|1〉, with equal chances. Consequently, one can use the

quantum superposition and indeterminism to simulate, with

probability one, a “fair” coin toss. Random digits produced

with quantum random generators of the type described

above are, with probability one, free of subtle correlations

that haunt classical pseudo-random number generators.

Of course, the problem of producing algorithmic random

strings is still open. Indeed, let’s assume that we have a

classical silicon computer that simulates, using a

high-quality pseudo-random generator, the quantum

mechanics dynamics and quantum measurement of a 2-state

quantum system. The simulated world will be statistically

almost identical (up to some degree) with the “real”

quantum system. However, all simulated bits will be, in the

long run, highly compressible. How can we be sure that the

“real” quantum system is not just a superpowerful

pseudo-random generator?
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The Merchant’s Problem Revised: The Finite Case

We have N stacks of coins and we know that at most one

stack may contain false coins. We are allowed to take just

one coin from each stack and we want to see whether all

coins are true or there is a stack of false coins. Can we solve

this problem with just one “weighting”?
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Assume that a true coin has Γ = 1 grams and a false coin

has Γ + γ grams (0 < γ < 1). Consider as quantum space

the space HN = RN , a real Hilbert space of dimension N .

The elements of RN are vectors x = (x1, x2, . . . , xN ). The

scalar product of x and y is defined by 〈x,y〉 =
∑N

i=1 xiyi.

The norm of the vector x is defined by ‖ x ‖=
√

〈x,x〉. Let

0 < n < N , and consider Ωn ⊂ Rn. A set X ⊂ RN is called

cylindrical if X = Ωn ×RN−n. Let us denote by µk the

Lebesgue measure in Rk. If Ωn ⊂ Rn is measurable, then

the cylinder X = Ωn ×RN−n is measurable and

µN (X) = µn(Ωn).

Next we consider the standard basis (ei)i=1,N and the

projections Pi : RN → RN , Pi(x) = (0, 0, . . . , xi, 0, . . . , 0).

Denote by qi the weight of a coin in the i-th stack; if the

i-th stack contains true coins, then qi = Γ = 1, otherwise,

qi = Γ + γ = 1 + γ.
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Consider the operator Q =
∑N
i=1 qiPi. For every vector

x ∈ RN ,

Q(x) = (q1P1, . . . , qNPN )(x) = (q1x1, . . . , qNxN ).

The t-th (t > 1) iteration of the operator Q can be used to

distinguish the case in which all coins are true from the case

in which one stack contains false coins: we construct the

quadratic form 〈Qt(x),x〉 and consider its dynamics. In

case all coins are true 〈Qt(x),x〉 = ‖ x ‖2, for all x ∈ RN ; if

there are false coins in some stack, for some x ∈ RN ,

〈Qt(x),x〉 > ‖ x ‖2, and the value increases with every new

iteration. Different operators can be considered, e.g.

Q(x) =
∑N
i 2(qi−Γ) Pi. To speed-up the computation one

can accelerate the iterations of Q, for example by

considering the quadratic form 〈Q2t

(x),x〉 instead of

〈Qt(x),x〉.
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Now we can introduce a “weighted Lebesgue measure” with

proper non-negative continuous density ρ. For example, this

can be achieved with the density equal to the Gaussian

distribution

ρ(x) =
1

πN/2
e−

∑

N

s=1
|xs|2 ,

a function which will be used in what follows.

We can interpret the measure generated by the density as

the probability distribution corresponding to the standard

Normal (N ; 0, 1
2I). Hence the probability of the event

{x | x1 ∈ Ω} is the integral Prob(Ω) =
∫

Ω×RN−1 ρdm.

Then, because of the continuity of the density, we deduce

that the probability of any “low-dimensional event” is equal

to zero. In particular, the event {x | xs = 0} has probability

zero, that is, with probability one all components of a

randomly chosen normalized vector x are non-zero.
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To solve our problem we assume that time is discrete,

t = 1, 2, . . .. The procedure will be probabilistic: it will

indicate a method to decide, with a probability as close to

one as we want, whether there exist any false coins.

Fix a computable real η ∈ (0, 1) as probability threshold.

Assume that both η and γ are computable reals. Choose a

“test” vector x ∈ RN . Assume that we have a quantum

“device” which measures the quadratic form and clicks at

time T on x when

〈QT (x),x〉 > (1 + ε) ‖ x ‖2 . (16)

In this case we say that the quantum “device” has

sensitivity ε. In what follows we will assume that ε > 0 is a

positive computable real.
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Two cases may appear. If for some T > 0,

〈QT (x),x〉 > (1 + ε) ‖ x ‖2, then the “device” has clicked

and we know for sure that there exist false coins in the

system.

However, it is possible that at some time T > 0 the

“device” hasn’t (yet?) clicked because

〈QT (x),x〉 ≤ (1 + ε) ‖ x ‖2 . This may happen because

either all coins are true, i.e., 〈Qt(x),x〉 = ‖ x ‖2, for all

t > 0, or because at time T the growth of 〈QT (x),x〉 hasn’t

yet reached the threshold (1 + ε) ‖ x ‖2.

In the first case the “device” will never click, so at each

stage t the test-vector x produces “true” information; we

can call x a “true” vector.

In the second case, the test-vector x is “lying” at time T as

we do have false coins in the system, but they were not

detected at time T ; we say that x produces “false”

information at time T .
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Hence, the “true” vector has non-zero coordinates

corresponding to stacks of false coins (if any); a vector

“lying” at time T may have zero or small coordinates

corresponding to stacks of false coins. For instance, the null

vector produces “false” information at any time. If the

system has false coins and they are located in the j-th stack,

then each test vector x whose j-th coordinate is 0 produces

“false” information at any time. If the system has false

coins and they are located in the j-th stack, xj 6= 0, but

‖ x ‖2 +((1 + γ)T − 1)|xj |2 ≤ (1 + ε) ‖ x ‖2,

then x produces “false” information at time T . If |xj | 6= 0,

then x produces “false” information only a finite period of

time, that is, only for

T ≤ log1+γ

(

1 +
ε ‖ x ‖2

|xj |2
)

;

after this time the quantum “device” starts clicking.
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The major problem is to distinguish between the

presence/absence of false coins in the system. We will show

how to compute the time T such that when presented a

randomly chosen test-vector x ∈ RN \ {0} to a quantum

“device” with sensitivity ε that fails to click in time T , then

the system doesn’t contain false coins with probability

larger than 1− η.

Consider now the indistinguishable set at time t

Fε,t = {x ∈ RN | 〈Qt(x),x〉 ≤ (1 + ε) ‖ x ‖2}.

If the system contains only true coins, then Fε,t = RN , for

all ε > 0, t ≥ 1. If there is one stack (say, the j-th one)

containing false coins, then Fε,t is a cone Fε,t,j centered at

the “false” plane xj = 0:

((1 + γ)t − 1) |xj |2 ≤ ‖ x ‖2 .
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A direct calculation shows that

Prob(Fε,t)

= Prob(Fε,t,j) ≤
2M

√
ε

√
π
√

(1 + γ)t − 1
+
N
√
N

M
√
π
e−

M2

N . (17)

Selecting

M = N3/4 ·
(

1 + γ)t − 1

ε

)1/4

,

in (17) we get

Prob(Fε,t) ≤
3N3/4ε1/4√

π((1 + γ)t − 1)1/4
(18)

hence,

lim
t→∞

Prob(Fε,t) = 0. (19)
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The above limit is constructive, that is, from (18) and every

computable η ∈ (0, 1) we can construct the computable

bound

Tη = log1+γ

(

34N3ε

η4π2
+ 1

)

(20)

such that assuming that the system contains false coins, if

t ≥ Tη, then we get

Prob(Fε,t) ≤ η.

Recall that we have a finite system of N stacks in which at

most one stack contains false coins. So, if we assume that

there are N + 1 equiprobable possibilities, then either all

coins are true or only the first stack contains false coins, or

only the second stack contains false coins, or only the Nth

stack contains false coins. Let us now denote by N the

event “the system contains no false coins” and by Y the

event “the system contains false coins”. By P (N ) (P (Y))

we denote the a priori probability that the system contains

no false coins (the system contains false coins).
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In the simplest case P (Y) = N
N+1 , P (N ) = 1−P (Y) = 1

N+1 .

We can use Bayes’ formula to obtain the a posteriori

probability that the system contains only true coins when at

time t the quantum “device” didn’t click:

Pnon-click(N ) =
P (N )

P (N ) + (1− P (N ))Prob(Fε,t)

≥ 1−N · Prob(Fε,t).

When t→∞, Prob(Ωε,t) goes to 0, so Pnon-click(N ) goes

to 1. More precisely, if t ≥ Tη, as in (20), then

Pnon-click(N ) ≥ 1− ηN.
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In conclusion,

for every computable η ∈ (0, 1) we can construct a

computable time Tη such that picking up at random

a test-vector x ∈ RN \ {0} and using a quantum

“device” with sensitivity ε up to time Tη either

� we get a click at some time t ≤ Tη, so the

system contains false coins, or

� we don’t get a click in time Tη, so with

probability greater than 1− ηN all coins are true.
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The Merchant’s Problem: The Infinite Variant

Let us assume that we have now a countable number of

stacks, all of them, except at most one, containing true

coins only. Can we determine whether there is a stack

containing false coins? It is not difficult to recognize that

the infinite variant of the Merchant’s Problem is equivalent

to the Halting Problem: Decide whether an arbitrary

program (Turing machine, probabilistic Turing machine,

Java program, etc.) eventually halts. This problem is

undecidable, i.e., no Turing machine can solve it.
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Let’s have a program which we want to check whether it

stops or not. Given the program and a clock, we make a

stack of coins at each tick of the clock. The stack consists of

false coins only if the machine was running at the previous

tick and stopped at the present tick. Otherwise, the stack of

coins is from true coins. This process is, of course, infinite

and cannot be completed *classically*. Further on, our

quantum algorithm needs the whole, infinite sequence. Do

we get a problem? Yes. Can we solve it? Yes, and here is an

oversimplified way to explain the solution (for details see the

paper). Instead of trying to construct the infinite sequence

we pick an infinite random test-vector in the Hilbert space

and work with this vector. We fix also the accuracy we

want to achieve. We will then compute “classically” the

finite time T which will be used by our quantum device to

run the experiment on the random test-vector. This is

possible because of a similar relation as (19) which says

that the set of “lying test-vectors” has constructive measure

zero. If the device clicks in time T, then the answer is “the

programs stops”; otherwise, the answer is “the program

doesn’t stop with the pre-given accuracy”.
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DNA Computing

The DNA computing features:

• DNA has a well-known structure, of a clear syntactic

type, already tested by nature and known by genetic

engineers;

• DNA is one of the most efficient data storage, with the

possibility of encoding a bit at the level of a molecule;

• DNA makes possible a huge parallelism, in a small test

tube one can put billions of molecules;

• the biochemical reactions are very efficient from an

energetic point of view and they are reversible;

• the biochemical reactions have a high degree of

nondeterminism, which, suitably exploited (together

with the parallelism), can lead to very efficient

computations.



2002 COMPSCI 755 194'

&

$

%

The nondeterminism of biochemical reactions is, at least in

this moment, also a bad feature, because the result we get is

reliable only with a certain probability.

Other drawbacks of DNA Computing are the fact that we

have to carefully handle the errors and the many exceptions

customary in biochemistry.

Biochemistry inspired Computing (DNA Computing and

Membrane Computing) uses specific

• data structures,

• operations with these data structures.

DNA has a potentially gigantic memory capacity (in

reasonable concentrations, a liter of DNA solution can store

up to 1022 bits of information), and biochemical operations

are massively parallel. So DNA has a “built-in”

computational power.
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The power of DNA computing comes from the memory

capacity and parallel processing. If forced to behave

sequentially, DNA loses its appeal. For example, let’s look

at the read and write rate of DNA. In bacteria, DNA can be

replicated at a rate of about 500 base pairs a second.

Biologically this is quite fast (10 times faster than human

cells) and considering the low error rates, an impressive

achievement. But this is only 1000 bits/sec, which is a

snail’s pace when compared to the data throughput of an

average hard drive.

But look what happens if you allow many copies of the

replication enzymes to work on DNA in parallel. First of all,

the replication enzymes can start on the second replicated

strand of DNA even before they are finished copying the

first one. So already the data rate jumps to 2000 bits/sec.

But look what happens after each replication is finished –

the number of DNA strands increases exponentially (2n

after n iterations). With each additional strand, the data

rate increases by 1000 bits/sec. So after 10 iterations, the

DNA is being replicated at a rate of about 1Mbit/sec; after

30 iterations it increases to 1000 Gbits/sec. This is beyond

the sustained data rates of the fastest hard drives.
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The familiar double helix of DNA arises by the bonding of

two separate polymer chains known as DNA strands. These

chains, composed of the four DNA bases A (adenine), G

(guanine), T (thymine), and C (cytosine), obey the

Watson-Crick complementarity rule:

A bonds with T and C bonds with G.

This restriction means that a DNA chain can pair with

another chain only when their sequences of bases are

mutually complementary. Thus, fundamental information is

available “for free”: knowing one member of a bond means

automatically knowing the other member.
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Complementarity Yields Universality

Consider the set of all possible words (sequences) that can

be obtained from two given words by shuffling them

without changing the order of letters. Then collect all

shufflings of all pairs of complementary words into the

so-called twin-shuffle language: TS. For instance, from AG

get the complement TC, and by shuffling produce

AGTC, ATGC, ATCG, TCAG, TAGC, TACG.

All these words belong to TS; AGCT is not in TS.

There is a simple way to go from a DNA double strand to a

word in the twin-shuffle language and back.
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Universality follows from the fact that any Turing

computation can be performed by using an appropriate

finite automaton to filter the (fixed) twin-shuffle language:

For every computably enumerable language L, we

can effectively construct a gsm-mapping g (i.e. a

mapping computed by a finite deterministic

automaton) such that

L = g(TS).

Actually, we can also work with usual strings: by heating a

solution which contains DNA molecules, the two strands are

separated (one says that DNA is denaturated). By cooling

the solution, the single strands will again glue together,

observing the complementarity of nucleotides and forming

double stranded molecules (one says that DNA is

renaturated; the operation is also called annealing).

We have thus already obtained two operations:

denaturation and annealing. Another important one is

recombination (crossing-over), the basic one used in Genetic

Algorithms. We consider it in the form formalized by Head,

in 1987, under the mane of splicing,
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Consider the following two DNA molecules

CCCCCTCGACCCCC

GGGGGAGCTGGGGG

AAAAAGCGCAAAAA

TTTTTCGCGTTTTT

as well as the restriction enzymes TaqI and SciNI, which

recognize, respectively, the following patterns

C G C G
CGCGAGCT

A G C T

which indicates the way of cutting the DNA molecules.
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When acting on the two molecules mentioned above, these

enzymes will produce the following four fragments:

CCCCCT CGACCCCC

GGGGGAGC TGGGGG

AAAAAG CGCAAAAA

TTTTTCGC GTTTTT

We have obtained molecules with identical sticky ends,

therefore the four fragments can be bound together, either

restoring the initial molecules, or producing new molecules

by recombination. The recombination gives the following

new molecules

CCCCCTCGCAAAAA

GGGGGAGCGTTTTT

AAAAAGCGACCCCC

TTTTTCGCTGGGGG
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This operation (cut at certain places and recombine the

fragments which have matching sticky ends) is now used as

the basic ingredient of a large class of computing

mechanisms, known under the name of H systems.

Although the theory of H systems is much developed and in

spite of the fact that H systems of various types are capable

to perform universal computations (they can simulate any

Turing Machine), nothing is known in this moment about

the complexity of computations performed by H systems

(whether or not hard problems can be solved in this

framework in an efficient way).
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Adleman Experiment

Adleman experiment uses as basic operations the

denaturation and annealing (plus filtering DNA molecules

according to various criteria, amplification with selective

primers, gel electrophoresis and solves in linear time an

NP-complete problem – whether or not a given directed

graph contains any Hamiltonian path starting in a given

node and ending in a given node.

Following the terminology of Hartmanis, this was a

convincing demo, which has proved that genetic engineering

materials and techniques constitute a possible new

framework for computability. Adleman’s experiment is

important not only because it was the first of this type, but

also by the way it was conducted.
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The graph considered by Adleman is pictured in the next

figure. We have seven vertices and fourteen arcs. The

question is whether or not there is a path from vertex 0 to

vertex 6 which passes exactly once through each of the

other vertices.

The graph in Adleman’s experiment.
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By a simple examination of the graph, we see that there is

such a path, namely that following the numbering of the

vertices: 0, 1, 2, 3, 4, 5, 6.

However, the problem is a hard one, among the hardest

which can be solved in polynomial time by

non-deterministic algorithms: it is an NP- complete

problem. Otherwise stated, all known deterministic

algorithms for solving this problem are essentially equally

complex as the exhaustive search.

However, we can trade time for space, and this is exactly

what Adleman has done, making use of the massive

parallelism of DNA (in some sense, the massive parallelism

can simulate non-determi- nism, and in this way

non-deterministic algorith -ms can be implemented).
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The algorithm used by Adleman was the following:

Input: A directed graph G with n vertices, among

which there are two designated vertices vin and vout.

Step 1: Generate paths in G randomly in large

quantities.

Step 2: Remove all paths that do not begin with vin or

do not end in vout.

Step 3: Remove all paths that do not involve exactly n

vertices.

Step 4: For each of the n vertices v, remove all paths

that do not involve v.

Output: “Yes” if any path remains, “No” otherwise.
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If we assume that each of the operations in the algorithm

takes exactly one time unit, then the solution is obtained in

a number of time units which is linear in n, the number of

vertices in the graph: steps 1, 2, 3 need a constant number

of time units (say, 4: generate all paths, select the paths

starting with vin, select the paths ending with vout, select

the paths of length n), while step 4 takes n time units

(check for each vertex its presence in the currently

non-rejected paths).

The main difficulty lies in step 1, where we have to generate

a large number of paths in the graph, as large as possible, in

order to reach with a high enough probability the

Hamiltonian paths, if any.

Of course, when the graph also contains cycles, the set of

paths is infinite. In a graph without cycles, the set of paths

is finite, but it can be of an exponential cardinality with

respect to the number of vertices. This is the point where

the massive parallelism and the non-determinism of

chemical reactions were cleverly used by Adleman in such a

way that this step was performed in a time practically

independent of the size of the graph.
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The biochemical implementation of the above described

algorithm was the following.

Each vertex of the graph was encoded by a single stranded

sequence of nucleotides, namely of length 20. These codes

were constructed at random; the length 20 is enough in

order to ensure that the codes are “sufficiently different”. A

huge number of these oligonucleotides (amplified by PCR)

were placed in a test tube. In the same test tube are then

added (a huge number of) codes of the graph edges, of the

following form: if there is an edge from vertex i to vertex j

and the codes of these vertices are si = uivi, sj = ujvj ,

where ui, vi, uj , vj are sequences of length 10, then the edge

i→ j is encoded by the Watson-Crick complement of the

sequence viuj .

For instance, for the codes of vertices 2, 3, 4 specified below

s2 = TATCGGATCGGTATATCCGA,

s3 = GCTATTCGAGCTTAAAGCTA,

s4 = GGCTAGGTACCAGCATGCTT,

the edges 2 → 3, 3 → 2 and 3 → 4 were encoded by

e2→3 = − CATATAGGCTCGATAAGCTC,

e3→2 = − GAATTTCGATATAGCCTAGC,

e3→4 = = GAATTTCGATCCGATCCATG.



2002 COMPSCI 755 208'

&

$

%

By annealing, the codes of the vertices act as splits with

respect to codes of edges and longer molecules are obtained,

encoding paths in the graph. One can easily see how the

molecules specified above will lead to sequences encoding

the paths 2 → 3 → 4, 3 → 2 → 3 → 4, etc.

Adleman has let the process to proceed four hours, in order

to be sure that all ligation operations take place. What we

obtain is a solution containing a lot of non-Hamiltonian

paths (short paths, cycles, paths passing twice through the

same vertex). The rest of the procedure consists of checking

whether or not at least a molecule exists which encodes a

Hamiltonian path which starts in 0 and ends in 6.
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A very important point: The difficult step of the

computation was carried out “automatically” by the DNA

molecules, making use of the parallelism and the

Watson–Crick complementarity. In this way, we get a large

set of candidate solutions, (hopefully) both molecules which

encode paths which are looked for, but also many molecules

which should be filtered out, a sort of “garbage” to be

rejected.

This second part of the procedure, of filtering the result of

step 1 in order to see whether a solution to our problem

exists, was carried out by Adleman in about seven days of

laboratory work, by performing the following operations:

By a PCR amplification with primers representing the input

and the output vertices (0 and 6), only paths starting in 0

and ending in 6 were preserved.
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After that, by gel electrophoresis there have been extracted

the molecules of the proper length: 140, because we have 7

vertices encoded by 20 nucleotides each. Thus, at the end of

step 3 we have a set of molecules which encode paths in the

graph which start in 0, end in 6, and pass through 7

vertices. (It is worth noting that this does not ensure that

such a path is Hamiltonian in our graph: 0, 3, 2, 3, 4, 5, 6 is

a path which visits seven vertices, but it passes twice

through 3 and never through 1.) Roughly speaking, step 4

is performed by repeating for each vertex i the following

operations: melt the result of step 3, add the complement of

the code si of vertex i and let to anneal; remove all

molecules which do not anneal.



2002 COMPSCI 755 211'

&

$

%

If any molecule survives step 4, then it encodes a

Hamiltonian path in our graph, namely one which starts in

vertex 0 and ends in vertex 6.

The practical details of this procedure are not very

important for the present discussion. They depend on the

present day laboratory possibilities and can be performed

also by other techniques; furthermore, the algorithm itself

can be changed, improved or completely replaced by

another one. What is important here is the

proof that such a computation is possible.
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Purely biochemical means were used in order to solve a

hard problem, actually an intractable one, in a linear time

as the number of lab operations. These operations, in an

abstract formulation, are another main output of this

experiment and of the thought about it, leading to a sort of

programming language based on test tubes and DNA

molecules manipulation.

Such a “test tube programming language” was proposed by

Lipton in 1995: the well-known SAT Problem, probably the

most used NP-complete problem, was solved in linear time

by a procedure which extends Adleman’s algorithm.

Hartmanis has proved that in order to handle in this

manner graphs with 200 nodes, graphs with a size of

practical importance, easily handled by conventional

computers, we need 3 · 1025 Kg of DNA, which is more than

the weight of the Earth!) In short, Adleman’s procedure is

elegant, copes in a nice way with the errors, but it cannot

be scaled-up.
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The Adleman–Lipton paradigm, which has the root in

Adleman’s experiment, solves combinatorial optimization

problems, such as NP-complete problems, using DNA

molecules. Each solution candidate of a problem is

represented by a DNA molecule. The paradigm consists of

the following two steps.

1. Solution candidates are randomly generated.

2. Real solutions are selected from among the generated

candidates.
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In the first step, the ability of DNA molecules to hybridize

with one another through Watson-Crick base-pairing is

exploited. In Adleman’s experiment, vertices and edges in a

directed graph are represented by single-stranded DNA

molecules. They hybridize together to form a

double-stranded DNA molecule that represents a path in

the graph.

In the second step, real solutions are selected by molecular

biology operations. Each operation is applied to all the

candidates in a test tube. This step is a typical

data-parallel computation.

The complexity of these molecular computations can be

measured by the required time and the number of necessary

molecules. Since the Adleman–Lipton paradigm reduces the

time by sacrificing the number of molecules, the size of

problems solvable by this method is limited by the number

of molecules required for computations. Hence, the crucial

point of the paradigm is how to reduce the number of

potential candidates.
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Many improvements upon the Adleman–Lipton paradigm

have been proposed. Morimoto, Arita and Suyama (1999)

have proposed an iterative approach. Rather than generate

all of the random candidates prior to selection, the

generation and selection of partial solutions is repeated. In

this approach, once candidates of partial solutions are

identified, those that cannot be extended to a total solution

are immediately removed. The remaining partial solutions

are then extended, and the process is reapplied to these

extended partial solutions.

Using this approach, an algorithm for solving the

satisfiability problem for 3-literal clausal formulas (the

3-SAT problem) was designed using DNA molecules. The

algorithm does not generate assignments of all the variables

at once. Rather it extends partial assignments for one

variable at a time. Those partial assignments that cannot be

extended to complete satisfying assignments are removed.
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The algorithm by Yoshida and Suyama (1999) succeeded in

solving a 4-variable 10-clause instance of the 3-SAT

problem. Currently, they are developing a DNA computing

robot with which they plan to solve a 30-variable 100-clause

instance of the problem.

According to Suyama’s estimation, solving a 100-variable

instance is not impossible. However, even if a 100-variable

instance of the 3-SAT problem could be solved, DNA

computers would not outperform electronic computers.

Breakthroughs are required both in experimental technologies

and in algorithms, before molecular computers based on the

Adleman–Lipton paradigm can solve problems that are

beyond the capability of electronic computers.
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Suyama robot
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Adleman–Lipton Model

A (test) tube is a set of molecules of DNA, i.e. a multi-set

of finite strings over the alphabet {A,C,G, T}. (A multi-set

is a classical set in which elements appears with different

multiplicities.)

Given a tube, one can perform the following operations:

• Separate. Given a tube T and a string S over

{A,C,G, T}, produce two tubes

+(T, S), -(T, S),

where +(T, S) consists all of the molecules of DNA in T

which contain the consecutive substring S and -(T, S) is

all of the molecules of DNA in T which do not contain

the consecutive substring S.
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• Merge. Given tubes T1, T2, produce

∪(T1, T2) = T1 ∪ T2, .

• Detect. Given a tube T , say yes if T contains at least

one DNA molecule, and say no if it contains none.

• Amplify. Given a tube T produce two tubes T ′(T ) and

T ′′(T ) such that

T = T ′(T ) = T ′′(T ).
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Example: Two DNA Programs

A Simple Test

(1) Input(T )

(2) T1 = -(T,C)

(3) T2 = -(T1, G)

(4) T3 = -(T2, T )

(5) Output(Detect(T3))

On input a tube, it returns yes if the tube contains a DNA

molecule which is composed entirely of As and otherwise

returns no.
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A Test with Output

On input a tube, the program

(1) Input(T )

(2) T1 = -(T,C)

(3) T2 = -(T1, G)

(4) T3 = -(T2, T )

(5) Output(T3)

returns the tube containing exactly those DNA molecules

from the input tube which are composed entirely of As.
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3–Colorability Complete Problem

Decide for an undirected graph G = < V,E > whether each

vertex can be colored either red, blue, or green in such a

way that, after coloring, no two vertices which are

connected by an edge have the same color. This is an

NP–complete problem.

Given an n vertex graph G with edges e1, e2, . . . , ez, (an

edge is a pair < i, j > of vertices) let

Σ = {r1, b1, g1, r2, b2, g2, . . . , rn, bn, gn},

and consider the following program (using only the first

three types of operations, i.e. no amplification is used) on

input
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T = {α | α ⊂ Σ, α = {c1, c2, . . . , cn},

for all 1 ≤ i ≤ n, ci = ri or ci = bi or ci = gi} :

(1) Input(T )

(2) For k = 1 to z do:

(a) Tred = +(T, ri) and (Tblue = -(T, ri) or

Tgreen = -(T, ri)).

(b) (Tblue = +(Tblue, bi) or

Tblue = +(Tgreen, bi)) and

(Tgreen = -(Tblue, bi) or

Tgreen = -(Tgreen, bi)).

(c) T goodred = -(Tred, rj).

(d) T goodblue = -(Tblue, bj).

(e) T goodgreen = -(Tgreen, gj).

(f) T ′ = ∪(T goodred , T goodblue ).

(g) T = ∪(T goodgreen, T
′).

(3) Output(Detect(T )).
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The elements in the tube T are in a bijective correspondence

with the possible ways to assign colors to the vertices of G.

Step (2) creates from T a new tube from which all

aggregates α with ci = cj have been removed, i.e. we assign

the same color to vertex i and j. After 5k separations, 2k

merges and 1 detect, the program will output yes if G is

3-colorable and no otherwise. This program works in linear

time in the number of edges. The price paid for this

performance consists in the possibility to realize the huge

input consisting of no less than 3n inputs simultaneously.
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Several improvements of Adleman’s procedure were

proposed. The most promising approach is to use an

evolutionary computing strategy: instead of constructing a

“complete data pool” from which the solutions are then

filtered out, only “good” candidates are produced, which

saves a lot of the needed DNA. Still, no problem of a

practical size was reported to be solved.

Adleman’s experiment suggests a general (somewhat

unusual) strategy of computing, proposed in G. Păun under

the name of computing by carving: generate a set of

candidate solutions and then “carve” it, removing sets of

non-solutions, iteratively, until a solution is obtained. This

mode of “working on the complement” proves to be very

powerful (even sets which are Turing non-computable can

be “computed” in this way) and it is expected to be also

useful from the complexity point of view.
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New Computational Paradigms

A number of new computational paradigms are emerging.

These include:

1. DNA computing

2. molecular computing

3. chemical computing

4. aqueous computing

5. crystal computing

6. cell computing

7. gel computing

8. amorphous computing

9. membrane computing
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These computational paradigms can be classified within the

context of molecular computing into four kinds of

computation:

(1) computing inside a single molecule,

(2) computing by interactions among molecules,

(3) computing with membrane,

(4) computing with geometry.

Note that each group is a source of great computational

power, and there are connections between these groups.
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Computing Inside a Single Molecule

Hairpin Engines are typical examples of computation inside

a single molecule. Protein folding is a typical example of

structural formation by a single molecule. Fraenkel was the

first to explicitly state the relationship between protein

folding and computation. He showed that protein folding is

NP-complete by reducing the energy minimization problem

of spin glasses, which was known to be NP-complete, into

the protein folding problem. This result, however, is purely

theoretical and there is a big gap between Fraenkel’s model

and an actual protein.
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Head and Yamamura showed that even write-once memory

has high computational power. They proposed Aqueous

Computing, in which write-once memory is used to solve

NP-complete problems such as the max clique problem.

Write-once memory is implemented by a plasmid containing

sequences called stations, each corresponding to one bit. A

station is surrounded by the recognition sites of the same

restriction enzyme, and writing on a station is implemented

by removing the station from the plasmid through

sequential restriction endonuclease digestion and ligation.


