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In what follows we will assume that PA is sound.
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A function f : N — N is provably computable if there exists a
¥, -formula of PA ¢(z,y) such that:

® {(n,m) | f(n) =m} ={(n,m) [ NF o(n,m)},
@ PAE VzIlyp(x,y).

Theorem. Every primitive recursive function is provably
computable, but the converse is not true.

Theorem. There exist computable functions which are not
provably computable
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is the prefix-complexity of the string x.

A string x is m-random for U if Hy(x) > |x| — m; x is random for
U if Hy(z) > |z|.

A simple combinatorial argument shows the existence of
random strings of any length.
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Theorem [Chaitin 1975]. For every universal prefix-free
machine U there is a constant c = cpa,y > 0 such that PA
cannot prove any statement “Hy; (z) > m” withm > c.

Corollary. For every universal prefix-free machine U and m > 0,
there is a constant c = cpa,u,m > 0 such that PA cannot prove
that a string of length larger than m + c is m-random for U.

Corollary. There exists a universal prefix-free machine U, such
that PA cannot prove that a string of positive length is random
for Uy.
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onU.

A computable enumerable (c.e.) real is a limit of a computable
increasing sequence of rationals.
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The key concept is representation.
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Theorem [Chaitin 1975; Calude, Hertling, Khoussainov, Wang
1998; Kucera, Slaman 2001]. The set of all random and c.e.
reals coincides with the set of all Qi when U is a prefix-free
universal machine.
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Problem: No every prefix-free universal machine is provably

prefix-free universal machine!

Still there is hope!
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Theorem. Let V' be provably universal prefix-free, c be a
positive integer, v a positive c.e. real. Thena =2"Qy + v is
provably random and c.e.
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The representation adopted is:

2_CS)V + e

where V' is a fixed provably prefix-free universal machine, ¢ > 0
is a natural number and v > 0 is a c.e. real.

Theorem. Every c.e. and random real is provably random and
c.e.
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Does the representation Q;, where U is a provably prefix-free
universal machine, work too?

Theorem. For every universal prefix-free machine U there exits
a provably universal prefix-free machine U’ such that Qy = Q.

Corollary. Every c.e. and random real can be written as the
halting probability of a provably universal prefix-free machine.
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universal and prefix-free, a positive integer ¢, and a computable
increasing sequence of rationals converging to a real v > 0,
then PA can prove that o = 27¢Qy 4 v is random and c.e.

Similarly, if PA receives an algorithm for a machine U, a proof
that U is universal and prefix-free, then it can prove that )y is
random and c.e.
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used in the proof. This includes a description of the
formalisation (for Isabelle) of the Kraft-Chaitin Theorem and the
description of the main steps of the automatic proof.

During the work to automate the proof of the Kraft-Chaitin
Theorem a mistake in our human-made argument was
unearthed and corrected.

We also used the experience with Isabelle to test the adequacy
of the representation of a c.e. random real to obtain the PA
proof of randomness.
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