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The halting problem for Turing machines cannot be solved by any Turing machine

Classical proofs use diagonalisation which seems artificial as the
argument:

@ looks like a linguistic trick,

@ does not reveal “the cause” of the impossibility.
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An information-theoretical argument

Assume that:

@ we interest ourselves to (Turing) machines working with
natural numbers as inputs and outputs;

@ there exists a halting machine HALT which solves the halting
problem for the above class of machines.
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An information-theoretical argument

Construct the machine Trouble(/N):

@ read a natural N;

@ generate all machines and inputs (T,n) of up to N
bits in size;

© use HALT to remove all pairs (T,n) for which T
does not stop on n;

O run the remaining computations T(n) till they
stop;

© compute the largest value o output by these
machines and output 20+ 1.
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Trouble(/N) is in trouble

@ Trouble(N) halts for every N.
@ The size in bits of Trouble(/N) is about log N plus a constant.
© For large enough N, Trouble(N) has less than N bits in size.

Q For large enough N, Trouble(/N) generates itself at some stage
of the computation: by examining the output, we get a
contradiction.
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Coding the halting problem

Assume U is a universal prefix-free Turing machine.
The sequence

h(n) = 1, if U halts on the nth program,
0, otherwise,

codes the halting problem for U and has the following properties:

@ his incomputable;

@ the quantity of information in h(] n) = h(1)h(2)--- h(n) is

about log n, hence infinitely many bits of h can be computed.
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Coding the halting problem

The sequence of bits of

Qu = Z 2—|p| = 0.wiwy - - -
U(p) stops

codes the halting problem for U and has the following properties:
@ the quantity of information in Qu([ n) = wiws - - w, is about
n;
@ Qy is bi-immune, i.e. no Turing machine can compute more
than finitely many scattered bits of Q.
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Coding the halting problem

For every universal prefix-free Turing machine U and natural
N > 0, we can effectively construct another universal prefix-free
Turing machine W such that:

Q@ Qw = Qy,

@ given W, ZFC can compute at most N — 1 bits of Qy, where
the first bit of € equal to zero appears on the position N;if
Qu < 1/2, then ZFC cannot calculate any bit of Q.
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A probabilistic solution for the halting problem

Assume that U is a universal prefix-free Turing machine. We can
effectively calculate a stopping time s = sy such that if U(x) halts
in time t > sy, then t is not algorithmically random.

There exists a Turing machine which stops on every input (T, x),
where T is a prefix-free Turing machine and x is an input, and
outputs either:

@ “T halts on x”, and in this case the result is correct, or

@ “T does not halt on x”, and in this case the result may be
wrong, but with probability less than an arbitrarily small
number.
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