
Alan Turing and the Unsolvable Problem

To Halt or Not to Halt—That Is the Question

Cristian S. Calude

26 April 2012

Alan Turing
Alan Mathison Turing was born in a nursing home in Paddington,
London, now the Colonnade Town House

on 23 June 1912, less than three months after the sinking of the
Titanic.

He was to become, like Freud, who stayed briefly in the House in
1938, an explorer of the mind. But his life would not make him as
famous as Freud, at least for a while.

Sherborne School

Turing started at Sherborne School, a classic English “public
school” in the town of Sherborne, Dorset, in south-west England.

Sherborne was a boys boarding school and isolation from family
had a life-long affect.

With very bad reports he was nearly stopped from taking the
School Certificate.

Reports

English: I can forgive his writing, though it is the worst I
have ever seen, and I try to view tolerantly his unswerving
inexactitude and slipshod, dirty, work, inconsistent
though such inexactitude is in a utilitarian; but I cannot
forgive the stupidity of his attitude towards sane
discussion on the New Testament. Bottom of the class.

Maths and science: His work is dirty.

Maths and science

In spite of the difficult start, in 1928 he was
admitted to enter the sixth form of Sherborne
School to study mathematics and science.

He read mathematics as an undergraduate stu-
dent at King’s College, Cambridge, 1931–1934.

He read J. von Neumann (quantum physics)
and B. Russell (logic).
He was elected fellow of King’s College, 1935.

Changing the foundations of mathematics: David Hilbert

Hilbert’s programme (1920): formalise
mathematics as a set of fundamental
truths (axioms) and rules of deduction
and demonstrate that the system is
consistent—i.e. free of contradictions.

Hilbert’s Entscheidungsproblem (1928):
find “a purely mechanical mindless pro-
cedure” to decide whether an arbitrary
mathematical statement is provable in
the system, i.e. true.

Changing the foundations of mathematics: Kurt Gödel

In 1931 Kurt Gödel published his incomplete-
ness theorem: any computable axiomatic sys-
tem that is powerful enough to describe the
arithmetic of the natural numbers cannot be
both consistent and complete (every true state-
ment is provable in the system).

Oversimplifying, incompleteness “killed” Hil-
bert’s programme.

Changing the foundations of mathematics: Alonzo Church
and Alan Turing

In 1936–1937 Alonzo Church—an established logician—and Alan
Turing, a recent graduate, 9 years younger, proved independently
that the Entscheidungsproblem has no solution. Max Newman’s
role.

Turing’s idea of computation

The main concept used by Turing’s proof is the “a(utomatic)
–machine”, nowadays called Turing machine, which is a simple and
abstract model of human computation.

Turing imagines a person—not a mechanism—whom he calls the
“computer”, who executes mechanical rules slavishly, “in a
desultory manner”. He then develops the mechanism into a class
of abstract machines.

The Turing machine

The Turing machine mechanically operates on a potentially infinite
tape on which the machine can read and write (one at a time)
symbols using a tape head, which can move left or right.

Operation is fully determined by a finite list of instructions—the
instruction table—such as

“in state 17, if the symbol seen is 0, write a 1, move the
head left and change to state 6”.

compactly written as (17, 0, 1, L, 6).

Turing’s examples of machines are full of mistakes although in
principle correct. This is benign for theory, but disastrous for
practice.

A Turing machine given by a state diagram

Equality checker

iPod: Steve Jobs’ fixed program, special purpose Turing
machine

The concept of universal Turing machine (UTM)

Formal languages for mathematics are incomplete (Gödel) but
programming languages are universal (Turing).

Turing’s key idea: think of the description of a Turing machine
itself as data.

Construct a specific Turing machine—called universal—that can
simulate the behaviour of any Turing machine (including itself!).

Formally:

UTM(T,i) = T(i), for every Turing machine T and input i.

Coding—à la Gödel—of the equality checker

0L|1R|2R|3R|4Y |5N|
01##|120x |131x |14##|201x |25##|300x |35##|

##011100##

A universal Turing machine (UTM)

iPad: Steve Jobs’ universal Turing machine can obey any
program

and we know what an amazing variety of apps are available...

Does this Turing machine

halt on “aaaaa”?

But on aaaaaaaaaaaaaaaaaaaaaaaaaaaa?

The halting problem

Can
any fixed Turing machine

decide whether
an arbitrary Turing machine

halts or not?

The halting problem in detail

Can we modify a UTM to obtain a Turing machine H that can
inspect all other Turing machines T and inputs i and decide
whether or not T will halt on input i, by returning “yes” or “no”
and then halting itself?

Maybe Google can solve the halting problem?

Turing (1936): The halting problem cannot be solved by
any Turing machine

Assume that, similar to UTM(T,i), there exists a Turing machine
H(T,i) deciding whether an arbitrary Turing machine T eventually
halts on input i. Modify the program for H to H* as follows:

I if H(T,i) produces “yes”, then H*(T,i) goes into an infinite
loop and never halts,

I if H(T,i) produces “no”, then H*(T,i)=H(T,i), i.e. it produces
also “no” and stops.

Turing (1936): The halting problem cannot be solved by
any Turing machine

Now apply H* to itself and input 0:

I if H* halts on 0, then H*(H*,0) never halts,

I if H* does not halt on 0, then H*(H*,0) halts,

so in both cases we have obtained a contradiction.

The proof is sound, but is this argument reasonable? After all, why
should we allow H* to work on itself?

The [Chaitin] Omega number of a UTM

Fix a UTM U whose programs have an “halt” instruction and
consider the set of all such programs p. What is the probability
that one p (of any length), selected at random, halts?

This probability exists and is called the halting probability/the
Omega number of U. In writing:

ΩU .

There exists one π, but infinitely many Omega’s.

The double face of [every] Omega

1. The bits of ΩU are in principle computable: run in parallel all
programs and—like in a Feynman’s path integral—add

2−length(p) for each program p which halts on U.

2. No machine can compute more than finitely many scattered
bits any Omega, because for almost all bits you need to wait
an infinite time to get their value. For some Omega’s, no bit
can be computed.

Omega can be known of, but not known

Worse, every Omega is incompressible, i.e. its sequence of bits
cannot be expressed more compactly than the number itself.

If you know Omega ...

then you know whether the Goldbach’s conjecture—every even
integer greater than 2 can be expressed as the sum of two
primes—is true or not.

Program G enumerates every even integer i > 2 and
checks whether i is a sum of two primes. Stop if an
integer which is not a sum of two primes is found;
otherwise, continue.

G stops if and only if the Goldbach’s conjecture is
false.

If you know the first N bits of Omega—where N is the size in bits
of G—then you can decide whether G stops, so you solve the
Goldbach’s conjecture.

“I am the alpha and the omega, says the Lord, who is, who
was, and who is to come” (Revelation, 1:8).

Omega is a “know it all” when it comes the truth of many
mathematical statements.

Reason: with the first N bits of Omega we can calculate all halting
programs of length at most N.

The complexity of some famous mathematical statements

[C. Calude, E. Calude, M. Dinneen, 2006–2012] One can evaluate
the complexity of a problem according to the minimal number of
Omega bits necessary to solve the problem:

I Fermat’s last theorem is in class 1, i.e. less then 210 bits are
sufficient,

I The Riemann hypothesis is in class 3,

I The four colour theorem is in class 4.

Omega in CBS drama TV show Numb3rs
You might think that Omega is useless because it is unknowable
. . . but the first 64 bits of an Omega number calculated by
[Calude, Dinneen and Shu,2002] helped to solve “a crime”.

season 5/episode 5/scene 6: www.cbs.com/primetime/numb3rs

www.cbs.com/primetime/numb3rs

Is there a probabilistic solution for the halting problem?

[Calude, Stay, 2008] There exists a Turing machine which stops on
every input (T,i) and outputs either:

I “T halts on i”, and in this case the result is correct, or

I “T does not halt on i”, and in this case the result may be
wrong, but with probability less than an arbitrarily small
number.

Church-Turing Thesis

The Turing machine is just one way of capturing the essence of
mechanical computation.

There have been many other approaches, such as Church’s or your
favourite computer, but they are all equivalent in the sense that
they compute the same functions.

Are there more powerful calculating machines than Turing
machines? Church-Turing Thesis states that the answer is
negative. Hypercomputation challenges this view.

Hypercomputation revisited

Quantum randomness, produced with a simple optical experiment,

is highly-incomputable [Calude, Svozil, 2008].

Turing machines working with quantum random bits trespass the
Turing barrier. But, how powerful are such machines?

