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Goal

The incomputability of all descriptional complexities is an obstacle
towards more “down-to-earth” applications of AIT (e.g. for
practical compression).

We develop a version of AIT by replacing Turing machines with
finite transducers; the complexity induced is called finite-state
complexity.
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Transducers

A transducer is denoted as a triple T = (Q, q0,∆) where Q is the
finite set of states, q0 ∈ Q is the start state, (all states of Q are
considered to be final), and

∆ : Q × {0, 1} → Q × {0, 1}∗

is the transition function.

The function {0, 1}∗ → {0, 1}∗ computed by the transducer T is
defined by

T (ε) = ε, T (xa) = T (x) · π2(∆(δ̂(q0, x), a)),

for x ∈ {0, 1}∗, a ∈ {0, 1}.

3 / 199



Regular enumeration of finite transducers and non-universality

Theorem. The set of all transducers can be enumerated by a
regular language. i.e. there is a regular set S0 such that:

a) for every σ ∈ S0, T S0
σ is a transducer,

b) for every transducer T one can compute a code σ ∈ S0 such
that T = T S0

σ .

Theorem. There is no universal transducer.
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Finite-state complexity

Fix a computable enumeration S of transducers.
A pair (T S

σ , p), σ ∈ S , p ∈ {0, 1}∗, defines the string x provided

T S
σ (p) = x .

The finite-state complexity (with respect to S) of a string
x ∈ {0, 1}∗ is defined by:

CS(x) = inf
σ∈S, p∈{0,1}∗

{
| σ | + | p | : T S

σ (p) = x
}
.
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Optimality

The complexity associated with a transducer T S
σ is defined by

CS
T S

σ
(x) = inf

p∈{0,1}∗

{
| p | : T S

σ (p) = x
}
.

Theorem. For every σ ∈ S , CS(x) ≤ CT S
σ

(x) + |σ|, for all x .

Corollary If T S
σ0

(x) = x , then CS(x) ≤ |x |+ |σ0|, for all x . We can
take |σ0| = 8 for CS0 .

Corollary The complexity CS is computable.

Conjecture The predicate CS(x) ≤ n is NP-complete.
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An example of compressible string

The string x = 01021031 · . . . · 099101001, of length 5150 can be
represented as x = T S0

σ (p) where |σ| = 352, |p| ≤ 2008, so
CS0(x) ≤ 2172.

Finite-State Complexity 5

the output of a transition in T ‘contributes’ roughly 4 · |v| to the size of the
description ||(T, p)||.

How “objective” is our definition of finite-state complexity? First, the finite-
state complexity depends on the enumeration S; changing S into another regular
set S′ modifies in a computable manner CS into CS′ . Secondly, the finite-state
complexity is defined as an analogue of the complexity used in AIT, whose
objectivity is given by the invariance theorem, which in turn relies essentially
on the universality theorem [5]. Using the existence of a universal (prefix-free)
Turing machine one can obtain a complexity which is optimal up to an additive
constant (the constant “encapsulates” the size of this universal machine). For
this reason the complexity does not need to explicitly include the size of the
universal machine. In sharp contrast, the finite-state complexity counts the size
of the transducer as part of the encoding length.4 The reason is that there is no
“universal” transducer, cf. Proposition 1.

In what follows we shall use only the enumeration S, so we write Tσ and C
instead T S

σ and CS .
We use finite-state transducers to ‘find regularities’ in strings to obtain

shorter definitions of those strings. In other words, regularities are used to com-
press strings. This idea is illustrated in the following example.

Example 4. Consider strings of the form wm = 01021031 · . . . ·0m−110m1, m ≥ 1.
For example, for the string w100 of length 5150 we can produce a compressed
representation using the transducer T1 of Figure 1. With the names for the states

1 111 1000 1001 1010 1011 1110

10 11

100
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110
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Fig. 1. The transducer T1 for Example 4.

4 One can use this approach also in AIT [18].
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Computational results

x CS0
(x) (σ, p) x CS0

(x) (σ, p)
ε 4 (0000,ε) 00000 11 (000110,11111)
0 7 (000110,1) 00001 13 (01000110,11110)
00 8 (000110,11) 00010 13 (01000110,11101)
01 9 (00011100,1) 00011 13 (01000110,11100)
000 9 (000110,111) 00100 13 (01000110,11011)
001 11 (01000110,110) 00101 13 (01000110,11010)
010 11 (01000110,101) 00110 13 (01000110,11001)
011 11 (01000110,100) 00111 13 (01000110,11000)
0000 10 (000110,1111) 01000 13 (01000110,10111)
0001 12 (01000110,1110) 01001 13 (01000110,10110)
0010 12 (01000110,1101) 01010 13 (01000110,10101)
0011 12 (01000110,1100) 01011 13 (01000110,10100)
0100 12 (01000110,1011) 01100 13 (01000110,10011)
0101 10 (00011100,11) 01101 13 (01000110,10010)
0110 12 (01000110,1001) 01110 13 (01000110,10001)
0111 12 (01000110,1000) 01111 13 (01010110,10000)

Table: Finite-state complexity and minimal descriptions (for S0) of all
strings in lexicographic order from ε to 01111.
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Quantitative estimates

Theorem For n ≥ 1, C (0n) ∈ Θ(
√

n).

Corollary For all x , C (x) ≥ 2 · b
√
|x |c.

Corollary There is no constant c such that for all strings x ,
C (xx) ≤ C (x) + c .

Proposition There exists c such that for all u ∈ {0, 1}∗ and n,

C (un) ≤ 2 · (b
√

nc+ 1) · |u|+ 2
√

n + c .

Corollary We have: C (0n1n) ∈ Θ(
√

n).
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Incompressibility

A string x is finite-state i–incompressible if C (x) > |x | − i .

Fact Finite-state incompressible strings of any length exist.

A binary de Bruijn word of order r ≥ 1 is a binary string w of
length 2r + r − 1 such that any binary string of length r occurs as
a substring of w (exactly once); de Bruijn words of any order exist.

Theorem There is a constant d such that for any r ≥ 1 there exist
strings w of length 2r + r − 1 with an explicit construction such
that

C (w) ≥ d · |w |
log(|w |)

.

Conjecture de Bruijn words are finite-state incompressible.
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State-size hierarchy

Theorem For any n > 0 there exists a string xn ∈ {0, 1}∗ such
that whenever CS0(xn) = |σ|+ |p|, the transducer T S0

σ has more
than n states.

By LS0
≤m (LS0

=m) we denote the language of all strings for which a
minimal description uses a transducer with at most (exactly)
m ≥ 1 states.

Corollary For any n ≥ 1, there exists effectively kn ≥ 1 such that
LS0
≤n ⊂ LS0

≤n+kn
.
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Open questions

Conjecture LS0
≤n ⊂ LS0

≤n+1, for all n ≥ 1.

Problem What is asymptotically the length of the shortest words
in LS0

=n as a function of n?

Problem Are there strings with two minimal descriptions for which
the respective transducers have different numbers of states?

Problem How “robust” is CS when S varies?

Problem What are the relations between finite-state complexities
for different size alphabets?

Conjecture
Finite-state infinite sequences (defined via C ) are exactly the
Borel-normal sequences.
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