# The Complexity of Mathematical Problems

C. S. Calude (UoA) and E. Calude (Massey U)

In Honour of Eric Goles 60th Birhday

Valparaiso, November 2011



#### Do the following statements

- the four colour theorem,
- Fermat's great theorem,
- the Riemann hypothesis,
- the Collatz's conjecture?

share a common mathematical property?

And, if there is such a property, how can we use it for a better understanding of these statements?



**Universality theorem.** There exists (and can be constructed) a (Turing) machine U—called *universal*—such that for every machine V there exists a constant  $c=c_{U,V}$  such that for every program  $\sigma$  there exists a  $\sigma'$  for which the following two conditions hold:

- $U(\sigma') = V(\sigma),$
- $|\sigma'| \le |\sigma| + c.$



The **halting problem** for a machine V is the function  $\Lambda_V$  defined by

$$\Lambda_V(\sigma) = \begin{cases} 1, & \text{if } V(\sigma) = \infty, \\ 0, & \text{otherwise.} \end{cases}$$

**Undecidability theorem.** If U is universal, then  $\Lambda_U$  is incomputable, i.e. the halting problem for a universal machine is undecidable.



#### $\Pi_1$ –problems

A problem  $\pi$  of the form

$$\forall \sigma P(\sigma),$$

where P is a computable predicate is called a  $\Pi_1$ –problem.

- Any Π<sub>1</sub>-problem is finitely refutable.
- ▶ For every  $\Pi_1$ –problem  $\pi = \forall \sigma P(\sigma)$  we associate the program

$$\sigma_{\pi} = \inf\{n : P(n) = \text{ false}\}$$

which satisfies:

$$\pi$$
 is true iff  $U(\sigma_{\pi}) = \infty$ .

▶ Solving the halting problem for U solves all  $\Pi_1$ –problems.



#### Examples

#### The problems

- the four colour theorem,
- Fermat's great theorem,
- the Riemann hypothesis,
- the Collatz's conjecture

are all  $\Pi_1$ -problems.

Of course, not all problems are  $\Pi_1$ -problems. For example, the twin prime conjecture.



#### Complexity

#### Complexity

$$C_U(\pi) = \min\{|\Pi_P| : \pi = \forall n P(n)\}.$$

**Invariance theorem.** If U, U' are universal, then there exists a constant  $c = c_{U,U'}$  such that for all  $\pi = \forall nP(n)$ , P computable:

$$|C_U(\pi) - C_{U'}(\pi)| \leq c.$$

**Incomputability theorem.** If U is universal, then  $C_U$  is incomputable.



#### Complexity Classes

Because of the incomputability theorem, we work with upper bounds for  $C_U$ . As the exact value of  $C_U$  is not important, we classify  $\Pi_1$ -problems into the following classes:

$$\mathfrak{C}_{U,n} = \{\pi : \pi \text{ is a } \Pi_1\text{-problem}, C_U(\pi) \leq n \text{ kbit}\}.$$



#### Some Results

- ▶  $\mathfrak{C}_{U,1}$ : Legendre's conjecture (there is a prime number between  $n^2$  and  $(n+1)^2$ , for every positive integer n), Fermat's last theorem (there are no positive integers x, y, z satisfying the equation  $x^n + y^n = z^n$ , for any integer value n > 2) and Goldbach's conjecture (every even integer greater than 2 can be expressed as the sum of two primes)
- ▶  $\mathfrak{C}_{U,2}$ : Dyson's conjecture (the reverse of a power of two is never a power of five)
- ▶  $\mathfrak{C}_{U,3}$ : the Riemann hypothesis (all non-trivial zeros of the Riemann zeta function have real part 1/2)
- ightharpoonup 
  igh

#### More Results and Open Questions

- ► C<sub>U,5</sub>: ?
- ► CU6: ?
- ▶  $\mathfrak{C}_{U,7}$ : Euler's integer partition theorem (the number of partitions of an integer into odd integers is equal to the number of partitions into distinct integers).
- ▶ In which class is the Collatz conjecture? (given any positive integer  $a_1$  there exists a natural N such that  $a_N = 1$ , where

$$a_{n+1} = \left\{ \begin{array}{ll} a_n/2, & \text{if } a_n \text{ is even,} \\ 3a_n+1, & \text{otherwise.} \end{array} \right\}$$



#### Inductive Complexity and Complexity Classes of First Order

By transforming each program  $\Pi_P$  for U into a program  $\Pi_P^{ind,1}$  for  $U^{ind}$  (U working in "inductive mode") we can define the inductive complexity of first order by

$$C_U^{ind,1}(\pi) = \min\{|\Pi_P^{ind,1}| : \pi = \forall nP(n)\},\$$

the inductive complexity classes of order one by

$$\mathfrak{C}^{\mathsf{ind},1}_{U,n} = \{\pi \,:\, \pi \;\mathsf{is a}\; \mathsf{\Pi}_1\mathsf{-statement}, C^{\mathsf{ind},1}_U(\pi) \leq n \;\mathsf{kbit}\},$$

and prove that

$$\mathfrak{C}_{U,n} = \mathfrak{C}_{U,n}^{ind,1}$$
.



#### Inductive Complexity and Complexity Classes of Higher Orders

By allowing inductive programs of order 1 as routines we get inductive programs of order 2, so we can define the inductive complexity of second order (for more complex problems)

$$C_U^{ind,2}(\rho) = \min\{|M_R^{ind,2}| : \rho = \forall n \exists i R(n,i)\},\$$

and the inductive complexity class of second order:

$$\mathfrak{C}_{U,n}^{ind,2} = \{ \rho : \rho = \forall n \exists i R(n,i), C_U^{ind,2}(\rho) \le n \text{ kbit} \}.$$

The Collatz conjecture is in the class  $\mathfrak{C}_{IJ,3}^{ind,2}$ .



### Two open problems

What is the complexity of

- ▶ P vs NP problem?
- Poincaré's conjecture?



Thank you

## **VIVE ERIC!**

