
Accelerated Turing Machines
Computational Space and Power

Cristian S. Calude, Ludwig Staiger

UC2009 Hypercomputation Workshop
September 2009

Accelerated Turing Machines 1 / 22



Outline

� Accelerated computations

� Is the space used by an ATM always finite?

� Computational power of ATMs

Accelerated Turing Machines 2 / 22



Accelerated computations

Basic idea

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds) to
perform its nth step; we assume that steps are in some sense
identical except for the time taken for their execution.

Such a machine can run an infinite number of steps in one unit of
time.

Accelerated Turing machines have been discovered by Weyl in
1927 and studied by various authors including Barrow, Boolos and
Jeffrey, Calude and Păun, Copeland, Ord, Potgieter, Shagrir,
Stewart, Svozil .

Accelerated Turing Machines 3 / 22



Accelerated computations

Basic idea

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds) to
perform its nth step; we assume that steps are in some sense
identical except for the time taken for their execution.

Such a machine can run an infinite number of steps in one unit of
time.

Accelerated Turing machines have been discovered by Weyl in
1927 and studied by various authors including Barrow, Boolos and
Jeffrey, Calude and Păun, Copeland, Ord, Potgieter, Shagrir,
Stewart, Svozil .

Accelerated Turing Machines 3 / 22



Accelerated computations

Basic idea

An accelerated Turing machine (sometimes called Zeno machine)
is a Turing machine that takes 2−n units of time (say seconds) to
perform its nth step; we assume that steps are in some sense
identical except for the time taken for their execution.

Such a machine can run an infinite number of steps in one unit of
time.

Accelerated Turing machines have been discovered by Weyl in
1927 and studied by various authors including Barrow, Boolos and
Jeffrey, Calude and Păun, Copeland, Ord, Potgieter, Shagrir,
Stewart, Svozil .

Accelerated Turing Machines 3 / 22



Accelerated computations

Solving the halting problem 1

The following ATM can solve the halting problem of an arbitrarily
given TM T and input w in finite time:

begin program
write 0 on the first position of the output tape;
set i = 1;
begin loop
simulate the first i steps of T on w;
if T(w) has halted, then write 1 on the
first position of the output tape;
i = i + 1;
end loop
end program

Accelerated Turing Machines 4 / 22



Accelerated computations

Solving the halting problem 2

By inspecting the first position of the output tape we need one
unit of time to run the above machine in order to decide whether
T (w) stops or not.

Alternatively, we can clock the computation and see whether the
machine itself has halted before one unit of time or not.

Accelerated Turing Machines 5 / 22



Accelerated computations

Solving the halting problem 2

By inspecting the first position of the output tape we need one
unit of time to run the above machine in order to decide whether
T (w) stops or not.

Alternatively, we can clock the computation and see whether the
machine itself has halted before one unit of time or not.

Accelerated Turing Machines 5 / 22



Accelerated computations

Are accelerated Turing machines physically possible?

This challenging problem was discussed by various authors.
Relativistic computation offers a physical model for acceleration.

We contribute with a small result to this discussion by examining
the computational space required by an accelerated Turing
machine running an infinite computation: is it finite or not?

Accelerated Turing Machines 6 / 22



Accelerated computations

Are accelerated Turing machines physically possible?

This challenging problem was discussed by various authors.
Relativistic computation offers a physical model for acceleration.

We contribute with a small result to this discussion by examining
the computational space required by an accelerated Turing
machine running an infinite computation: is it finite or not?

Accelerated Turing Machines 6 / 22



Is the space used by an ATM always finite?

� Accelerated computations

� Is the space used by an ATM always finite?

� Computational power of ATMs

Accelerated Turing Machines 7 / 22



Is the space used by an ATM always finite?

An informal example

The TM executing the above set of instructions needs an infinite
computational space:

set i=0;
begin loop
i=i+1;
end loop

Is this just an accident or do we have a more general situation?

Accelerated Turing Machines 8 / 22



Is the space used by an ATM always finite?

A second example

The following TM executes an infinite computation with only a
finite amount of space:

set i=1;
while (i > 0) do

i=1;
end while

Accelerated Turing Machines 9 / 22



Is the space used by an ATM always finite?

A formal model of TM 1

Let (X , Γ, S , s0,�, δ) be a Turing machine in which X is the input
alphabet, Γ ⊃ X is the work tape alphabet, S is the set of states,
s0 is the initial state, � ∈ Γ \ X is the blank symbol, and δ is the
(partial) transition function.

We assume that the Turing machine has one tape where initially
the input is written on, and the machine starts its processing in
state s0 by scanning the first symbol of the input word.

Accelerated Turing Machines 10 / 22



Is the space used by an ATM always finite?

A formal model of TM 2

Let M = (X , Γ, S , s0,�, δ) be a Turing machine and x an input
word.

We define the computational space used by M on x , spaceM(x), to
be the number—finite or infinite—of cells used by M on x .

The function timeM(x) denotes the number of steps executed by M
on input x . By M(x) <∞ we denote the fact that M stops on x .

Clearly, spaceM(x) <∞ whenever M(x) <∞, and

M(x) =∞ iff timeM(x) =∞.

Accelerated Turing Machines 11 / 22



Is the space used by an ATM always finite?

A condition for a computation to halt

Theorem. If for every x, spaceM(x) <∞, then the halting
problem for M is decidable.

Corollary. If the halting problem for M is undecidable then
{x ∈ X ∗ : spaceM(x) =∞} 6= ∅.

Corollary. If spaceM(x) <∞, then the problem whether M(x)
halts or not is algorithmically decidable.

Corollary. The set
{(M, x) : M is a Turing machine, x ∈ X ∗, spaceM(x) <∞} is
computably enumerable but not computable.

Accelerated Turing Machines 12 / 22



Is the space used by an ATM always finite?

A condition for a computation to halt

Theorem. If for every x, spaceM(x) <∞, then the halting
problem for M is decidable.

Corollary. If the halting problem for M is undecidable then
{x ∈ X ∗ : spaceM(x) =∞} 6= ∅.

Corollary. If spaceM(x) <∞, then the problem whether M(x)
halts or not is algorithmically decidable.

Corollary. The set
{(M, x) : M is a Turing machine, x ∈ X ∗, spaceM(x) <∞} is
computably enumerable but not computable.

Accelerated Turing Machines 12 / 22



Is the space used by an ATM always finite?

A condition for a computation to halt

Theorem. If for every x, spaceM(x) <∞, then the halting
problem for M is decidable.

Corollary. If the halting problem for M is undecidable then
{x ∈ X ∗ : spaceM(x) =∞} 6= ∅.

Corollary. If spaceM(x) <∞, then the problem whether M(x)
halts or not is algorithmically decidable.

Corollary. The set
{(M, x) : M is a Turing machine, x ∈ X ∗, spaceM(x) <∞} is
computably enumerable but not computable.

Accelerated Turing Machines 12 / 22



Is the space used by an ATM always finite?

A condition for a computation to halt

Theorem. If for every x, spaceM(x) <∞, then the halting
problem for M is decidable.

Corollary. If the halting problem for M is undecidable then
{x ∈ X ∗ : spaceM(x) =∞} 6= ∅.

Corollary. If spaceM(x) <∞, then the problem whether M(x)
halts or not is algorithmically decidable.

Corollary. The set
{(M, x) : M is a Turing machine, x ∈ X ∗, spaceM(x) <∞} is
computably enumerable but not computable.

Accelerated Turing Machines 12 / 22



Is the space used by an ATM always finite?

Computational time and space

There is a similarity between computational time and space;
however, this parallel is not perfect.

For example, it is not true that an accelerated Turing machine
which uses unbounded space has to use an infinite space for some
input (as it seems to be claimed in Ord’s Thesis). The reason is
that every reasonable computable problem requires at least the
input data x to be scanned, so it needs at least a space greater
than the length of x .

Accelerated Turing Machines 13 / 22



Is the space used by an ATM always finite?

Computational time and space

There is a similarity between computational time and space;
however, this parallel is not perfect.

For example, it is not true that an accelerated Turing machine
which uses unbounded space has to use an infinite space for some
input (as it seems to be claimed in Ord’s Thesis). The reason is
that every reasonable computable problem requires at least the
input data x to be scanned, so it needs at least a space greater
than the length of x .

Accelerated Turing Machines 13 / 22



Is the space used by an ATM always finite?

Main result

The function χM : X ∗ → {0, 1} defined by

χM(x) =

{
1, if M(x) <∞,
0, otherwise.

can always be computed by an ATM AM′—not necessarily equal to
AM—in finite time.

If the computational space is finite for every input, then
acceleration does not add computational power:

Theorem. Let AM be an ATM with spaceAM
(x) <∞ for all

inputs x. Then the function χM is Turing computable (not
necessarily by M).

Accelerated Turing Machines 14 / 22



Is the space used by an ATM always finite?

Main result

The function χM : X ∗ → {0, 1} defined by

χM(x) =

{
1, if M(x) <∞,
0, otherwise.

can always be computed by an ATM AM′—not necessarily equal to
AM—in finite time.

If the computational space is finite for every input, then
acceleration does not add computational power:

Theorem. Let AM be an ATM with spaceAM
(x) <∞ for all

inputs x. Then the function χM is Turing computable (not
necessarily by M).

Accelerated Turing Machines 14 / 22



Computational power of ATMs

� Accelerated computations

� Is the space used by an ATM always finite?

� Computational power of ATMs

Accelerated Turing Machines 15 / 22



Computational power of ATMs

ATMs with oracles

How can we use ATMs to trespass the Turing barrier, more
precisely, to accept languages other than computably enumerable
ones?

A proposal based on the idea to use ATMs with an oracle provided
by another ATM was made by Wiedermann and van Leeuwen
(2002).

Accelerated Turing Machines 16 / 22



Computational power of ATMs

ATMs with oracles

How can we use ATMs to trespass the Turing barrier, more
precisely, to accept languages other than computably enumerable
ones?

A proposal based on the idea to use ATMs with an oracle provided
by another ATM was made by Wiedermann and van Leeuwen
(2002).

Accelerated Turing Machines 16 / 22



Computational power of ATMs

Acceptance based on states 1

We consider acceptance conditions based on the set of states
occurring or occurring infinitely often during the computation
process.

To this end we pair the machine M with one or two observer
machines M ′ and M ′′.
There are two ways to observe the computation of M and,
consequently, decide its output.

In the first case the output is based on the set of states occurring
during the computation. The machine M ′ simply collects the
(finite) set of states Sx occurring during M’s computation process
on input x .

Accelerated Turing Machines 17 / 22



Computational power of ATMs

Acceptance based on states 1

We consider acceptance conditions based on the set of states
occurring or occurring infinitely often during the computation
process.

To this end we pair the machine M with one or two observer
machines M ′ and M ′′.
There are two ways to observe the computation of M and,
consequently, decide its output.

In the first case the output is based on the set of states occurring
during the computation. The machine M ′ simply collects the
(finite) set of states Sx occurring during M’s computation process
on input x .

Accelerated Turing Machines 17 / 22



Computational power of ATMs

Acceptance based on states 1

We consider acceptance conditions based on the set of states
occurring or occurring infinitely often during the computation
process.

To this end we pair the machine M with one or two observer
machines M ′ and M ′′.
There are two ways to observe the computation of M and,
consequently, decide its output.

In the first case the output is based on the set of states occurring
during the computation. The machine M ′ simply collects the
(finite) set of states Sx occurring during M’s computation process
on input x .

Accelerated Turing Machines 17 / 22



Computational power of ATMs

Acceptance based on states 2

In the second case the output is based on the set of states
occurring occurring infinitely often during the computation.

During the computation of M on x the first observer machine M ′

writes into cell i of its output tape successively (a symbol
denoting) the set of states Sx(i , t) the machine M runs through
starting from step i up to step t.

Thus, after finishing its work, cell i contains (a symbol denoting)
the set of states M has run through starting from moment i on.
This sequence of sets is non-increasing, so the second observer
machine M ′′ can compute its limit Sx .

Accelerated Turing Machines 18 / 22



Computational power of ATMs

Acceptance based on states 2

In the second case the output is based on the set of states
occurring occurring infinitely often during the computation.

During the computation of M on x the first observer machine M ′

writes into cell i of its output tape successively (a symbol
denoting) the set of states Sx(i , t) the machine M runs through
starting from step i up to step t.

Thus, after finishing its work, cell i contains (a symbol denoting)
the set of states M has run through starting from moment i on.
This sequence of sets is non-increasing, so the second observer
machine M ′′ can compute its limit Sx .

Accelerated Turing Machines 18 / 22



Computational power of ATMs

Acceptance based on states 2

In the second case the output is based on the set of states
occurring occurring infinitely often during the computation.

During the computation of M on x the first observer machine M ′

writes into cell i of its output tape successively (a symbol
denoting) the set of states Sx(i , t) the machine M runs through
starting from step i up to step t.

Thus, after finishing its work, cell i contains (a symbol denoting)
the set of states M has run through starting from moment i on.
This sequence of sets is non-increasing, so the second observer
machine M ′′ can compute its limit Sx .

Accelerated Turing Machines 18 / 22



Computational power of ATMs

Acceptance based on states 3

The processes considered here may stop or not after finitely many
steps. To treat both cases in a uniform way we assume in the first
case that the last state is repeated indefinitely. In this way we
don’t need to test whether the computation of M eventually stops
or not, so we avoid paradoxes like the Thompson lamp.

Accelerated Turing Machines 19 / 22



Computational power of ATMs

Acceptance based on states 4

We denote by ran(M, x) ( in(M, x), respectively) the set of states
Sx of M occurring (occurring infinitely often, respectively) in the
computation process on input x . For an ATM M and a subset
S ⊆ 2S define the following languages

ATran(M,S) = {x : ran(M, x) ∈ S},

ATin(M,S) = {x : in(M, x) ∈ S}.

Let Σ1,Π1,Π2 and Σ2 be the first classes of the arithmetical
hierarchy of languages.
By Bool(M) we denote the closure of a set of sets M under
Boolean operations.

Accelerated Turing Machines 20 / 22



Computational power of ATMs

Acceptance based on states 5

Theorem. For the classes of accepted languages the following
identities hold true:

{ATran(M,S) : M = (X , Γ,S , s0,�, δ) an ATM } = Bool(Σ1),

{ATin(M,S) : M = (X , Γ,S , s0,�, δ) an ATM } = Bool(Σ2).

Accelerated Turing Machines 21 / 22



Outline

� Accelerated computations

� Is the space used by an ATM always finite?

� Computational power of ATMs

Accelerated Turing Machines 22 / 22


	Outline
	Accelerated computations
	Is the space used by an ATM always finite?
	Computational power of ATMs
	Outline

