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Randomness

Probability theory, a calculus with “random objects”, is silent
about which individual objects are “random.”

The simplest objects

1. finite bit-strings: cannot be “random” because they are finite,

2. infinite bit-sequences: cannot be “random” because of
Ramsey theory (e.g. Green-Tao theorem: the sequence of
primes contains arithmetic progressions of any length).

Algorithmic Randomness: A Primer 2 / 1



An algorithmic approach to randomness

The algorithmic approach to randomness consists in:

I adopting “incompressibility” as the basic symptom of
randomness,

I measuring the quality of “algorithmic randomness” by the
degree of “incompressibility”.
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Prefix-complexity

The prefix-complexity associated to a (prefix-free Turing) machine
M (processing bit-strings into bit-strings) is defined by

HM(x) = inf{|p| : M(p) = x}.

Theorem. One can construct a universal machine U such that for
every machine M there exists a constant c = cU,M with the
property that for all strings x ,

HU(x) ≤ HM(x) + c .

Fix a universal machine U and write H = HU .
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String compressibility

From Leibniz’s (1686) dictum: L

a theory must be simpler than the data is explains

one can arrive to the idea that

understanding is compression

which can be translated into a definition:

a string x is t–compressible if

H(x) ≤ |x | − t,

meaning that U(p) = x for some program p with |p| ≤ |x | − t.

Example
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Algorithmic random strings

A string x is (algorithmically) t–random if H(x) ≥ |x | − t, i.e. no
program with less than |x | − t bits can generate x via U.

Properties:

I for every t, t–random strings of every length exist;

I t–random strings satisfy all computable enumerable statistical
properties of randomness;

I the set of t–random strings is immune;

I ZFC can prove t–randomness only for finitely many strings
(none for some U);

I every “decent” Monte Carlo simulation algorithm (like Rabin’s
primality test) using t–random strings as samples produces
the correct result (not only correct with high probability).
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Prefix vs. time complexities

Theorem. There is a constant c = cU such that if a program p
halts on U, then the time tp it takes U(p) to stop satisfies the
inequality:

H(tp) ≤ |p|+ c . (1)
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Can a program stop at an asymptotically random time?

A time t is “asymptotically random” if

H(t) ≥ |t| − log(|t|).

Theorem. Assume that U(p) has not stopped (|p| > 2) by time
N = 22|p|+2c+1, where c comes from (1). Then, U(p) cannot
exactly stop at any asymptotically random time t ≥ N.

Theorem. Asymptotically random times are effectively dense.
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An “anytime algorithm” for the halting problem

Theorem. For every positive integer N we can effectively compute
a threshold time θ = θU,N such that if a program of length N does
not stop in time θ, then the set of times greater than θ at which
the program can stop has effective zero density.

ExactDensity

Corollary. Given a computable real ε ∈ (0, 1) and positive integer
N we can effectively compute a threshold time θ = θU,ε,N such
that the probability that a program of length N which has not
stopped in time θ halts is smaller than ε.

ProbabilitySpace

The above results are true for a large class of functions (including
incomputable ones).
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Complexity of infinite sequences

Consider a binary infinite sequence

x = x1x2 · · · xn · · ·

and its prefix of length n

x(n) = x1x2 · · · xn.

The prefix-complexity of x is given by the sequence

(H(x(n))).

Reals are identified with their infinite binary expansions.
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How complex is π?

Let

Π = π1π2 · · ·πn · · ·

be the infinite binary sequence of the fractional part of π.

There is a constant c > 0 such that for each n,

H(Π(n)) ≤ 2 log n + c .
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How complex sequences can be?

Are there sequences x having all prefixes maximally incompressible:

∃c∀n [H(x(n)) ≥ n + H(n)− c]?

The answer is negative. MaxComplexity

Are there sequences x having all prefixes nearly random, i.e.

∃c∀n [H(x(n)) ≥ n − c]?

The answer is affirmative. They have maximum complexity and are
called random.
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How many reals are random?

The set of random reals

I has (constructive) Lebesgue measure one,

I is (constructively) meagre (Baire).
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Omega numbers

The canonical example of random real is Chaitin’s Omega, the
“halting probability” of U:

ΩU =
∑

U(p)halts

2−|p|.

With the first n bits of Omega we can solve the halting problem
for every program of length less than or equal to n, so Omega
achieves an exponential compression of the halting problem.
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Paradoxical Omega 1

An Omega number is

I random,

I computably enumerable (as a real).

Theorem. Every computable enumerable random real is of the
form ΩU , for some universal machine U.
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Paradoxical Omega 2

I (incompleteness) ZFC can prove the exact values of only
finitely many digits of ΩU = 0.ω1ω2 · · · (none for some ΩU).

EB

I Peano Arithmetic proves randomness of every c.e. random real
(contrast: ZFC cannot prove randomness for more than
finitely many strings).
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Is quantum randomness random?

We don’t know.

Theorem. Kochen-Specker theorem implies that an infinite
sequence of quantum random bits is bi-immune. KS

Question. Is Rabin’s probabilistic primality test powered with
quantum random samples always correct?
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THANK YOU!
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Leibniz

Sans les mathématiques on ne pénètre point au fond de
la philosophie.
Sans la philosophie on ne pénètre point au fond des
mathématiques.
Sans les deux on ne pénètre point au fond de rien.

String Compressibility
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Is this text compressible?

Study this paragraph and all things in it. What is vitally
distinct about it? Actually, nothing is wrong, but you
must admit that it is most unusual. Don’t just zip
through it quickly but study it scrupulously. With a bit of
luck you should spot what it is so particular about it and
all words found in it. Can you say what it is? Try hard as
isn’t it all that difficult.

String Compressibility
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If an N-bit program runs for time T > max{θN , 22+5·2k}, then the
density of times at which the program can stop is less than 2−k .

Density
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We now consider the probability space to be

Space{ρ(i)} = Σ∗ × {1, 2, . . .},

where N-bit programs are assumed to be uniformly distributed, and
the runtime is given by the computable probability distribution
{ρ(i)}.

Density
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Leibniz

max
|x |=n

H(x) = n + H(n) + O(n).

ComplexSeq
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A glimpse of an Omega

The first exact 40 bits of a natural Omega are:

00010 00000 01000 01010 01110 11100 00111 11010

To solve the

I Riemann’s hypothesis we need the first 4,680 bits

I the four colour theorem we need the first 4,336 bits

I Goldbach’s conjecture we need the first 756 bits

of the same Omega.

Paradox
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Kochen-Specker theorem 1

(Value definiteness: VD) All observables defined for a QM system
have definite values at all times.

(Noncontextuality: NC) If a QM system possesses a property
(value of an observable), then it does so independently of any
measurement context, i.e. independently of how that value is
eventually measured.

Kochen-Specker theorem: In QM, VD + NC is contradictory.
For example, given NC certain sets of QM observables cannot
consistently be assigned values at all. QR
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Kochen-Specker theorem 2

Let H be a Hilbert space of QM state vectors of dimension n ≥ 3.
There is a set M of m observables on H such that the assumptions
(KS1) and (KS2) are contradictory:

(KS1) Every element A of M has a value v(A).

(KS2) Values of observables satisfy the rules:
(a) If A,B,C are all compatible and C = A + B, then
v(C ) = v(A) + v(B);
(b) if A,B,C are all compatible and C = AB, then
v(C ) = v(A)v(B).

Example: n = 4 and m = 18. QR
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