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✫

✩

✪

EXPONENTIATION

Problem: Given two positive integers n and k, compute nk.

Straightforward algorithm:

Input: n, k (two positive integers)

Output: P (the value of nk)

begin
P ← n;
for i← 1 to k − 1 do

P ← n× P ;
end
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✫

✩

✪

IDEA: nk = n× nk−1.

The first attempt algorithm requires k iterations. Since the size of
k is log2 k, the number of iterations is exponential:

k = 2log2 k.

How to reduce the number of iterations ?

IDEA: nk =
(
n

k
2

)2

.
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✫

✩

✪

Binary Algorithm:

Input: n, k (two positive integers)

Output: P (the value of nk)

begin
P ← 1;
while k ≥ 1 do

if k mod 2 = 0 then begin n← n× n; k ← k
2 end

else begin P ← P × n; k ← k − 1 end
return P

end
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✫

✩

✪

The invariant is the product

P × nk.

Complexity:

2 log2 k ∈ O(log2 k)

What about changing 2 to 3, . . . , or to t > 2 ?
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✫

✩

✪

POLYNOMIAL MULTIPLICATION

Problem: Compute the product of two given polynomials of degree
n− 1.

P =
n−1∑
i=0

pix
i, Q =

n−1∑
i=0

qix
i

PQ = pn−1qn−1x
2n−2 + · · ·

+(pn−1qi+1 + pn−2qi+2 + · · ·
+Pi+1qn−1)xn+i + · · ·+ p0q0.
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✫

✩

✪

The polynomial PQ has degree 2n− 2 and the coefficient of xt is

∑
0≤i,j≤n,i+j=t

piqj = p0qt + p1qt−1 + p2qt−2+

· · ·+ piqt−i + · · ·+ ptq0.

How many operations?

O(n2) multiplications and additions.
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✫

✩

✪

DIVIDE–AND–CONQUER ALGORITHM

Assume that n is a power of 2. Divide each polynomial into two
equal–sized parts:

P = P1 + x
n
2 P2,

Q = Q1 + x
n
2 Q2,

where

P1 = p0 + p1x + · · ·+ pn
2−1x

n
2−1,

Q1 = q0 + q1x + · · ·+ qn
2−1x

n
2−1,
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✫

✩

✪

P2 = pn
2

+ pn
2 +1x + · · ·+ pn−1x

n
2−1,

Q2 = qn
2

+ qn
2 +1x + · · ·+ qn−1x

n
2−1.

So,

PQ =
(
P1 + P2x

n
2
) (

Q1 + Q2x
n
2
)

= P1Q1 + (P1Q2 + P2Q1)x
n
2 + P2Q2x

n.
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✫

✩

✪

Remark: PQ involves products of polynomials of degree n
2 !

Compute the product of the smaller polynomials (e.g. P1Q1) then
add the results to complete the solution.

Constraints:

- smaller problems should be exactly as the original problem,

- we know how to multiply polynomials of degree 1.

BOTH CONDITIONS ARE ACTUALLY SATISFIED!
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✫

✩

✪

Let T (n) = be the number of operations:

{
T (1) = 1,

T (n) = 4T (n
2 ) + O(n).

Here the factor 4 comes from the products of smaller polynomials.

So,

T (n) ∈ O(n2),

so no improvement has been obtained !
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✫

✩

✪

Rewrite the formula

PQ = P1Q1 + (P1Q2 + P2Q1)x
n
2 + P2Q2x

n

in the form
x P1 P2

Q1 A B

Q2 C D

and compute

A + (B + C)x
n
2 + Dxn.

Remark: We do not have to compute B and C separately as we
need only their sum B + C.
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✫

✩

✪

Write:
E = (P1 + P2)(Q1 + Q2),

so
B + C = E −A−D.

Hence, we need to compute only A, D, E. All the rest (additions,
subtractions) contribute only O(n).

The new recurrence relation is:

T (n) = 3T (
n

2
) + O(n),

so,
T (n) ∈ O

(
nlog2 3

)
= O(n1.59).
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✫

✩

✪

Example:

P = 1− x + 2x2 − x3

Q = 2 + x− x2 + 2x3

In the straightforward algorithm we use 16 multiplications and 9
additions and subtractions. By divide-and-conquer we get:

A = (1− x)(2 + x) = 2− x− x2,

D = (2− x)(−1 + 2x) = −2 + 5x− 2x2,

E = (3− 2x)(1 + 3x) = 3 + 7x− 6x2,

B + C = E −A−D = 3 + 3x− 3x2

PQ = A + (B + C)x2 + Dx4

in 12 multiplications + 13 additions/subtractions.
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✫

✩

✪

MATRIX MULTIPLICATION

A = (aij), B = (bij) i, j = 1, 2 . . . , n

C = AB,

C = (cij)

cij =
n∑

k=1

aik × bkj

The straightforward way to compute C requires n3 multiplications
and (n− 1)n2 additions.
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✫

✩

✪

Winograd’s Algorithm

Assume n is even and put

Ai =

n
2∑

k=1

ai,2k−1 × ai,2k,

Bj =

n
2∑

k=1

b2k−1,j × b2k,j

Re-arrange terms and get:

cij =

n
2∑

k=1

(ai,2k−1 + b2k,j)(ai,2k + b2k−1,j)−Ai −Bj
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✫

✩

✪

Indeed,

∑n
2
k=1(ai,2k−1 + b2k,j)(ai,2k + b2k−1,j)−Ai −Bj =

∑n
2
k=1(ai,2k−1 + b2k,j)(ai,2k + b2k−1,j)− ai,2k−1ai,2k − b2k−1,jb2k,j =

∑n
2
k=1 ai,2k−1b2k−1,j + b2k,jai,2k =

∑n
k=1 aikbkj .
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✫

✩

✪

Computation of Ais and Bis requires n2 multiplications, so globally
one uses

1
2
n3 + n2

multiplications. Is it an improvement? Yes, in case additions can
be performed much faster than multiplications.
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✫

✩

✪

STRASSEN’s ALGORITHM

A =


 a11 a12

a21 a22


 ,

B =


 b11 b12

b21 b22


 ,

C = AB,

so by straightforward computation we perform 8 multiplications,
and 4 additions.
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✫

✩

✪

Divide-and-conquer approach:
Let n be a power of 2,

A =


 a11 a12

a21 a22


 ,

B =


 b11 b12

b21 b22


 ,

C =


 c11 c12

c21 c22


 ,

where aijs, bijs,cijs are n
2 × n

2 matrices. Treat these submatrices as
elements: the algorithm for 2× 2 matrices can be converted to an
n× n product . . .
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✫

✩

✪

How ? By substituting a recursive call each time a product of
elements appears.

We get the recurrence:

T (n) = 8T
(n

2

)
+ O

(
n2

)
,

which implies

T (n) ∈ O
(
nlog2 8

)
= O

(
n3

)
,

for the straightforward algorithm.

Question: Can we do it better for 2× 2 products ?
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✫

✩

✪

Strassen’s Method

P1 = (a11 + a22)(b11 + b22),
P2 = (a21 + a22)b11,

P3 = a11(b12 − b22),
P4 = a22(−b11 + b21),
P5 = (a11 + a12)b22,

P6 = (−a11 + a21)(b11 + b22),
P7 = (a12 − a22)(b21 + b12),

c11 = P1 + P4 − P5 + P7,

c12 = P3 + P5,

c21 = P2 + P4,

c22 = P1 + P3 − P2 + P6,

18 additions/multiplications, but 7 multiplications !
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✫

✩

✪

Strassen’s algorithm complexity:

T (n) ∈ O
(
nlog2 7

)
= O

(
n2.81

)
.
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✫

✩

✪

A Better Method: 7 multiplications and 16 additions

r = a21 + a22, t = r − a11,

q = b22 − b12,

m1 = t(q + b11),
m2 = a11b11, m3 = a12b21,

m4 = (a11 − b21)q,
m5 = q(b12 − b11),
m6 = (a12 − t)b22,

m7 = a22(b11 − b21 + q),

c11 = m2 + m3,

c12 = p + m5 + m6,

p = m1 + m2, s = p + m4,

c21 = s−m7,

c22 = s + m5,
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✫

✩

✪

LINEAR REPRESENTATIONS

Let n ≥ 1, Z be the set of non-zero integers and

A = {a1, a2, . . . , an} ⊂ Z.

Consider the set of all linear combinations of elements of A:

M(A) =

{
n∑

i=1

xiai|xi ∈ Z
}

.

Problem: Given m ∈ Z, test whether m ∈M(A) ?
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✫

✩

✪

Main difficulty:

m ∈M(A)⇐⇒ ∃x1, . . . , xn ∈ Z :

m = x1a1 + x2a2 + · · ·+ xnan.

The above test is infinite!
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✫

✩

✪

Mathematical Fact:

M(A) is closed under difference

that is:

s, t ∈M(A) =⇒ s− t ∈M(A).
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✫

✩

✪

Indeed,

s =
n∑

i=1

xiai,

t =
n∑

i=1

yiai,

s− t =
n∑

i=1

(xi − yi)ai.
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✫

✩

✪

Accordingly,
(M(A),+)

is a group under addition, more, a subgroup of the additive group
of integers

(Z,+) (∗)

But, every subgroup of (∗) is of the form

qZ = {qx | x ∈ Z},

where q ≥ 0.

So, there exists q ∈ Z such that M(A) = qZ.
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✫

✩

✪

I. q = GCD(a1, a2, . . . , an)

II. m ∈M(A)⇐⇒ m ∈ qZ ⇐⇒ GCD(a1, a2, . . . , an)|m.

q is called a “finite certificate”
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✫

✩

✪

TESTING IRREDUCIBILITY

A) Testing primality for naturals is theoretically easy, but it
appears to be difficult to do it faster !

Test the condition
x|N

up to �
√

N�.
This is O(

√
N), i.e. an exponential algorithm.

CAN WE DO IT BETTER ?
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✫

✩

✪

B) A polynomial
P ∈ Q[x]

is irreducible if there are no polynomials S, T ∈ Q[x] with
degrees ≥ 1 such that

P = ST

Problem: Given a polynomial P with rational coefficients, test
whether P is irreducible.
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✫

✩

✪

IDEA: Reduce the problem to polynomials with integer coefficients.

Ingredient:

Gauss’ Lemma: The product of two primitive polynomials with
integer coefficients is a primitive polynomial.

Recall that a polynomial

f = a0 + a1X + · · ·+ anXn

is primitive if
GCD(a0, a1, . . . , an) = 1.
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✫

✩

✪

Proof: Let

f = a0 + a1X + · · ·+ anXn,

g = b0 + b1X + · · ·+ bmXm,

two primitive polynomials in Z[X] and let

fg = c0 + c1X + · · ·+ cn+mXn+m.

Let p be a prime.

As GCD(a0, a1, . . . , an) = 1 we can get the smallest k such that

p|a0, . . . , p|ak−1 but p � |ak.
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✫

✩

✪

Similarly, as
GCD(b0, b1, . . . , bm) = 1

we construct the smallest l such that

p|b0, p|b1, . . . , p|bl−1, but
p � | bl.

The coefficient of
Xk+l

in fg is

ck+l =
∑

0≤i≤n,0≤j≤m,i+j=k+l

aibj

and p � | ck+l (as p � | akbl, but p divides all other terms).

So, p � |GCD(c0, . . . , cm+n).
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✫

✩

✪

Let f ∈ Q[X] be a polynomial of degree n > 1. Assume

f = qg,

where g ∈ Z[X] is primitive and q ∈ Q.

Compute
g(0), g(1), . . . , g(n).

If g(m) = 0, for some 0 ≤ m ≤ n, then g = (X −m)h, so f is not
irreducible.

Assume now that
g(i) �= 0, 0 ≤ i ≤ n.
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✫

✩

✪

Reducing the infinite search to an equivalent, finite one:

For every function

α : {0, 1, . . . , n} −→ Z

such that α(m) is a divisor of g(m), for m = 0, 1, . . . , n

construct the unique polynomial

gα ∈ Z[X]

of degree ≤ n, such that

(∗) gα(m) = α(m), m = 0, 1, . . . , n.
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✫

✩

✪

Indeed, let
gα = d0 + d1X + · · ·+ dnXn.

From (∗) we deduce the relations:

d1 + d2 + · · ·+ dn = α(1)− α(0),

2d1 + 22d2 + · · ·+ 2ndn = α(2)− α(0),
...

nd1 + n2d2 + · · ·+ nndn = α(n)− α(0),

a n× n system with the determinant

1! 2! . . . n! �= 0.
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✫

✩

✪

We have got the finite set

F = {gα ∈ Z[X]|α : {0, 1, . . . , n} → Z,∀ 0 ≤ m ≤ n,

gα(m) = α(m)|g(m)}.

Lemma: If g = h1h2, hi ∈ Z[X], then hi ∈ F .

Proof: If g(m) = h1(m)h2(m) �= 0, 0 ≤ m ≤ n, so

hi(m)|g(m) i = 1, 2

hi = gαi , where αi(m) = hi(m), 0 ≤ m ≤ n.
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✫

✩

✪

Example:
g = 1× g

1 ∈ F corresponds to α(i) = 1, 0 ≤ i ≤ n,
g ∈ F corresponds to α(i) = g(i), 0 ≤ i ≤ n.

In particular,
F ⊃ {1, g}.
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✫

✩

✪

Final Lemma: If

f = GH, G, H ∈ Q[X],

then there exist (and can be effectively computed)

qG, qH ∈ Q,

hG, hH ∈ F

such that
G = qGhG, H = qHhH .
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✫

✩

✪

Proof: Routine computation gives

f = GH = (qGhG)(qHhH) = (qGqH)(hGhH).

The polynomials hG, hH are primitive, so by Gauss Lemma, their
product is primitive, and

f = (qGqH)︸ ︷︷ ︸
∈Q

(hGhH)︸ ︷︷ ︸
∈Z[X]

= qg,

q = qGqH , g = hGhH .

By Lemma, hH , hG ∈ F .
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✫

✩

✪

We have proved :

Kronecker’s Theorem: There exists an algorithm for testing if
an arbitrary polynomial f ∈ Q[X] is irreducible.

The finite set F is a “finite certificate”.
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✫

✩

✪

Example

f =
1
66

X3 +
1
11

x2 +
1
6
X +

1
11

=
1
66

(
X3 + 6X2 + 11X + 6

)
g = X3 + 6X2 + 11X + 6

is primitive as

GCD(1, 6, 11, 6) = 1.
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✫

✩

✪

We continue with g:

g(0) = 6,
g(1) = 1 + 6 + 11 + 6 = 24,
g(2) = 8 + 6× 4 + 11× 2 + 6 = 60,

g(3) = 27 + 6× 9 + 11× 3 + 6 = 120.

α : {0, 1, 2, 3} −→ Z
α(0) | g(0) = 6,
α(1) | g(1) = 24,

α(2) | g(2) = 60,

α(3) | g(3) = 120.
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✫

✩

✪

Consider:
α(0) = 3,

α(1) = 4,

α(2) = 5,

α(3) = 6,

Clearly, α satisfies the above restrictions !

Let
gα = a0 + a1X + a2X

2 + a3X
3
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✫

✩

✪

So, from the relations
gα(0) = α(0),

gα(1) = α(1),

gα(2) = α(2),

gα(3) = α(3),

we deduce the system:




a0 = α(0),
a0 + a1 + a2 + a3 = α(1),
a0 + 2a1 + 4a2 + 8a3 = α(2),
a0 + 3a1 + 9a2 + 27a3 = α(3),

that is
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✫

✩

✪




a1 + a2 + a3 = 1,

2a1 + 4a2 + 8a3 = 2,

3a1 + 9a2 + 27a3 = 3,

The system has a unique solution: a1 = 1, a2 = 0, a3 = 0
(a0 = α(0) = 3).

So,
gα = 3 + X

and
g = gα ×

(
X2 + 3X + 2

)
,

f =
1
66

(3 + X)
(
X2 + 3X + 2

)
is not irreducible !


