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EXPONENTIATION '
k

Problem: Given two positive integers n and k, compute n”.
Straightforward algorithm:
Input: n,k (two positive integers)

Output: P (the value of n*)

begin
P «— n;
for:—1tok—1do
P «—nx P;
end
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IDEAwﬁ::(
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IDEA: n*f =n x nk—1,

k is log, k, the number of iterations is exponential:

k= 2log2F,

How to reduce the number of iterations 7

).

~

The first attempt algorithm requires k iterations. Since the size of
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Binary Algorithm:
Input: n,k (two positive integers)
Output: P (the value of n*)

begin
P —1;
while £ > 1 do
ifkmod2:Othenbeginanxn;kHgend
else begin P«+— P xn; k+— k—1 end
return P

end

\_
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The invariant is the product

P x nk.

Complexity:

2log, k € O(log, k)

What about changing 2to 3,...,ortot >27

\_
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POLYNOMIAL MULTIPLICATIONI

Problem: Compute the product of two given polynomials of degree

n—1.
n—1 n—1
P = szwz, Q = Z%xz
i=0 =0

P“Q — 4pn—1Qn—1$2n_2'+"'

+(Pn—-1Gi+1 + Pn—2Git2 + -

n+z+_

+Pit1qn-1)T -+ 4 Poqo-
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The polynomial PQ has degree 2n — 2 and the coefficient of z? is

Z Piqj = Poqt + P1qt—1 + P2gt—2+
0<i,j<n,i+j=t
o+ PiQi—i + -+ Piqo.
How many operations?

O(n?) multiplications and additions.

\_
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DIVIDE-AND-CONQUER ALGORITHM

Assume that n is a power of 2. Divide each polynomial into two

equal-sized parts:

P=P +x2P,
Q=Q1+22Qo,

where
Pr=po+px+- - +pn _qx3T
(1 :q0+q1x—|—---—|—q%_1x%_1,

\_
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Py=ps +papi@+ -+ paoizd

Q2=qn +qupx 4+ qnar2 "

So,

PQ = (Pi+Px?)(Q1+ Qe22)
PiQ1 + (P1Q2 + PyQ1)x? + PyQoa™.
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ni

Remark: P(@) involves products of polynomials of degree 3

Compute the product of the smaller polynomials (e.g. P;@Q1) then
add the results to complete the solution.

Constraints:
- smaller problems should be exactly as the original problem,

- we know how to multiply polynomials of degree 1.

BOTH CONDITIONS ARE ACTUALLY SATISFIED!

\_ /
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Let T'(n) = be the number of operations:

{T(l) — 1,
T(n) = 4T(2) + O(n).

Here the factor 4 comes from the products of smaller polynomials.

So,

T(n) € O(n%),

so no improvement has been obtained !

\_ /
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Rewrite the formula

PQ = PiQ; + (PiQ2+ PyQ1)x? + PyQox"

in the form

X P1 PQ
Q1 A B
Q: C D

and compute

A+ (B+C)x2 + Dz".

Remark: We do not have to compute B and C separately as we
need only their sum B + C.

\_ /




415.320,/2000 Algorithmics

-

Write:
E= (P + P)(Q1+ Q)

SO
B+C=FE—-A-D.

Hence, we need to compute only A, D, E. All the rest (additions,

subtractions) contribute only O(n).

The new recurrence relation is:

SO,

12
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xample:

P=1—x+2z%—2°
Q=2+z—2%+ 223

In the straightforward algorithm we use 16 multiplications and 9
additions and subtractions. By divide-and-conquer we get:

A=(1-2)2+2)=2—2— 22,
D= (2-2)(—1+2x) =2+ 5z — 2z°,
E = (3—-22)(1+3x) =3+ 7z — 627,
B+C=E—-A—-D =3+ 3z — 32°
PQ = A+ (B +C)x* + Dx*

in 12 multiplications 4+ 13 additions/subtractions.

N

/
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MATRIX MULTIPLICATION '

A:<6Lij), B:(bz]) 17]21,2,77,
C = AB,
C = (cij)

n
Cij = E ik X bp;
k=1

The straightforward way to compute C requires n

and (n — 1)n? additions.

-

3

~

multiplications

/
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Winograd’s Algorithm

Assume n is even and put

Re-arrange terms and get:

%
Cij = Z(ai,gk_l + b2/€,j><ai,2k + b2k—1,j> — Az - Bj
k=1

\_ /




415.320,/2000 Algorithmics

-

Indeed,
D h—1(@i2k—1+ bog,j) (@i 2k + bok—1,5) — A — Bj =
2 =1 (@i 2k—1 + bag ) (@i 2k + bak—1,5) — @i 2k—10i 2% — bak—1,5b2k;

2 mn

\_
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2

Computation of A;s and B;s requires n“ multiplications, so globally

one uses

13
§n+n

2

multiplications. Is it an improvement? Yes, in case additions can

be performed much faster than multiplications.

\_ /
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and 4 additions.

\_

STRASSEN’s ALGORITHM

A — air a2 |
az1 Q22
b b
B 11 12 |
ba1 D2
C = AB,

so by straightforward computation we perform 8 multiplications,

/
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Divide-and-conquer approach:

Let n be a power of 2,

a1 412

A= :
21 @22
bi1 b2

B = ,
ba1 b2
€11 €12

C = :
21 €22

where a;;s, bi;8,cijs are 5 X & matrices. Treat these submatrices as

elements: the algorithm for 2 x 2 matrices can be converted to an

n X n product ...

\_ /
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How 7 By substituting a recursive call each time a product of

elements appears.

We get the recurrence:

which implies

T(n) e O (nlog? ®) =0 (n%),

for the straightforward algorithm.

Question: Can we do it better for 2 x 2 products 7

\_

~
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P = (a11 + a22)(b11 + b22),
P> = (a21 + a22)bi1,

P3 = a11(bi2 — b22),

Py = aga(—b11 + b21),

Ps = (a11 + a12)ba2,

Ps = (—a11 + a21)(bi1 + ba2),
Pr = (a12 — a22)(b21 + bi2),

ci1 =P+ Py — Ps + Pr,
c12 = P3 + Ps,
Co1 = Po + Py,
Coo = Py + P3 — P> + P,

Strassen’s Method

18 additions/multiplications, but 7 multiplications !

/
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Strassen’s algorithm complexity:

T(n) € O (n'*827)

=0 (n*%).

22
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/ A Better Method: 7 multiplications and 16 additions

T =ag1 + a2, t =1 — a1,
q = bag — b2,

m1 = t(q + b11),

may = a11b11, M3 = ai2ba1,
my = (a11 — b21)gq,

ms = q(b12 — b11),

me = (a12 — t)baa,

my = ag2(bi1 — ba1 + q),

C11 = M2 + M3,
C12 = P + M5 + Mg,
C21 = § — My,

Co2 = S + M5,

\_

~

23



415.320,/2000 Algorithmics

-

‘ LINEAR REPRESENTATIONS '

Let n > 1, Z be the set of non-zero integers and

A={ay,as,...,a,} C Z.

Consider the set of all linear combinations of elements of A:
i=1

Problem: Given m € Z, test whether m € M(A) ?

\_
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Main difficulty:

\_

mée M(A) < Jx1,...,0, € Z:

m = I1a1 + Ioa9 + -+ + TpQp.

The above test is infinite!

25



415.320/2000

Algorithmics

-

that is:

Mathematical Fact:

M (A) is closed under difference

s, te M(A) = s—te M(A).

26
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Indeed,

27
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Accordingly,

(M(A), +)

is a group under addition, more, a subgroup of the additive group

of integers
(Z,+) (%)

But, every subgroup of (x) is of the form
92 ={qz|z € Z},

where ¢ > 0.
So, there exists ¢ € Z such that M(A) = ¢Z.

\_ /




415.320,/2000 Algorithmics

-

I. ¢q=GCD(ay,as,...,a,)

q is called a “finite certificate”

II. me M(A) <= m € qZ < GCD(ay,as,...,a,)|m.

29
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‘ TESTING IRREDUCIBILITY '

A) Testing primality for naturals is theoretically easy, but it

appears to be difficult to do it faster !

Test the condition
x| N

up to [V N7.
This is O(v/N), i.e. an exponential algorithm.
CAN WE DO IT BETTER 7

\_
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B) A polynomial
P € Qlx]

is irreducible if there are no polynomials S, T € Q|z] with
degrees > 1 such that
P =5T

Problem: Given a polynomial P with rational coefficients, test
whether P is irreducible.

\_
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IDEA: Reduce the problem to polynomials with integer coefficients.

Ingredient:

Gauss’ Lemma: The product of two primitive polynomials with

integer coefficients 1s a primitive polynomaial.

Recall that a polynomial

f:ao—l—a,lX—l—---—l—a,nX”

is primitive if

GCD(CLQ,CLl, v o ,Cl,n) = 1.

\_ /
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Proof: Let

f=ao+amX+ - +a, X"
g=bo+ b1 X+ + b X,

two primitive polynomials in Z[X] and let

fg=co+c1 X+ Fcnm X",

Let p be a prime.
As GCD(ag,aq,...,a,) =1 we can get the smallest k such that

plao, ..., plar—1 but p fay.

\_

/
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Similarly, as

GCD(bg,b1,...,bn) =1
we construct the smallest [ such that

p’b07p‘b17 SRR 7p‘bl—17 but

The coefficient of

in fgis

Ck+1l — Z CLibj

0<i<n,0<j<m,i+j=Fk+l

and p fcri; (as p faxby, but p divides all other terms).
So, p fGCD(co,-..,Cmin)-
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Let f € Q[X] be a polynomial of degree n > 1. Assume

I =qg,

where g € Z[X] is primitive and q € Q.

Compute
9(0),9(1),...,9(n).

If g(m) =0, for some 0 < m < n, then g = (X —m)h, so f is not
irreducible.

Assume now that
g(i1) #£0, 0<i<n.

\_
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For every function
a:{0,1,...,n} — Z

such that a(m) is a divisor of g(m), for m =0,1,...,n

construct the unique polynomaial
Jo € Z|X]

of degree < n, such that

(%) go(m) =a(m), m=0,1,...,n.

\_

Reducing the infinite search to an equivalent, finite one:
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ndeed, let
Ja :do—l-le—l——|-ann

From (x) we deduce the relations:

di+do+---+d, = «a(l)—a0),
2d, +2°do + -+ 2"d, = a(2) — a(0),
ndy +ndy +---+n"d, = on)—a(0),

a n X n system with the determinant

112!...n! #£0.

\_
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We have got the finite set

F={gs € Z[X]|a:{0,1,...,n} - Z,V0<m <n,
ga(m) = a(m)|g(m)}.
Lemma: If g = hiho, h; € Z|X], then h; € F.

Proof: If g(m) = hi(m)ha(m) # 0, 0 < m < n, so

hi(m)lg(m) — i=1,2

38
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Example:
g=1xg

1 € F corresponds to a(i) =1, 0 < i <n,

In particular,
F>{1,g}.

g € F corresponds to a(i) = g(i), 0 < i <n.

39
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Final Lemma: If
f=GH, G,H e Q[X],
then there exist (and can be effectively computed)

4G, qH € Q7

ha,hyg € F

such that
GZQGhGa H:CIHhH

\_
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Proof: Routine computation gives
f=GH = (qchc)(quhn) = (qequ)(hchm).

The polynomials hq, hy are primitive, so by Gauss Lemma, their

product is primitive, and

q =qaqu, ¢ = hcghn.

By Lemma, hy,hg € F.

\_

~

41



415.320,/2000 Algorithmics

-

We have proved :

Kronecker’s Theorem: There exists an algorithm for testing if

an arbitrary polynomial f € Q|X] is irreducible.

The finite set F' is a “finite certificate”.

42
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Example

1 1 1 1
— _X3 T2 X I
! 66 T et 1

= %(X3+6X2+11X+6)

g=X3+6X?+11X+6

1s primitive as

GCD(1,6,11,6) = 1.

\_
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We continue with g:

9l

-

o

) =

u)—1+6+i1+6—24

(2) =8+46x4+11 X2+ 6= 60,
(3) =27+6x 9+ 11 x 3+6 = 120.

0,1,2,3} — 2
9(0) =6,

u)_24
(2)
(3)

S

a:q
(0)
(1)
(2)
(3)

Q

Q
i)

Q

S

120.

Q
S

\_
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Let

\_

Consider:

0

Q
I
W

)
1)
2)

)

Q

Q

(
(
(
(

3

Q

Clearly, « satisfies the above restrictions !

Jo = Qg —I-CL1X—|—CL2X2 —|-CL3X3
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that is

\_

So, from the relations

we deduce the system:

 ap = a(0),
ap + a1 + az + az = a(1),
ag + 2a1 + 4as + 8az = «a(2),

\ ag + 3&1 + 9&2 + 27&3 = @(3),
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a1 +az +az =1,
2a1 + 4as + 8ag = 2,
3ai1 + 9as + 27a3 = 3,

The system has a unique solution: a1 = 1,a2 =0,a3 =0
(agp = a(0) = 3).

So,
go =3+ X

and
g=9gax (X?+3X +2),

f:6—16(3+X) (X? +3X +2)

is not irreducible !

\_




