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ABSTRACT

According to the Algorithmic Coding Theorem, minimal programs of any universal
machine are prefix-codes asymptotically optimal (i.e. optimal up to at most an additive,
unknown constant) with respect to the machine algorithmic probabilities. A stronger
version of this result will be proven for a class of machines, not necessarily universal,
and any semi-distribution. Furthermore, minimal programs with respect to universal
machines will be shown to be almost optimal (i.e. optimal up to an additive constant
less than or equal to 2) for any semi-computable semi-distribution. Finally, a complete
characterization of all machines satisfying the Algorithmic Coding Theorem is given.

1. Introduction

Algorithmic information theory, mainly through the Algorithmic Coding The-
orem ([4, 9]), has been successfully applied to a variety of physical problems
(mainly in conjunction with Landauer’s principle [10]%): the Maxwell déemon para-
dox ([1, 17]), the irreversibility in classical Hamiltonian chaotic systems ([12]),
the characterization of quantum chaos within the framework of statistical physics
([13, 14]). The program-size complexity (algorithmic information) with respect to
two different universal machines differs at most by an unknown, additive, computer-
dependent, constant. This type of uncertainty is a serious issue of concern for a

“Which specifies the cost of energy dissipation for the erasure a bit of information.
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physical theory, so various attempts have been made to eliminate it (see, for ex-
ample, [11]). It is our aim to obtain sharper versions of the Algorithmic Coding
Theorem in which the uncertainty is reduced to a minimum or no assumption is
made on the computability of the semi-distribution.

Let C be a prefix-code with one code string per source string, that is, an one-
one function from binary strings to binary strings whose range is a prefix-free set.
Let P(z) be the probability of the source string = and let |C(z)| be the length of
the code string of z. Shannon’s Noiseless Coding Theorem says that the minimal
average code string length is about equal to the entropy of the source string set. The
strategy is to choose a prefix-code that matches best the probability distribution of
the source codes.

In what follows we will study infinite prefix-codes, that is, prefix-codes naming
all binary strings. We will work with semi-distributions, i.e. functions P from
strings to reals such that ) P(x) < 1. A Shannon type result is valid for semi-
distributions. We will be interested in finding prefix-free codes which are almost
optimal for a given semi-distribution, and also for a class of semi-distributions (in
case the semi-distribution may be unknown, or uncomputable).

Algorithmic Information Theory (see [4, 5, 2, 6]) provides a natural class of
prefix-free codes, namely the set of minimal (canonical) programs of a machine.
According to Algorithmic Coding Theorem, minimal programs of any universal
machine (a machine capable of simulating any other machine) are asymptotically
optimal (i.e. optimal up to at most an additive, unknown constant) with respect
to the machine algorithmic probabilities. A stronger version of this result is proven
here for a class of machines, not necessarily universal, and any semi-distribution.
Minimal programs with respect to universal machines are proven almost optimal
(i.e. optimal up to an additive constant less than or equal to 2) for any semi-
computable semi-distribution. Finally, a complete characterization of all machines
satisfying the Algorithmic Coding Theorem is given.

2. Notation, Definitions and Basic Results

By N, Q, and X* we denote the sets of nonnegative integers, rationals, and
(finite) binary strings, respectively. The length of a string s is denoted by [s|. A
string s is a prefix of a string ¢ (s C t) if there is a string r € £* such that sr = t.
A subset A of ¥* is prefiz-free if whenever s and ¢ are in A and s C ¢, then s =¢.
For example, the set {10 | i > 0} is prefix-free. Kraft’s inequality states that for
every prefix-free set A C X%, > 4 2718l < 1.

By log we denote the base 2 logarithm. For every real o > 0, put lg a =
[loga] — 1.> Note that if @ > 0, then 2’8 < a,lg & <loga <lg @+ 1, and if m
is an integer, then lg a > m iff loga > m.

We assume familiarity with Turing machines, computable sets and functions,
computably enumerable (c.e.) sets, e.g. from [16]. We shall employ a special
model of deterministic Turing machine computation, namely self-delimiting Turing
machines or (Chaitin) machines: these are Turing machines (transforming binary

bThe base 10 logarithm will not be used in this paper.
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strings into binary strings) having prefix-free domains. More precisely, for every
Chaitin machine M the program set PROGy = {x € £* | M(z) halts} is prefix-
free. Note that, conversely, every prefix-free c.e. set of strings is the domain of
some Chaitin machine. In what follows we will operate only with Chaitin machines,
which will be simply referred to as machines.

The following result will be frequently used (see [3] for a simple proof):

Theorem 1 (Kraft—Chaitin) Given a computable list of “requirements” (n;, s;)

(¢ >0, s € L*n; € N) such that ) ,27™ < 1, we can effectively construct a
machine M and a computable one-to-one enumeration xg, 1,2, ... of strings z; of
length n; such that M (z;) = s; for all i, and M(z) is undefined if x ¢ {z; | i € N}.

The program-size complezity induced by the machine M is
Hy(z) = min{|z| | M(2) = =},

with the convention that the minimum of the empty set is undefined.
The algorithmic probability of the machine M to produce the output z is

Py(z)= Y, 271,

M(u)=z

and the halting probability of M is

Qu= ) Pu@@)= )Y, 6 27"

TEL* z€PROG

It follows by Kraft’s inequality that, for every machine M and any string z € ¥*,
0< Py(z) <OQm <L
For every machine M and string z such that Pys(z) > 0, we denote by
z}y = min{u | M(u) = z},

where the minimum is taken according to the quasi-lexicographical ordering of
strings (the empty string < 0 < 1 < 00 < 01 < 10 < 11 < 000 < ---); x}, is
called the minimal (canonical) program of = with respect to M.

A machine U is universal if for every machine M, there is a constant cjs (depend-
ing upon M) with the following property: if M(z) halts, then there is an 2’ € £*
such that U(z') = M(z) and |z'| < |z| + ep; e is the simulation constant of M
on U. Universal machines can be effectively constructed. If U is universal, then
zy; exists for every string x. See more in [2]. For universal machines the following
important result holds true:
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Theorem 2 (Algorithmic Coding Theorem; Chaitin—Gacs) There ezists a
constant ¢ > 0 such that for all strings z,

|Hy(x) 4 log Py(z)| < 1+-c.
See [4, 5, 9, 2, 6].

3. Noiseless Coding Theorem

A function P : ¥* — [0,1] such that ) P(z) < 1 is called a semi-distribution
over the strings. In case ), P(z) = 1, P is a distribution. A semi-distribution
P is semi-computable from below (above) in case the set {(z,r) | z € £*, r €
Q, P(z) >r} ({(z,r) |z € £*, r € Q, P(z) <r}) is c.e. A semi-distribution P is
computable if it is semi-computable from below and from above. For example, Pys
is a semi-distribution semi-computable from below. The function P(z) = 2~2l=I-1
is a computable distribution.

A prefiz-code for strings is an one-one function C : ¥* — ¥* such that C(Z*)
is prefix-free. For example, for every surjective machine M, Cy(z) = z}, is a
prefix-code; universal machines are surjective. The average code-string length of a
prefix-code C with respect to a semi-distribution P is

Lo,p =Y P(2)-|C(a)|.
x
The minimal average code-string length with respect to a semi-distribution P is
Lp =inf{L¢,p | C prefix-code}.
The entropy of a semi-distribution P is

Hp =— ZP(ZB) -log P(z).

Shannon’s classical argument [15] (see more in [8]) can be expressed for semi-
distributions as follows:

Theorem 3 (Noiseless Coding Theorem; Shannon) The following inequali-
ties hold true for every semi-distribution P:

Hp—-1<Hp+ (Z P(x)) log (Z P(m)) <Lp<Hp+1

If P is a distribution, then log(}_, P(z)) = 0, so we get the classical inequality
Hp > Lp. However, this inequality is not true for every semi-distribution. For
example, take P(x) = 2-2lz1-3 and C(z) = 121 ... Tz, 01, It follows that Lp <
Le,p =Hp — §.
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4. Main Result

We investigate conditions under which given a semi-distribution P, we can find
a (universal) machine M such that Hjs(z) is equal, up to an additive constant, to
—log P(z). In what follows we will assume that P(z) > 0, for every z.

We start with the main technical result:

. Theorem 4 Assume that P is a semi-distribution and there exist a c.e. set S C
¥* x N and a constant ¢ > 0 such that the following two conditions are satisfied for
every ¢ € ¥*:

(i) Z(z,n)es 2 " S P(w)’
(ii) if P(z) > 2™™, then (z,m) € S, for some m <n+c.
Then, there ezists a machine M (depending upon S) such that for all z,

—log P(z) < Hy(x) < (1+4c¢) —log P(z). (1)

Proof. In view of (i),

Y 2" <Y P() <1,

(z,n)ES x

so using the Kraft-Chaitin Theorem we can construct a machine M such that for
every (z,n) € S there exists a string vy, of length n such that M (v, ,) = z. If
(z,m) ¢ S, for all m, then P(z) = 0 and Hy(z) = oo, so (1) is satisfied. If
(z,m) € S, for some m, then using (i) and (ii) we get:

Hpy(z) = min{jy||ve X, M(v) ==z}
min{n |n € N, (z,n) € S} (2)

Il

< min{m|meN,P(z) >2"™} +c

min{m |m € N;m > —log P(z)} + ¢
= min{m|meN,m>1-IgP(z)} +¢
< (1+4¢)—log P(z).

If (z,n) isin S, then P(z) > 2™, hence — log P(z) < Hp(z) because of (2). O
Remark Theorem 4 makes no direct computability assumptions on P.

Lemma 1 Let M be a machine such that Qpr < 1. Then, there exists a universal
machine U satisfying the inequality Hy (z) < Hpy(z), for all x.

Proof. By hypothesis, £33y < 1, so there is a non-negative integer k such that
Qum +27% < 1. Let V be a universal machine. The set

S ={(M(z),|z|]) | z € PROGy} VU {(V(),|z| + k) | z € PROGv}
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is c.e. and
Y 2r<au+27F <L
(y,m)ES
Consequently, in view of Kraft-Chaitin Theorem, there exists a machine U such
that for (y,n) € S there is a program z € PROGYy of length n such that U(z) = y.
Clearly, for every z,

Hy(z) < min{|lw| + k| V(w) =z} = Hy(z) + k,
and
Hy(z) = min{lo] | U(v) = o} < Hu(a)

so U is universal and satisfies the required inequality. a

Lemma 2 Let M be a machine. Then, there exists a machine M' such that Qpp <
1 and Hy (z) = Hy(z) + 1, for all .

Proof. Apply Kraft-Chaitin Theorem to the set {(M(z),|z| + 1) | £ € PROGp}
to obtain the machine M’. a

Corollary 1 Under the hypotheses of Theorem 4, a universal machine U can be
constructed such that for all x,

Hy(z) < (2 +¢) — log P(x). (3)

Proof. Use Lemmas 2, 1 to get a universal machine U such that Hy(z) < Hpyr(z)+
1, for all z. O

5. Coding with Minimal Programs

Specializing P in Theorem 4 we show that minimal programs are almost optimal
for P. Minimal programs of universal machines are almost optimal for every semi-
computable semi-distribution P.

Semi-distributions semi-computable from below (e.g. algorithmic probabilities

of machines) are important in Algorithmic Information Theory (see for example
4, 5, 2, 7)).

Proposition 1 Assume that P is a semi-distribution semi-computable from below.
Then, there exists a machine M (depending upon P) such that for all x,

—log P(z) < Hy(z) <2 —log P(x). 4)

Consequently, minimal programs for M are almost optimal: the code Cyy satisfies
the inequalities:
0L Lcy,p—Hp<L2
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Proof. Take S = {(z,n+1) | P(z) > 27"}. For every = we have:
Yoam= Y 2= Y 2n=2%PE) < p(y),
(z,n)€ES n>1-—log P(x) n>1-lg P(x)

so condition (i) in Theorem 4 is satisfied. Condition (ii) holds for ¢ = 1. Hence by
(1) we get

0< Loy,p —Hp =Y P(z) - (Hu(z) +log P(z)) < 2.
u)

Corollary 2 Assume that f : * — N is a function such that the set {(z,n) |
f(z) < n}is ce and ¥, 277® < 1. Let P(z) = 27/®). Then P is a semi-
distribution semi-computable from below, and there exists a machine M (depending
upon f) such that for all z,

Hu(z) <1+ f(z). (5)

Minimal programs for M are almost optimal: the code Cyy satisfies the inequal-
ities:

0<Lcyp—Hp<1

One more bit is enough to guarantee universality of the constructed machine, that
is, there ezists a universal machine U (depending upon f) such that the code Cy
satisfies the inequalities:

0< Ley,p—Hp <2

Proof. Take S = {(z,n) | n > f(z)}. Clearly, S = {(z,n) | P(z) > 27"}. The
first condition in Theorem 4 is satisfied as » (@) 27" = P(z), for every z, and
- the second condition is satisfied for ¢ = 0. O

Remark When the semi-distribution P is given, an optimal prefix-code can be
found for P. However, that code may be far from optimal for a different semi-
distribution. For example, let C be a prefix-code such that |C(z)| = 2/*I+2, for all
z. Let @ > 0 and consider the distribution

P,(z) = (1 —27%) 2 (D=l
Two radically different situations appear: if & <1, then
Le,p, —Hp, = o,

but if & > 1, then
Lc,pa —Hpa < 00.
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So, C is asymptotical optimal for every distribution P, with 1 < «, but C is far
away from optimality if 0 < a < 1. Note that P, is computable provided « is
computable. ‘

The next result shows that minimal programs are asymptotical optimal for every
semi-distribution semi-computable from below.

Theorem 5 Let P be a semi-distribution semi-computable from below, and U a
universal machine. Then, there ezists a constant cp (depending upon P) such that

0< Ley,p—Hp <1+cp.

Proof. Take M the machine constructed in Proposition 1 and let c¢ps be the simu-
lation constant of M on U. Then,

0<Lcy,p—Hp<LLcyp+ecu—Hp<1l+cuy,

so take cp = cpy. ]

Remark Theorem 5 generalizes a result in [7] proven for computable distributions;
see also [11]. The result is important only for semi-distributions for which the
entropy is infinite. For example, the entropy of the semi-distribution

Pl

Pe) = o) oa(e 7 2)

is infinite.
Using Lemma 1 we can obtain sharper inequalities. For example, for every
universal machine U, the code Cy is almost optimal with respect to Py:

0 S LC(],PU - HPU S 2.

If f is a function as in Corollary 2 such that )" 2=/(®) < 1, then there exists a
universal machine U such that

0< Ley,p —Hp <1.

For example, take f(z) = Hy(x), where U is a universal machine.

Proposition 2 Let P be a computable semi-distribution. Then, there exists a ma-
chine M such that
—log P(z) < Hy(z) < 1—log P(z).

Proof. Note that —lgP(z) = min{n | n € N, P(z) > 27"} and then apply
Theorem 4 to the set S = {(z,—lgP(z)) | z € £*} and constant ¢ = 0. o
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Corollary 3 Let P be a computable semi-distribution. Then, there exists a univer-
sal machine U such that
Hy(z) <1-log P(x).

6. Algorithmic Coding Theorem Revisited

We characterize all machines satisfying the Algorithmic Coding Theorem and
we construct a class of (universal) machines for which the inequality is satisfied with
constant ¢ = 0. This addresses the relevance of the theorem for statistical physics
where the presence of an arbitrary constant is unsatisfactory (see [11]).

Proposition 3 Let M be a machine and ¢ > 0. The following statements are
equivalent:

(a) for all z, Hy(z) < (1+ ¢) — log Py (z),

(b) for all non-negative n, if Py(z) > 2~™, then Hy(z) <n+c.

Proof. From Hy(z) < (14 ¢) — log Py(z) and Py(z) > 27™ we deduce
=" < PM(w) < 2(1+c)——HM(:c)‘
Conversely, we have:

Hy(z) — c<min{n |n € N, Py(z) >27"}. O

Remark For any machine M satisfying one of the equivalent conditions in Propo-
sition 3 the Algorithmic Coding Theorem holds:

|Hp(z) + log Py (z)] < 1+ec. (6)

In fact, a machine M satisfies (6) if and only if condition (b) is satisfied. Every
universal machine U satisfies condition (b), but not all machines satisfy this condi-
tion. To construct such an example, consider the following enumeration: for every
string « enumerate 2!*! copies of the pair (z,3|z| +1). Use Kraft-Chaitin Theorem
to construct a machine M such that for every string z there exist 2/ different
strings ut, all of length 3|z| + 1, such that

Mul)=z,i=1,2,...,22

It is seen that Pys(z) = 272%I-1, so taking n, = 2|z| + 2 we get Py(z) > 27 "=,
but there is no constant ¢ such that Hy(z) < ng + ¢, for all strings z.

Some machines satisfy condition (b) with ¢ = 0, so their canonical programs
are almost optimal. A class of (universal) such machines is provided in the next
proposition.
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Proposition 4 Let M be a machine such that for all programs « # ' with M (z) =
M (z') we have |z| # |z'|. Then, for all z,

HM(m) <1- lOgPM(:E). (7)

Proof. Consider the set S = {(z, |y|) | M(y) = =}, and notice that

PM(.’E)I Z 27",

(z,m)€S

as programs producing the same output have different lengths. In view of the
hypothesis,

Py(z) >2™" < 3J(z,k1) €S[(k1<n) V(ki=n
ATka(ks # k1 A (z,k2) € 9))],

hence the second condition in Theorem 4 is satisfied with ¢ = 0. Using Theorem 4
we deduce the existence of a machine M’ such that Hyy (z) < 1 — log Py (x), for
all z. Inequality (7) follows from

Hpy(z) = min{n | (z,n) € S} = Hy (). o

Remark Not every universal machine satisfies the hypothesis of Proposition 4.
However, if V is a universal machine, then one can effectively construct a universal
machine U such that programs producing the same output via U have different
lengths and Hy(z) = Hy(z), for every z. (Of course, Py(z) < Py(z), for all x.)
Indeed, enumerate the graph of V and as soon as a pair (z,V(z)) appears in the
list do not include in the list any pair (z/,V(z')) with z # 2’ and V(z) = V(2').
The set enumerated in this way, which is a subset of the graph of V, is the graph
of the universal machine U satisfying the required condition.
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