
COMPSCI350 (2019)

Automata
Test Preparation

Main points

1. Strings, languages operations with strings (concatenation) and languages (complement, union, intersection,
Kleene star, concatenation, power).

2. DFAs: definition by components and by diagram, examples, going from components to diagram and
conversely, definition of a computation (trace), showing that a string is accepted by a DFA, showing that
a string is rejected by a DFA, constructing a DFA accepting a given language, determining the language
accepted by a DFA, proving that a language is not accepted by any DFA.

3. NFAs: definition by components and by diagram, examples, going from components to diagram and
conversely, definition of a computation (trace), showing that a string is accepted by an NFA, showing that
a string is rejected by an NFA, constructing an NFA accepting a given language, determining the language
accepted by an NFA.

4. Constructing a DFA equivalent with a given NFA.

5. The following problems are algorithmically decidable:

• a DFA M accepts the empty string

• a DFA M accepts a string w

• a DFA M accepts no string

• a DFA M accepts only finitely many strings

• a DFA M accepts infinitely many strings

• an NFA N accepts infinitely many strings

• two DFAs accept the same language

• a DFA M accepts the complement of the language accepted by a DFA M ′

• a DFA M accepts the same language as an NFA N

• a DFA M accepts only one string w.

6. The class of regular languages is closed under

• complement

• mirror (reverse)

• union

• intersection

• Kleene star

• concatenation

• power

7. Regular expressions denote regular languages. Given a DFA M find a regular expression denoting the
language accepted by M . Given a regular expression α find a DFA accepting the language denoted by α.

8. Finding the minimal DFA equivalent with a given DFA (NFA).

9. Pattern matching.

10. Revise all examples in lecture notes.



Sample questions1

1. All examples in the textbook from pages 31–82.

2. Exercises 1–9, 12,16–20, 29 in the textbook.

3. Build DFAs for the following languages:

• ∅,

• {ε},

• {anbmck | n ≥ 0,m, k ≥ 1},

• {1(01)n | n ≥ 0},

• {w ∈ {a, b}∗ | w 6= ε}

Prove that your solutions are correct.

4. Devise an algorithm that, given a DFA M , produces an equivalent DFA M
′

in which the start state, once
left, cannot be re-entered. Prove that your solution is correct.

5. Prove that the language A(w) = {uwv | u, v ∈ {a, b}∗} is regular for each string w.

6. Prove that the language {anbncn | n ≥ 1} is not accepted by any DFA.

7. Build NFAs for the following languages:

• {w ∈ {0, 1}∗ | w contains any of the substrings 010, 011 or 1100},

• {w ∈ {0, 1}∗ | w contains the substrings 010, 011 and 1100},

• {w ∈ {0, 1}∗ | w has a 0 in the third place},

• {w ∈ {0, 1}∗ | w has a 0 in the third place from the end},

• {w ∈ {a, b}∗ | |w| > 2}.

• {avb | v ∈ {a, b}∗}.

Prove that your solutions are correct.

8. Given two DFAs M1 and M2, construct an NFA N such that L(N) = L(M1)\L(M2). Justify your answer.

9. Given two DFAs M1 and M2, construct an NFA N such that L(N) = L(M1)∪L(M2). Justify your answer.

10. Construct an algorithm which given a DFA M and an NFA N tests whether L(M) = L(N). Justify your
answer.

11. Using the equivalence between NFA and DFA, convert the following NFAs into equivalent DFAs:

(a) Every NFA discussed in lecture notes.

(b) Q = {q1, q2}, δ(q1, a) = {q1, q2}, δ(q1, b) = {q2}, δ(q2, a) = ∅, δ(q2, b) = {q1}, S = F = {q1}.

(c) Q = {q1, q2, q3}, δ(q1, a) = {q3}, δ(q1, b) = ∅, δ(q2, a) = ∅, δ(q2, b) = {q1}, δ(q3, a) = ∅, δ(q3, b) =
{q3}, S = F = {q1}.

12. Construct regular expressions denoting the languages accepted by each DFA/NFA discussed in lecture
notes. Prove that your solutions are correct.

13. Minimise each DFA/NFA discussed in lecture notes. (For NFA, convert first to DFA, then minimise.)

14. Design the Aho-Corasick automaton for a given simple pattern.

15. What is the language denoted by the Kleene regular expression (a|b)∗? Justify your answer.

16. What is the language denoted by the Kleene regular expression ab∗(c|ε)? Justify your answer.

17. Write a Kleene regular expression (or NFA or DFA) for the set of all correct email addresses of the
form user@ec.auckland.ac.nz, where user is a string on the alphabet of lower case letter and digits
{a, b, . . . , z} ∪ {0, 1, . . . , 9} that starts with a letter, is followed by at least three letters and exactly three
digits.

1Questions in test may be similar, but not identical.



Sample questions with solutions

1. Consider the following DFA:

q0 q1 q2 q3 q4 q5

q6

a b b a b

b
a

a b
a a, b

a, b

DFA M

(a) Write the traces (computations) in M for the following strings: abbab, ab, ε. Which of these strings
are accepted by M? Justify your answers.

Solution. We have:
abbab : q0, q1, q2, q3, q4, q5 is not accepted because q5 is not final;
ab : q0, q1, q2 is accepted because q2 is final;
ε : q0 is accepted because q0 is final.

(b) What is the language accepted by M? Justify your answer.

Solution. We have L(M) = {w ∈ {a, b}∗ | w 6= abbab}.

First solution. The language L(M) is the complement of L(M ′), where M ′ is

q0 q1 q2 q3 q4 q5

q6

a b b a b

b
a

a b
a a, b

a, b

DFA M ′

We have proved in class that L(M ′) = {abbab}. Because L(M) = L(M ′) we have L(M) = {w ∈
{a, b}∗ | w 6= abbab}.

Second solution. As q5 is the only non final state of M , a string w is not accepted by M if and only
if there a trace from q0 to q5 labelled by w. There is only one string w satisfying the above property,
namely w = abbab: every other string is accepted by M , hence L(M) = {w ∈ {a, b}∗ | w 6= abbab}.

(c) Is M minimal? Justify your answer.

Solution.The DFA M is minimal because: ≡0= {{q0, q1, q2, q3, q4, q6}, {q5}} and for every i, j =
0, 1, 2, 3, 4, 6, i 6= j there exists a k such that qi 6≡k qj . For example, q4 6≡1 q6 because δ(q4, b) 6≡0

δ(q6, b). Fill in the missing parts.



2. Prove that there is an algorithm which receives as input a DFA M over the alphabet {a, b} and decides
whether L(M) = {ε} or L(M) 6= {ε}. Clearly state all results you use.

Solution. It is known from class that there is an algorithm deciding whether two DFAs accept the same
language. The language L = {ε} is accepted by the DFA M ′:

q0 q1

a, b

a, b

because the initial state is final and there is no other final state. So, we can apply the above algorithm to
the DFAs M and M ′ to decide whether L(M) = L(M ′), that is, L(M) = {ε}.

3. (a) What is the complement of a language A ⊆ {a, b}∗?

Solution. The complement of a language A ⊂ {a, b}∗ is the language A = {x ∈ {a, b}∗ | x 6∈ A}.

(b) Construct a DFA M ′ accepting the complement of the language accepted by the DFA M =
(Q, {a, b}, δ, s, F ). Justify your construction.

Solution. The DFA M ′ = (Q, {a, b}, δ, s,Q \F ) accepts the complement of the language accepted by
the DFA M because a string w = w1w2 . . . wn ∈ L(M ′) if and only if there is a sequence of states
q0, q1, . . . qn ∈ Q such that q0 = s, qn ∈ Q \ F and for each 0 ≤ i ≤ n − 1, qi+1 = δ(qi, wi+1) if and
only if w 6∈ L(M).

(c) Construct an NFA N ′ accepting the complement of the language accepted by the NFA N . Justify
your construction. Clearly state all results you use.

Solution. First we use the result stating that every NFA can be simulated by a DFA to construct a
DFA M = (Q, {a, b}, δ, s, F ) such L(M) = L(N).
Then we define M ′ = (Q, {a, b}, δ, s,Q \ F ). We know from class that L(M ′) = L(N). Moreover,
because the DFA M ′ is also an NFA we have L(M ′) = L(N).

4. (a) Present an algorithm which tests whether an arbitrary DFA M accepts only finitely many strings.

Solution. A DFA M accepts only finitely many strings if and only if there is no path from the initial
state to a final state which has a loop. The algorithm generates all paths from the initial state to
every final state till the first path containing a loop is found; if no path with a loop is found, then
the DFA accepts only finitely many strings; otherwise, the DFA accepts infinitely many strings.

(b) Use your algorithm to test whether the following DFA

q0

q1

q3

q2q4

a, b
a

b

b

a

a

b
a, b

accepts infinitely many strings.

Solution. There is a unique path from the initial state q0 to the (unique) final state q3, namely
q0, q1, q2, q3, and it contains no loop. Hence, this DFA accepts finitely many strings. In fact it
accepts only one string, aba.



5. Construct an NFA N3 with Σ = {g, o, l, e} accepting the language A(P ) where P = google. Recall that
A(P ) = {uPv : u, v ∈ Σ∗}.

Solution.

q0 q1 q2 q3 q4 q5 q6
g o o g l e

g, o, l, e g, o, l, e

It is seen that that there is a unique trace from the initial state q0 to the unique accept state q6, namely

q0, q1, q2, q3, q4, q5, q6,

corresponding to the string google, hence L(N) = {google}.

6. Prove that there exist infinitely many DFA’s each of which recognises exactly the language {ε, a, b}.

Solution. The language L = {ε, a, b} is accepted by the DFA M1:

q0 q1
a, b

q2
a, b

a, b

because the initial state of Q0 M1 is also final (hence ε ∈ L(M1)), a and b are accepted by the traces q0, q1
and no other string is accepted: abu 6∈ L(M1), for every u ∈ {a, b}.

Moreover, the DFA M2 which consists of DFA M1 plus one isolated state q3 has the property L(M2) =
L(M1) = L. Also DFA M3 which consists of DFA M1 plus two isolated states q3, q4, . . . , DFA Mk which
consists of DFA M1 plus k − 2 isolated states q3, q4, . . . , qk,. . . , so we have an infinity of distinct DFAs
Mi, i = 1, 2, . . . each of which recognises L.


