Liouville, Computable, Borel Normal and Martin-Löf Random Numbers

Cristian S. Calude¹ and Ludwig Staiger² ¹University of Auckland, New Zealand ²Martin-Luther-Universität Halle-Wittenberg, Germany

Bucharest, 5 July 2016

To Solomon Marcus who loved Liouville Numbers

Figure 1: Discussing about Liouville numbers, September 2015

Four classes of numbers: \mathcal{L} , \mathcal{C} , \mathcal{N} and \mathcal{M}

A real number α is:

1. Liouville if it is irrational and for every positive integer k, there exist integers p_k and q_k with $q_k > 1$ such that

$$\left| \alpha - \frac{p_k}{q_k} \right| < \frac{1}{q_k^k};$$

- computable if it has a computable *b*-ary expansion for some b ≥ 2;
- 3. (Borel) normal if for every base b, every word $w \in \{0, 1, ..., b-1\}^*$ appears in its b-ary expansion with the frequency $b^{-|w|}$;
- 4. (Martin-Löf) random in base b if its b-ary expansion $\mathbf{x} = x_1 x_2 \dots x_n \dots$ has the property: $H(x_1 x_2 \dots x_n) \ge n O(1)$ (here H is the prefix complexity).

A combinatorial characterisation of Liouville numbers

An irrational real number α is Liouville if for every positive integer k, there exist integers p_k and q_k with $q_k > 1$ such that

$$\left|\alpha - \frac{p_k}{q_k}\right| < \frac{1}{q_k^k}$$

Theorem. Let $\alpha \in [0, 1]$ be an irrational. Then, α is a Liouville number iff for every integer k > 1 there exists a base $b = b_{\alpha,k} \ge 2$ and two words

$$v, w \in \{0, 1, \dots, b-1\}^*, |v| \le |w|, |w| > 0,$$

such that the b-ary expansion ${\bf x}$ of α satisfies the equality

$$\mathbf{x} = \mathbf{v} \cdot \mathbf{w}^k \cdot \mathbf{x}',$$

for some sequence \mathbf{x}' .

How large are the classes \mathcal{L} , \mathcal{C} , \mathcal{N} and \mathcal{M} ?

- C is the only countable class.
- L is a dense G_δ-set (hence co-meagre), measure zero set; it has Hausdorff dimension zero.
- ► N and M are constructive measure one, but constructively meagre in the Cantor topology.
- There exists a metric topology refining the Cantor topology in which *M* is co-meagre¹.

¹C. S. Calude, S. Marcus, L. Staiger. A topological characterization of random sequences, *Inform. Process. Lett.* 88 (2003), 245–250.

The *irrationality exponent* of a real α is a measure of how "closely" α can be approximated by rationals:

$$\inf \left\{ \mu \geq 0 \mid \left| \alpha - \frac{p}{q} \right| < \frac{1}{q^{\mu}}, \, p, q \in \mathbb{Z}, q \neq 0 \, \, \text{i.o.} \right\}.$$

Comment. Liouville numbers have infinite irrationality exponents. **Theorem.** Every random real has irrationality exponent 2. **Corollary.** $\mathcal{M} \cap \mathcal{L} = \emptyset$. The following seven sets are empty:

$$\begin{split} \bar{\mathcal{L}} \cap \bar{\mathcal{C}} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \quad \bar{\mathcal{L}} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \\ \mathcal{L} \cap \bar{\mathcal{C}} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \quad \mathcal{L} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \\ \bar{\mathcal{L}} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \quad \mathcal{L} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \text{ and} \\ \mathcal{L} \cap \bar{\mathcal{C}} \cap \mathcal{N} \cap \mathcal{M}. \end{split}$$

The following eight sets are non-empty:

 $\begin{array}{l} \mathcal{L} \cap \bar{\mathcal{C}} \cap \mathcal{N} \cap \mathcal{M}, \ \mathcal{L} \cap \bar{\mathcal{C}} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \\ \mathcal{L} \cap \mathcal{C} \cap \mathcal{N} \cap \mathcal{M}, \ \mathcal{L} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \mathcal{M}, \\ \bar{\mathcal{L}} \cap \bar{\mathcal{C}} \cap \bar{\mathcal{N}} \cap \bar{\mathcal{M}}, \ \bar{\mathcal{L}} \cap \bar{\mathcal{C}} \cap \mathcal{N} \cap \mathcal{M}, \\ \bar{\mathcal{L}} \cap \mathcal{C} \cap \bar{\mathcal{N}} \cap \bar{\mathcal{M}}, \ \bar{\mathcal{L}} \cap \bar{\mathcal{C}} \cap \mathcal{N} \cap \bar{\mathcal{M}}. \end{array}$

It is an *open problem* whether there exist computable (so, not random), normal, non-Liouville numbers.

It is known that computable, non-Liouville numbers, normal to base 2, but *not normal exist*. For example, any Stoneham number

$$F(1/2) = \sum_{i=1}^{\infty} 2^{-k^i} \cdot k^{-i}$$

(where $k \in \mathbb{N}$ is odd, $k \ge 3$) is computable, normal in base 2, but not in base 6, and has irrationality exponent $\mu(F(1/2)) = k$, hence it is not Liouville.

Conjecture. $\bar{\mathcal{L}} \cap \mathcal{C} \cap \mathcal{N} \cap \bar{\mathcal{M}}$ is non-empty.