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The fundamental faith in mathematics comes from the fact that
virtually everything is rigorously proved. But, what do we mean
by a “proof”’? According to K. Devlin

...|we|] mathematicians ... are somewhat schizophrenic
when it comes to answering this question. ... we generally
feel confident in our ability to tell a sound argument from
an invalid one. Moreover, we tend to feel that it really is
not an issue of judgment, and that for all their surface
brevity, the proofs we construct and publish are, in an
absolute sense, genuine proofs.
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A good way to explain is to do. Our choice refers to the simplest
way to analyze the mathematical thinking, i.e. by means of the
model initiated more than a hundred of years ago by George Boole,
currently referred as the propositional calculus. We are interested
only in the “truth values” of propositions, and again our working
hypothesis refers to the simplest case: propositions are only true or

false, no other possibility is considered.
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It can be argued that even God is bound by logic. If God can lift
any weight, then God is expressly prevented to create a weight so
heavy that God cannot lift it. But God can do anything that does
not involve a logical contradiction. (It seems that Einstein
sympathized with this argument.)
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We start with a (denumerable) set of atomic propositions. Denote
by V this set. We add to V' a new element, f, referring to it as the

universal false proposition.

Using the usual propositional operations (disjunction, conjunction,
negation, implication, etc.) we can form new propositions starting
with the atomic ones. For the simplicity of the presentation we

shall work with only one propositional operation — the tmplication
(denoted by —).
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We construct the “larger” set of propositions, call it P, defined by

means of the following four rules:
1. Every atomic proposition is a proposition, i.e. V C P.
2. The universal false proposition f belongs to P.
3. If x,y are arbitrary propositions, then x — ¥y is a proposition.

4. Every proposition is obtained by rules 1-3.
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Using only the implication and f doesn’t really make our approach
less general; indeed, all propositional operations can be
"re-captured” as follows:

negation: -z = x — f,
disjunction: z Vy = (-z) — v,

conjunction: z Ay = —((=(z) V = (y)).
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How do we know that the above formulas actually work?

To this aim we introduce the notion of valuation. The set of truth
values will be denoted by {0, 1} and we introduce on it the binary
operation (called truth implication) which models the idea that an
implication is false only in case the hypothesis is true but the

conclusion is false:
—: {0,1} x {0,1} — {0, 1},

m =—> n = max{l —m,n}.

Here max stands for the usual maximum function. Clearly,
m=—n=0if m=1and n=0.
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A wvaluation is a function

h:V —{0,1},

i.e. a way to assign truth values to atomic propositions. We can
extend this valuation to the set of all propositions imposing the

following two conditions:®

a) h(f) =0,
b) h(x — y) = h(x) = h(y), for all z,y € P.

@ Algebraically, h is a morphism; as P is freely generated by V', h is uniquely

determined by its values on generators, i.e. on V.
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If A is a valuation and x € P, then the proposition z is true under
hif h(z) = 1.

We can now compute the valuations of the negation, disjunction,
conjunction, according to a fixed h:

h(—x) =h(zx — f) = h(z) = h(f) = h(z) = 0 =0 iff h(x) =1,

i.e. h(—x)=1— h(x).

= /
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Similarly,

Wz Vy) = h((-z) = y)

Wz Ay) = h(~((=(z) v
=1—=h(=(z) V-(y))
h(=(y)} =1 — max{l — h(z),1 -

— (1=h(x)) = h(y) = max{1—(1—h(x)),

= h(-z) = h(y)

h(y)} = max{h(z),

~(¥))))
max{h(—-x),

h(y)}; = min{h(z),

h(y)}-

h(y)},
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The next step is to model the idea of “semantic consequence”: the
proposition a € P can be semantically deduced from the set of
premises X C P (or X is a semantic model for a) if every valuation

which makes all premises in X true, makes true a as well.
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Formally,
X Ea

if for every valuation h such that h(x) = 1, for all x € X, one has
h(a) = 1.

Remark. It is interesting to note that in IXTgX the symbol |= is

written \models. In case X = () we simple write = a.

=
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4

Example 0.1. The following relations are true:

1.

—a — (b — a), for all a,b € P.

= (a—(b—1¢c)) — (e —=b) — (a —c)), for all a,b,c € P.
= ((a — f) — f) — a, for every a € P.

{fa} Eb— a, for all a,b € P.
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For instance, for the last relation we have to show that for every
valuation h such that h(a) = 1 one has h(b — a) = 1. Indeed,
h(b — a) =h(b) = h(a) = h(b) = 1= 1.
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A special category of propositions is formed by “universal true
propositions”, i.e. propositions which are true with respect to all
possible valuations. We call them tautologies. The propositions
a—(b—a)(a—(b—c)—=(a—=b)—=(a—0)(la—f)—

f) — a are all tautologies.

=
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Of course, not all propositions are tautologies; the extreme example
is a proposition that is never true under any valuation, for instance,

a /\ 1a.

Remark. From a strict formal point of view, a A —a is not a
proposition in P, as A, - are not admissible operators. However, we

shall use the formula a A —a as an abbreviation for the proposition

(la—=f)=f)=a—=f)—=Ff)—=F

17



445.315/1998 Mathematical Logic

-~

1. a — a, (identity principle),

2. aV —a, (tertium non datur),

3. (aN(a—0b)) — b, (modus ponens),

4. ((a = b) A (a— —b)) — —a (negation principle),
5. a — (aVb), (disjunction principle).

=

Example 0.2. The following propositions are tautologies:
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Several natural questions can be asked, for instance:

e Is there a compact way to “describe” all and only all

tautologies?

e What is the “structure” of the set of tautologies?

e Is it possible to “algorithmically” recognize a tautology? Is this

a feasible task?

\
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specifically the set of tautologies. For our purpose the most
interesting one is the deductive approach. The prototype of a
deductive science is Euclid’s geometry, developed around 300 B.C.
The major step undertook by Euclid and his predecessors in Greece
was to organise these facts into a deductive science or

axiomatic-deductive geometry.

= /
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The truth or falsity of most propositions in geometry cannot be
propositions whose truths are immediately recognized from their
axioms, by a series of logical steps that we accept as propagating

truth forward, we construct a “proof” by which we can arrive at

the truth of other propositions — called “theorems”.

=
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seen directly from their meanings. The azioms, however, are special

meanings; in fact, for a long period, this was the major criterion to

select axioms (we shall return to this problem later). Starting with
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Do we have a “solid” basis for recognizing the rules that allow us to
propagate truth forward? This is a very delicate problem. For a
long period Euclid’s theory was considered the prototype of a
perfect theory. However, in the nineteenth century people revealed
flaws in Euclid’s proofs, making essential use of “illustrated”
figures. False “theorems” were discovered: “proofs” read just

Euclid’s proofs, except that some figures were “fudged” a little bit.

= /
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A fundamental change of view point has to be adopted: deductions
should be possible to carry out without reference to meanings. In
Fuclid’s case, proofs should read correctly with nonsense words
substituted for “point”, “line”, “plane”. The logical principles
which mediate the steps in proofs should be stated in advance as
rules of inference. So, the meanings of none of the words need to
be considered in constructing proofs; the quality of being a valid

proof depends then only on the form of the sentences.

= /
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A valid proof has to be impersonal: whenever an alleged proof is
submitted to a person who has previously been told the
specifications of the system she/he should be able to check the
proposed proof and decide whether it actually is a proof or not. No
extra imagination or judgment is needed. In other terms, checking
the validity of an alleged proof may be done by computer; this

infinite class of yes-or-no questions is algorithmically decidable.

= /
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This explains why the working mathematicians may differ (and,
indeed, they do) in their views of what constitutes a rigorous proof,
in spite of the fact that all of them believe in rigorous proofs.
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“isolate” a few tautologies (called azioms) and a “deduction
principle” with the aim of “deriving” all and only all tautologies.

The axioms will be the first three tautologies:

Al. a — (b — a), for all a,b € P.

A2. (a—(b—c)) — ((a —b) — (a — ¢)), for all a,b,c € P.
A3. ((a — f) — f) — a, for every a € P.

=
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We shall now explain an axiomatic system for tautologies. We first
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As a deduction rule we make use of the most fundamental principle
(called Modus Ponens), modeling the following inference: if one

proves y from x, and z has a proof, then y has a proof.

Modus Ponens : For all x,y € P, if x and x — y, then y.
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We have got a “formal system”. Within it we can discuss about
“(formal) proofs”.

Remark. To distinguish between “proofs within our system” and
“proofs outside the system”, the first ones will be written in bold

characters.

Informally, a proof is just a finite sequence of propositions such
that every element in the sequence is an axiom or can be deduced
from propositions already in the sequence by Modus Ponens.
Sometimes our proofs make use of extra hypotheses X; they will

be called X-proofs.

= /
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Let X be a set of propositions and a € P. An X-proof for a (i.e. a

proof (within the system) of a from the set X of premises) is a
sequence

L1y L2y...,sTn
of elements in P such that z,, = a and for all 1 <7 < n one has:
o 1; € X or,
e I, Is an axiom, or

e there exist 1 < k,l < ¢ such that z; = xp — x; (i.e. x; can be

deduced from z; and x; via Modus Ponens).

The proposition a is called an X-theorem in this case.

= /
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Sometimes we write:
X Fa,

or simply

in case X = 0.

Example 0.3. For all a,b,c € P, the following relations are true:
I.Fa— (b—a),

2. Fa— a,

3. {b} Fa—b,

4. {a — (c—=b),a —ctFa—b.

= /
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Proof. The first proposition, a — (b — a), is an axiom. For a — a

we can write the following proof:

1. a—((b—a)—a))— ((a—(b—a))— (a—a)) (by A2
2. a— ((b—a) — a) (by Al.)

3. (a— (b—a)) — (a— a) (by Modus Ponens from 2. and 1.)
4. a— (b—a) (by Al.)

5. a — a (by Modus Ponens, from 4. and 3.).
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1.

The following sequence represents an {b}-proof:

b— (a—0)
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Finally, the following sequence represents an

{a — (¢ — b),a — c}-proof:

L (4= (c—1b) = ((a—c) = (a— b))

2. a—(c—D)

ook W
S
l
)
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The following theorem, due to Herbrand, makes explicit the
relation between the implication (—), as an inner operator of the

system, and the syntactical derivation (=), the external deduction.

Deduction Theorem. Let X C P, and a,b € P. The following
statements are equivalent:

a) XFa—b,
b) X U{a}Fb.

= /
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X U {a}-proof for b. We prove, by induction on i, that
XFa— ;.
For : = n we get the desired conclusion:

XFa—b,

as r,, = b.

=

We are proving the converse implication. Let x1,zo,..., 2, be an

~

Proof. For the direct implication let x1,zo,...,x, be an X-proof
for a« — b. Then x1,x2, ...,2,,a,bis an X U {a}-proof for b.
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There are four possible cases to be discussed:

e 1; € X: since {z;} Fa — x; one deduces X - a — x;, as
r; € X.

e 1; = a: since - a — a, by Example 0.3, X - a — a.

e 1, is an axiom: one has F z;, so {z;} Fa — z;, i.e.
XFa— XI;.

® I, =21x; — T;J,k <i: by hypothesis, X - a — x; and
X Fa — x;. By virtue of Example 0.3,

{a =z, = (z; = z;)} Fa— z,

so X Fa— x,;.
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Remark. There is a simpler, semantical analogue of the Deduction
Theorem. It reads as following: Let X C P, and a,b € P. The

following statements are equivalent:
a) X =a—b,
b) X U{a} 0.

= /
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Here are two more examples of X-proofs:

Example 0.4.
1. {f}Fa, for all a € P,
2. {a,—-a} b, for all a,b € P.

\_
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1.

Proof. Here is an { f }-proof for a:

f
f—=Ua—=f)—=1Tf)
(@a—f)—f

((a—f)—=[f)—a

a.
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Starting with the sequence

a. a

b. a—f

c. f
and the above { f}-proof, i.e. steps 1.,2.,3.,4.,5. we get an

arbitrary proposition b.

\_ /
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Adequacy Problems

It’s time to look critically at our system. Is it adequate? Soundness
is the first required property, as we are interested to “describe”
only tautologies. Specifically, the question reads: Is any theorem a

tautology? A negative answer would ruin the whole construction.

\_ /
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We start proving that every X-theorem can be semantically
deduced from X:

Proposition. For all X C P,a € P, if
X Fa,

then
X Ea.

Proof. We use the definition of an X-proof inductively, noticing
that all axioms are tautologies and Modus Ponens is an invariant

rule.

=

~
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nature of tautologies.

formally, if

To be really successful we need to prove the completeness of our
system. The following proof will give some more insight on the

A set X C P is called consistent if it is free of contradictions;

X T

~
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Example 0.5. The empty set is consistent. The set {a,—a} is not

consistent.

Proof. Indeed, if F f, then, = f, which is absurd as for every
valuation h one has h(f) = 0. By Example 0.4, {a, —a} - f.

= /
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We shall prove now two technical results that are motivated by a
typical algebraic construction: the embedding of a structure in a

maximal structure of the same type.

Lemma. The union of an increasing sequence (under

=

set-theoretical inclusion) of consistent sets is still a consistent set.
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Proof. Let
BiCByC---CB, CBpy1 C---

be an increasing sequence of consistent sets and put
B=|] B,
n>1

If, by absurd, B is not consistent, then B - f, i.e. there exists a
finite set X C B such that X - f. So, X C B,,, for some natural
m > 1 (as the sequence (B;);>1) is increasing). This contradicts the

consistency of B,,.

= /
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A set X C P is called mazximal consistent if for every element
a ¢ X the set X U{a} is not consistent.

Proposition. Fvery consistent set can be embedded into a maximal

consistent set.

Proof. The usual way to prove such a result is to invoke Zorn’s
Lemma. Let X be a consistent subset of P. The set
I'={TCP|XCT, T f} is non-empty (X € I'). More, every
chain in I' has an upper bound: if {T,|a € A} is a totally ordered
family of elements of I' and T' = |J cp T, then X CT C P, T/ f
(as, if f is provable from T means that f is provable from a finite
subset of T).
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Use now Zorn’s Lemma (if S is a partially ordered set in which each
chain has an upper bound, then S contains a maximal element) to
assert the existence of a maximal element in I'. In general, no claim

of constructivity can be made for such a reasoning
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We proceed constructively, i.e. introducing an enumeration
technique usually referred to as a godelization. Assume that we
have an one-one enumeration v;,? = 2,3, ... of all atomic

propositions.
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Then, we can construct an one-one function g : P — N as follows.
Assume that our enumeration {v;} was “computable”, in the sense
that there exists an algorithm computing v; when presented i.
Then, the function g is itself computable and given i € g(P) we can

effectively discover the (unique) proposition x € P such that

g(x) =i

= /
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Put
g(f) =0,
glv;)) =2i—1,1>1,
glxr —y) = 99(z) 39(y)
For instance,,
g(v1 — (v — v1)) = 29(v1) 39(vz—v))

_ MH wwu?mvwr@?i _ 9 www.wH _ 5 ww%
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Let X C P be a fixed consistent set. Using the above function g we
define the following sequence of sets of propositions:

mo — »vm«u
Bni1 = B,Ug '{n}, if B,Ug '{n} is consistent,
= B,, otherwise.
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Clearly, the sequence B,, is increasing and each B,, is consistent.
So, B =, ~o Bn is consistent as well. Since By = X C B the only
fact it remains to be proven is the maximal consistency of B. Let
B CY C P be such that B #Y, i.e. there exists a proposition

g '(n)eY,g'(n) € B.
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From the relation g='(n) € B and the construction of B, it
follows that g1 (n) € B,,.1 — because B, U{g~1(n)} is not

consistent, 1.e.
B,U{g (n)}F f.

that Y is not consistent.

=

But, B, CY, g7'(n)€Y,s0B,U{¢g '(n)} CY and Y F f, saying

\

54



445.315/1998 Mathematical Logic

-

Maximal consistent sets are “fixed-points” of the operator

Proposition. If X C P is a maximal consistent set, then

1. {a€P|XFa}=X,

true: a € X or —a € X.

=

generating theorems and they obey the Bivalence Principle.

2. for every a € P, one and only one of the following relations is

\
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Proof. 1) Clearly, X C {a € P|X I~ a}. But
fé{ace P XFa}={a€c P|{be P X F b}t a},

so {a € P|X I a} is consistent. In view of the inclusion

X C {a € P|X F a} we can make use of the maximality to derive

the equality.

=
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2) If a ¢ X, then X U {a} is not consistent, i.e.
X U{a} - f.
We use now the Deduction Theorem to get
XFa— f=a.

By virtue of 1), ma € X. If —a € X, then X U {—a} is not
consistent,
X UA{—-a}F f.

=
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By the Deduction Theorem
NTJ@l\”A@l\vl\”JJQ\

By the axiom A3.

—/qQ — QJ

so X Fa, i.e. a € X by virtue of maximality. Of course, it is not

the case that both ¢ and —a are in X, as X is consistent.

=
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The next result shows that every maximal consistent set of
propositions X has a model.

Proposition. Let X be a maxrimal consistent set. Then, cx, the
characteristic function of X (with respect to P) is a valuation

making true all propositions in X.

=
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Proof. Recall that cx : P — {0,1}, ¢x(a) =1iff z € X. As X is
maximal consistent, X F/ f, so f € X, i.e. cx(f) =0.

Take now a,b € P. We shall prove that

cx(a — b) =cx(a) = cx(b).
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1.

There are three cases to be analysed.

If b € X, then c¢x(b) =1, so
cx(a) = cx(b) = cx(a) = 1 = 1. One has to prove that
cx(a—0b)=1,ie. a—be X. We know that X is maximal

consistent, so a fixed-point:
X ={ce P|X I c}.
By axiom Al., b — (a — b), so
XFEb—(a—0D).

By hypothesis, b € X, so X b and (by Modus Ponens)
X Fa — b. Again, by maximality, a — b € X.
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If a ¢ X, then cx(a) =0, so

cx(a) = cx(b) =0 = cx(b) = 1. So, we have to prove again
the relation cx(a — b) = 1. But a € X implies, —a € X. Using
the Deduction Theorem (to {a,—a} F b) we get

{=a}t a—b.

Since ~a € X, X F-a,so X +Fa—b,ie. a—be X.
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Ifae X and b ¢ X, then cx(a) =1,cx(b) =0, so
cx(a) = cx(b) = 0. The relation a — b ¢ X remains to be
proven. Indeed, ifa - b€ X,a € X, thenb e X, a

contradiction.
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Corollary. If X is consistent, then there exists a valuation
h: P —{0,1} such that h(a) =1, for all a € X.

Proof. Embed the given consistent set into a maximal consistent
set and then use the proposition on models.
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We are now able to prove

Post’s Completeness Theorem. For every set of propositions X

and every proposition a,

X Eaiff X Fa.
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Proof. Only the direct implication has to be proven. Assume that
X = a. We shall prove that X U {—a} is not consistent. If it were
consistent, then we would have, a valuation h such that h(b) = 1,
for all b € X U {—a}, i.e.

h(—a) =1,

and
h(b) =1, for all b € X.

From h(—a) = 1 one deduces h(a) = 0, so we have contradicted the

hypothesis X = a.

= /
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From the inconsistency of the set X U {—a} we deduce
X UA{—-a}F f.
Use again the Deduction Theorem
XkF-a— f=-a,

and the axiom A3. to get X F a.

=
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Problem: Does it mean that actually we have got an X U {—a} -
proof for f or only an assertion telling that such a proof does

exist?
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Taking X = ) get

For every proposition a,

= a iff Fa.
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Digression: Three or many valued logics. The proposition
(ma —a) —a

is clear a tautology (it seems to be discovered by Clavius, 1600
A.C.). If we switch the underlying logic, from binary, to, say
ternary, we loose the tautological property. Indeed, assume we

work with the ternary logic in which the truth values are

0, w (uncertain), 1. The implication valuation will use the same

formula, i.e. m => n = max{1 —m,n}. This means that -1 =

and w — w = w If the truth value of a is uncertain, then the

proposition (-ma — a) — a is also uncertain.

=

1
2

\
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The Structure of Tautologies

One reason why Boolean algebras are relevant to logic is that
propositional operators have properties similar to Boolean
operations. Based on this analogy we cannot ask questions such as
“What is a proof?” or “How can we prove?”; instead, we can study
the inner “structure” of provable propositions, that is, via the

Completeness Theorem, of tautologies.
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on P

=

~

: : : . h
To every valuation h we associate an equivalence relation ~ defined

as follows:
a 2 biff h(a) = h(b).
h

In fact, ~ is more than an equivalence relation, it is a congruence,
in the sense that & is compatible with the algebraic structure of P:
Ifa2band a & b, then a — o’ Ly Indeed, from

h(a) = h(b), h(a’) = h(b") we deduce

hia — ') = h(a) = h(d') = h(b) = h(V') = h(b — V).
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: : h :
The intersection of congruences ~, when h runs over all valuations,

h
~= N A

n valuation

is still a congruence on P. The equivalence class of an element
a€ P is

la] = {b € Pla L b, for every valuation h}.
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The family of all equivalence classes, P/.. = {|a]},cp can be
endoweded, in a natural way, with the following Boolean

operations:®

~[a] = [,
la] v [b] = [-a — b],
la] A6} = [=((=a) v (=0))].

®Recall that —a is an abbreviation for the proposition a — f.

=
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These definitions are correct, i.e. they do not depend upon the

for every valuation h, so
h(-a) = h(a — f) = h(a) = h(f) =

h(a) = 0= h(b) = 0= h(b— f) = h(-b),

(called Lindenbaum algebra).

=

~

chosen “names” for classes. For instance, if a ~ b, then h(a) = h(b),

meaning that [—a] = [-b]. More, (P/.,V,A,—) is a Boolean algebra

\
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The following identities are satisfied for all u,v,w € P/.:

uNv=vANu, uVv=vVu,

uN(wAw)=(uAv)ANw, uV (vVw)=(uVv)Vuw,

uN(uVo)=uuV(uAv)=u,

uN(vVw)=(wAv)V(uAw), uV(wAw)=wVo)A(uVw),

(uAN—u)Vo=wv, (uV-u)Av=wuw.

\
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The distinguished element “1” of this Boolean algebra is
Taut = [a| V —[a] = [a] V [-a] = [a V —al,

and, as h(a V —a) = 1, for all @ € P, coincides with the set of all
tautologies. Recall that in every Boolean algebra the expression
x V —x does not depend upon the actual value of x; this is the
element “1”, or the maximal element of the algebra.

=
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We make one more step further in our generalization: Consider an
arbitrary Boolean algebra B endowed with the operations V, A, —,
whose elements are identified with the propositions of some
mathematical theory. Assume F' C B corresponds to the set of

provable propositions (theorems).

= /
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The common mathematical experience motivates the following two

statements;
o If s,t € F,then sand t € F.

e [fsec Fandt e B, thensor teF.

The above two properties are similar to properties defining the

notion of Boolean filter.

= /
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Is this only a superficial analogy? The argument for a negative
answer is presented in the following

following two assertions are equivalent:
1. The set F' 1s a filter.®

2. One has:
a. 1eF.
b. Ifx e F andx —y e F, theny € F.

B,xVvyekF.

=

Theorem. Let F' be a subset of the Boolean algebra B. Then, the

®That is, 1. 1 € F, 2. For all z,y € Fix ANy € F, 3. For all z € F,y €

~

\
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Proof. For the direct implication we assume that x € F' and

xr — y € F'. In view of the second property of a filter, if p,q € F',
then p A g € F. A simple computation shows that
zNA(x—y)=xzAN(-xzVy) =(@A-z)V(xAy) € F,ie. xANyecF.
Finally, y =y V (x Ay) isin F as x Ay € F; we have used the third
property of a filter.

= /
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Conversely, let z,y € F. We have: x =z A (z V y), so

—r=-xV-a(zrVy) =-zV(-xA-y).

Consequently,

l=xV-ax=zxV(xV(xAy))=(xV(-zA-y))V-xeF

But x € Fand 1€ F,soxV (—x A -y) € F and

—zV ((—zA-y)Ve)=—-z— (~xA-y)Vzx)=1€F.
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eV (~zA-y)=(xV-y ANxVy =xzV-y=y—x€cF.

Now we are using the second hypothesis, y € F":

y— @Ay)=—-yV(@Ay)=(yVe)V(yhz)=-yVeeckF

sox Ny e F.

for y and we obtain z V —(—y) € F,ie. x Vy € F.

Let x € F and y € B. In the above computation we substitute —y

\
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Lindenbaum algebra P/.. Take X C P and
F(X)=A{la] € P/<|X Fa}.

Then F(X) is a filter. Indeed, Taut € F'(X) (if
a € Taut, then = a, so by the Completeness Theorem, F a, so
X Fa). Next take [a] € F(X) and [a] — [b] = [a — b] € F(X).

b] € F(X).

=

~

We can now come back to our concrete example of Boolean algebra,

This means that X Fa, X Fa — b, so by Modus Ponens, X F b, i.e.

\
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So, from a structural point of view, {Taut} is a filter in the

Lindenbaum algebra P/.; actually, it is an ultrafilter.
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Ultrafilters and Constructivity

Let B be a Boolean algebra. Filters in B which are maximal with
respect to inclusion are called ultrafilters. It is not hard to show
that a filter F' is an ultrafilter iff for every x € B either x € F' or
—x € F', but not both.

\_ /
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The key result on ultrafilters is the Ultrafilter Theorem. FEvery

filter in a Boolean algebra can be extended to an ultrafilter.

To illustrate this situation we consider the Lindenbaum algebra

P/ ; for every valuation h define
Fr = {lal € P/~[h(a) = 1}.

A simple argument shows that I}, is a filter, in fact, an ultrafilter.

= /
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These facts actually motivate another approach to the
Completeness Theorem, a path followed by Rasiowa and Sikorski.
Bell and Slomson, p. 49, wrote:

The proofs of Post and Kalmar both provide explicit recipes
for constructing a proof of a given tautology. The proof
that we have given, which is due to Rasiowa and Sikorski,
does not have this character, and since it depends on the

ultrafilter theorem s not a constructive proof.

=

~
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This remark calls for a more detailed explanation. The problem
under discussion is the following: Having a proposition a and
knowing that a is a tautology, is it possible to get a proof, within

the considered system, for a?

89



445.315/1998 Mathematical Logic

-

As it stands, the above question has always a positive answer, by
the Completeness Theorem, independently of the proof of this
theorem. Indeed, a dovetailing algorithm— aBritish Museum
algorithm, following Chaitin—running through all possible proofs
does the job, as we know that eventually the right proof will be

discovered.

=

~
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In fact, this is exactly the algorithm rejected for the general
problem discussed at the beginning®. The main difference lies in

is a tautology. This is a quite subtle situation, in which the
difference between a constructive proof and a non-constructive

proof affects very little the “numerical” content of the result.

theorem?

=

the extra information given in the weaker question: we know that a

“Having a proposition a, is it possible to algorithmically decide if a is a

\
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To get more insight on this phenomenon we make use of some

rudiments of Constructive Mathematics. According to Bridges and

Richman:

We engage in constructive mathematics from a desire to
clarify the meaning of mathematical terminology and
practice — in particular, the meaning of existence in a
mathematical context. The classical mathematician, with
the freedom of methodology advocated by Hilbert, perceives
an object x to exist if he can prove the impossibility of its
nonexistence; the constructive mathematician must be
presented with an algorithm that constructs the object x

before he will recognize that x exists.

= /
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The essential difference between a classical and constructive
approach to mathematics can be grasped by considering binary
sequences generated by an algorithm. Let b = b1b>...0, ... be a
binary sequence and consider the following statements:

S(b) : b, =1, for some n,

-S5(b) : b, = 0, for all n.
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Here —S5(b) is the denial of S(b): under the assumption of S(b) a

contradictory statement (like 0 = 1) holds. A constructive proof of
S(b) V =S (b) must provide an algorithm showing that b, = 0, for all
n, or computing a positive integer n such that b,, = 1.
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A Brouwerian counterexample to an assertion is a proof that
the assertion implies some unacceptable principle in constructive
mathematics. The most popular such principle is called the

Limited Principle of Omniscience, LPO:

If (b,) is a binary sequence, then either there exists n such
that b,, = 1, or else b, = 0, for all n.

~
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Clearly, LPO is simple the assertion

Vb(S(b) V ~S(b)).

the outline of the argument. First we show that the Halting
that there exists a halting program deciding if an arbitrary
are supposed to be 0 or 1; also, we may assume, without loss of

generality, that the inputs for the programs are part of the
programs themselves.

=

~

Why is it constructively false? Just because it is equivalent to the

Halting Problem, which cannot be solved algorithmically. Here is

Problem is not decidable. Assume, for the sake of a contradiction,

program eventually halts. The outputs, if any, for all our programs

\
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read a natural NV;
generate all programs up to N bits in size;

use the halting program to check for each generated program

whether it halts and filter out all non-halting programs;
simulate the running of the above generated programs:;

make sure that the running time of the current program is
bigger than the running time of all halting programs, generated

above.

\
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First, notice that the above program eventually halts for every
natural N. How long is the above program 7 It is about log, N
bits. Indeed, the program consists of the input data N (which
requires about log, NV bits) and a constant part. Globally, the
program has log, N 4+ O(1) bits. For large enough N, the above

(because log, N + O(1) < N). Accordingly, the program will be

we have got a contradiction, since the computation time for our
program will be bigger than the computation time of itself!

=

program will belong to the set of programs having less than N bits

generated by itself — at some stage of the computation. In this case

\
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The second step in our argument is a reduction: we prove that in
case we assume LPO, then the Halting Problem is decidable.
Indeed, let

T1yT2y ey T,y -

be the set of all our programs and consider the following

(computable) function p:

1, if mp(m) halts in time less than £,

.:QS: \Av — .
0, otherwise.

~
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Applying LPO to the set of binary sequences
by, by, ... b

where

b = p(m, 1),

\_

would solve the Halting Problem, which is impossible.
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but freely used by the Russian school in constructive

mathematics—which corresponds to our axiom A3., reads:

~

Markov’s Principle, MP—this principle is rejected by Brouwer,
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To illustrate MP we consider an one-one enumeration of all

possible proofs for tautologies:
P1, P2, -
Let a € Taut and consider the predicate
Pred(a,i) = p; is a proof for a.

Clearly, for a fixed a, Pred(a,i) is algorithmically decidable. Next,
use MP to the statement

JiPred(a, 1),

saying that it would be absurd to deny that there is a positive
integer © such that Pred(a,i). From this fact we get no clue or

computation bound for the construction of such an 3.
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Note, following Brouwer, that the statement
JJJ\P = J\wu

is constructively meaningful. Indeed, under the assumption =———A
we can prove —a by deriving a contradiction from A: if A, then - A
is absurd, hence =—A, which contradicts =———A. To conclude, given
a tautology a, we surely can get a proof for a; however, we can
provide no indication concerning the number of proofs necessary to
inspect before getting the required proof: this state of affairs
reflects the meaning of MP.
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Decidability and Complexity

The formulation of the negative result cited at the end of the above
section leaves the impression that the property of being a theorem
of the propositional calculus is algorithmically decidable. Is this

true?

\_ /
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Indeed, the above decision problem is algorithmically decidable, by
virtue of the Completeness Theorem. Theorems coincide with
tautologies and testing if an arbitrary proposition is or is not a

tautology is algorithmically decidable.
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Apparently, switching from theorems to tautologies doesn’t help
too much, as we replace the (potential infinite) search through all
possible proofs by a search through all possible valuations of
propositions (an infinite set, as well). This is only a superficial
feeling! If a contains n atomic propositions, then we don’t have to
go through all possible valuations A, but to examine only the
restriction of these valuations to the set of atomic propositions in a.

We have arrived at a finite set, containing 2" elements.
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Question is: How difficult is to decide if an arbitrary proposition a
is a theorem? To approach this question we will discuss briefly the
class P of polynomial algorithms. The Euclidean algorithm (for
computing the greatest common divisor of two positive integers) is
an example of a polynomial algorithm, in the sense that the
number of basic bit operations (the time used by the algorithm) is

a polynomial function of the number of bits in the input.
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If the two inputs have at most n digits, then the larger input is less
than 2", so the number of steps is bounded by cn. Each step
involves a division, i.e. about n? bit operations, which gives finally
a cubic polynomial. In fact, by a more involved analysis one can
show that the Euclidean algorithm works in time bounded by a

quadratic function of the length of inputs.
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Sometimes we are not able to design a polynomial algorithm for a

problem; at least, we can prove that a solution for the problem can
be quickly recognized if some miraculously source furnishes it to us.
A good example is the problem of primality. It is not easy to
determine if a positive integer having 1,000 digits is composite. But
if we have got somehow two numbers and a claim that they
multiply to the given number, then we can very easily check if the
claim is correct or not. These two numbers form a certificate of
their compositeness. This leads to the important class NP of
algorithms running in nondeterministic polynomial time, i.e.
algorithms working in polynomial time under the assumption that
a certain certificate has been given. One of the most intriguing

open problems in theoretical computer science pertains exactly the
relation between P and NP: P =7 NP.
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Testing if an arbitrary proposition a is a theorem along the path
suggested at the beginning of this section requires an exponential
computation time. Is it possible to do it better? No one knows
this. We can see readily that our problem is in co-NP, as guessing

an valuation which makes a false solves very quickly the problem.
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In fact the problem P = 7 NP is really meta-mathematical!
Indeed, assume an appropriate coding and measure of the size of
proofs. So, we may have polynomial size proofs and exponential
size proofs. The difference between P and NP — if any — may be
seen as a difference between constructing a polynomial size proof
and verifying a polynomial size proof. If P = NP, then they are
the same.
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