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T
he

fundam
ental

faith
in

m
athem

atics
com

es
from

the
fact

that
virtually

everything
is

rigorou
sly

p
roved

.
B

ut,
w

hat
do

w
e

m
ean

by
a

“proof”?
A

ccording
to

K
.
D

evlin

...[w
e]

m
athem

aticians
...

are
som

ew
hat

schizophrenic
w

hen
it

com
es

to
answ

ering
this

question.
...

w
e

generally
feel

confident
in

our
ability

to
tell

a
sound

argum
ent

from
an

invalid
one.

M
oreover,

w
e

tend
to

feel
that

it
really

is
not

an
issue

of
judgm

ent,
and

that
for

all
their

surface
brevity,

the
proofs

w
e

construct
and

publish
are,

in
an

absolute
sense,

genuine
proofs.
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A
good

w
ay

to
explain

is
to

do.
O

ur
choice

refers
to

the
sim

plest
w

ay
to

analyze
the

m
athem

atical
thinking,

i.e.
by

m
eans

of
the

m
odel

initiated
m

ore
than

a
hundred

of
years

ago
by

G
eorge

B
oole,

currently
referred

as
the

propositional
calculus.

W
e

are
interested

only
in

the
“truth

values”
of

propositions,
and

again
our

w
orking

hypothesis
refers

to
the

sim
plest

case:
propositions

are
only

true
or

false,
no

other
possibility

is
considered.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

4

'&

$%

It
can

be
argued

that
even

G
od

is
bound

by
logic.

If
G

od
can

lift
any

w
eight,

then
G

od
is

expressly
prevented

to
create

a
w

eight
so

heavy
that

G
od

cannot
lift

it.
B

ut
G

od
can

do
anything

that
does

not
involve

a
logical

contradiction.
(It

seem
s

that
E

instein
sym

pathized
w

ith
this

argum
ent.)
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W
e

start
w

ith
a

(denum
erable)

set
of

atom
ic

propositions.
D

enote
by

V
this

set.
W

e
add

to
V

a
new

elem
ent,

f,
referring

to
it

as
the

universal
false

proposition.

U
sing

the
usual

propositional
operations

(disjunction,
conjunction,

negation,
im

plication,
etc.)

w
e

can
form

new
propositions

starting
w

ith
the

atom
ic

ones.
For

the
sim

plicity
of

the
presentation

w
e

shall
w

ork
w

ith
only

one
propositional

operation
–

the
im

plication
(denoted

by
→

).
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W
e

construct
the

“larger”
set

of
propositions,

call
it
P

,
defined

by
m

eans
of

the
follow

ing
four

rules:

1.
E

very
atom

ic
proposition

is
a

proposition,
i.e.

V
⊂
P

.

2.
T

he
universal

false
proposition

f
belongs

to
P

.

3.
If
x
,y

are
arbitrary

propositions,
then

x
→
y

is
a

proposition.

4.
E

very
proposition

is
obtained

by
rules

1-3.
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U
sing

only
the

im
plication

and
f

doesn’t
really

m
ake

our
approach

less
general;

indeed,
all

propositional
operations

can
be

”re-captured”
as

follow
s:negation:

¬
x

=
x
→
f
,

disjunction:
x
∨
y

=
(¬
x)→

y
,

conjunction:
x
∧
y

=
¬

((¬
(x)∨

¬
(y)).
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H
ow

do
w

e
know

that
the

above
form

ulas
actually

w
ork?

T
o

this
aim

w
e

introduce
the

notion
of

valuation.
T

he
set

of
truth

values
w

ill
be

denoted
by
{0,1}

and
w

e
introduce

on
it

the
binary

operation
(called

truth
im

plication)
w

hich
m

odels
the

idea
that

an
im

plication
is

false
only

in
case

the
hypothesis

is
true

but
the

conclusion
is

false:

=⇒
:{0,1}

×
{0,1}

→
{0,1},

m
=⇒

n
=

m
ax{1

−
m
,n}.

H
ere

m
ax

stands
for

the
usual

m
axim

um
function.

C
learly,

m
=⇒

n
=

0
iff
m

=
1

and
n

=
0.
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A
valuation

is
a

function

h
:
V
→
{0,1},

i.e.
a

w
ay

to
assign

truth
values

to
atom

ic
propositions.

W
e

can
extend

this
valuation

to
the

set
of

all
propositions

im
posing

the
follow

ing
tw

o
conditions: a

a)
h(f)

=
0,

b)
h(x
→
y)

=
h(x)

=⇒
h(y),

for
all

x
,y
∈
P

.
a
A

lg
eb

ra
ica

lly,
h

is
a

m
o
rp

h
ism

;
a
s
P

is
freely

g
en

era
ted

b
y
V

,
h

is
u
n
iq

u
ely

d
eterm

in
ed

b
y

its
v
a
lu

es
o
n

g
en

era
to

rs,
i.e.

o
n
V

.
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If
h

is
a

valuation
and

x
∈
P

,
then

the
proposition

x
is

true
under

h
if
h(x)

=
1.

W
e

can
now

com
pute

the
valuations

of
the

negation,
disjunction,

conjunction,
according

to
a

fixed
h:

h(¬
x)

=
h(x
→
f)

=
h(x)

=⇒
h(f)

=
h(x)

=⇒
0

=
0

iff
h(x)

=
1,

i.e.
h(¬

x)
=

1
−
h(x).
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Sim
ilarly,

h(x
∨
y)

=
h((¬

x)→
y)

=
h(¬

x)
=⇒

h(y)

=
(1−

h(x))
=⇒

h(y)
=

m
ax{1−

(1−
h(x)),h(y)}

=
m

ax{h(x),h(y)}
,

h(x
∧
y)

=
h(¬

((¬
(x)∨

¬
(y))))

=
1
−
h(¬

(x)∨
¬

(y))
=

1
−

m
ax{h(¬

x),

h(¬
(y)}

=
1
−

m
ax{1

−
h(x),1

−
h(y)}

=
m

in{h(x),h(y)}.
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T
he

next
step

is
to

m
odel

the
idea

of
“sem

antic
consequence”:

the
proposition

a
∈
P

can
be

sem
antically

deduced
from

the
set

of
prem

ises
X
⊂
P

(or
X

is
a

sem
antic

m
odel

for
a)

if
every

valuation
w

hich
m

akes
all

prem
ises

in
X

true,
m

akes
true

a
as

w
ell.
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Form
ally,

X
|=
a

if
for

every
valuation

h
such

that
h(x)

=
1,

for
all

x
∈
X

,
one

has
h(a)

=
1.

R
em

ark.
It

is
interesting

to
note

that
in

L aTE X
the

sym
bol|=

is
w

ritten
\
m
o
d
e
l
s
.

In
case

X
=
∅

w
e

sim
ple

w
rite
|=
a.
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E
x
am

p
le

0.1.
T

he
follow

ing
relations

are
true:

1.
|=
a
→

(b→
a),

for
all

a
,b∈

P
.

2.
|=

(a
→

(b→
c))→

((a
→
b)→

(a
→
c)),

for
all

a
,b,c∈

P
.

3.
|=

((a
→
f)→

f)→
a,

for
every

a
∈
P

.

4.
{a}
|=
b→

a,
for

all
a
,b∈

P
.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

1
5

'&

$%

For
instance,

for
the

last
relation

w
e

have
to

show
that

for
every

valuation
h

such
that

h(a)
=

1
one

has
h(b→

a)
=

1.
Indeed,

h(b→
a)

=
h(b)

=⇒
h(a)

=
h(b)

=⇒
1

=
1.
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A
special

category
of

propositions
is

form
ed

by
“universal

true
propositions”,

i.e.
propositions

w
hich

are
true

w
ith

respect
to

all
possible

valuations.
W

e
call

them
tautologies.

T
he

propositions
a
→

(b→
a),(a

→
(b→

c))→
((a
→
b)→

(a
→
c)),((a

→
f)→

f)→
a

are
all

tautologies.
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O
f
course,not

allpropositions
are

tautologies;the
extrem

e
exam

ple
is

a
proposition

that
is

never
true

under
any

valuation,for
instance,

a
∧
¬
a.

R
em

ark.
From

a
strict

form
al

point
of

view
,
a
∧
¬
a

is
not

a
proposition

in
P

,as
∧
,¬

are
not

adm
issible

operators.
H

ow
ever,w

e
shall

use
the

form
ula

a
∧
¬
a

as
an

abbreviation
for

the
proposition

(((a
→
f)→

f)→
((a
→
f)→

f))→
f
.
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E
x
am

p
le

0.2.
T

he
follow

ing
propositions

are
tautologies:

1.
a
→
a,

(identity
principle),

2.
a
∨
¬
a,

(tertium
non

datur),

3.
(a
∧

(a
→
b))→

b,
(m

odus
ponens),

4.
((a
→
b)∧

(a
→
¬
b))→

¬
a

(negation
principle),

5.
a
→

(a
∨
b),

(disjunction
principle).
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Several
natural

questions
can

be
asked,

for
instance:

•
Is

there
a

com
pact

w
ay

to
“describe”

all
and

only
all

tautologies?

•
W

hat
is

the
“structure”

of
the

set
of

tautologies?

•
Is

it
possible

to
“algorithm

ically”
recognize

a
tautology?

Is
this

a
feasible

task?
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T
here

are
several

possibilities
to

describe
a

set
of

propositions,
specifically

the
set

of
tautologies.

For
our

purpose
the

m
ost

interesting
one

is
the

deductive
approach.

T
he

prototype
of

a
deductive

science
is

E
uclid’s

geom
etry,

developed
around

300
B

.C
.

T
he

m
ajor

step
undertook

by
E

uclid
and

his
predecessors

in
G

reece
w

as
to

organise
these

facts
into

a
deductive

science
or

axiom
atic-deductive

geom
etry.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

2
1

'&

$%

T
he

truth
or

falsity
of

m
ost

propositions
in

geom
etry

cannot
be

seen
directly

from
their

m
eanings.

T
he

axiom
s,how

ever,are
special

propositions
w

hose
truths

are
im

m
ediately

recognized
from

their
m

eanings;
in

fact,
for

a
long

period,
this

w
as

the
m

ajor
criterion

to
select

axiom
s

(w
e

shall
return

to
this

problem
later).

Starting
w

ith
axiom

s,
by

a
series

of
logical

steps
that

w
e

accept
as

propagating
truth

forw
ard,

w
e

construct
a

“proof”
by

w
hich

w
e

can
arrive

at
the

truth
of

other
propositions

–
called

“theorem
s”.
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D
o

w
e

have
a

“solid”
basis

for
recognizing

the
rules

that
allow

us
to

propagate
truth

forw
ard?

T
his

is
a

very
delicate

problem
.

For
a

long
period

E
uclid’s

theory
w

as
considered

the
prototype

of
a

perfect
theory.

H
ow

ever,
in

the
nineteenth

century
people

revealed
flaw

s
in

E
uclid’s

proofs,
m

aking
essential

use
of

“illustrated”
figures.

False
“theorem

s”
w

ere
discovered:

“proofs”
read

just
E

uclid’s
proofs,

except
that

som
e

figures
w

ere
“fudged”

a
little

bit.
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A
fundam

ental
change

of
view

point
has

to
be

adopted:
deductions

should
be

possible
to

carry
out

w
ithout

reference
to

m
eanings.

In
E

uclid’s
case,

proofs
should

read
correctly

w
ith

nonsense
w

ords
substituted

for
“point”,

“line”,
“plane”.

T
he

logical
principles

w
hich

m
ediate

the
steps

in
proofs

should
be

stated
in

advance
as

rules
of

inference.
So,

the
m

eanings
of

none
of

the
w

ords
need

to
be

considered
in

constructing
proofs;

the
quality

of
being

a
valid

proof
depends

then
only

on
the

form
of

the
sentences.
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A
valid

proof
has

to
be

im
personal:

w
henever

an
alleged

proof
is

subm
itted

to
a

person
w

ho
has

previously
been

told
the

specifications
of

the
system

she/he
should

be
able

to
check

the
proposed

proof
and

decide
w

hether
it

actually
is

a
proof

or
not.

N
o

extra
im

agination
or

judgm
ent

is
needed.

In
other

term
s,

checking
the

validity
of

an
alleged

proof
m

ay
be

done
by

com
puter;

this
infinite

class
of

yes-or-no
questions

is
algorithm

ically
decidable.
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T
his

explains
w

hy
the

w
orking

m
athem

aticians
m

ay
differ

(and,
indeed,they

do)
in

their
view

s
of

w
hat

constitutes
a

rigorous
proof,

in
spite

of
the

fact
that

all
of

them
believe

in
rigorous

proofs.
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W
e

shall
now

explain
an

axiom
atic

system
for

tautologies.
W

e
first

“isolate”
a

few
tautologies

(called
axiom

s)
and

a
“deduction

principle”
w

ith
the

aim
of

“deriving”
all

and
only

all
tautologies.

T
he

axiom
s

w
ill

be
the

first
three

tautologies:

A
1.
a
→

(b→
a),

for
all

a
,b∈

P
.

A
2.

(a
→

(b→
c))→

((a
→
b)→

(a
→
c)),

for
all

a
,b,c∈

P
.

A
3.

((a
→
f)→

f)→
a,

for
every

a
∈
P

.
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A
s

a
deduction

rule
w

e
m

ake
use

of
the

m
ost

fundam
ental

principle
(called

M
odus

P
onens),

m
odeling

the
follow

ing
inference:

if
one

proves
y

from
x,

and
x

has
a

proof,
then

y
has

a
proof.

M
o
d
u
s

P
on

en
s

:For
all

x
,y
∈
P

,
if
x

and
x
→
y,

then
y.
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W
e

have
got

a
“form

al
system

”.
W

ithin
it

w
e

can
discuss

about
“(form

al)
p
ro

ofs”.

R
em

ark.
T
o

distinguish
betw

een
“proofs

w
ithin

our
system

”
and

“proofs
outside

the
system

”,
the

first
ones

w
ill

be
w

ritten
in

bold
characters.

Inform
ally,

a
p
ro

of
is

just
a

finite
sequence

of
propositions

such
that

every
elem

ent
in

the
sequence

is
an

axiom
or

can
be

deduced
from

propositions
already

in
the

sequence
by

M
odus

P
onens.

Som
etim

es
our

p
ro

ofs
m

ake
use

of
extra

hypotheses
X

;
they

w
ill

be
called

X
-p

ro
ofs.
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L
et
X

be
a

set
of

propositions
and

a
∈
P

.
A

n
X

-p
ro

of
for

a
(i.e.

a
p
ro

of
(w

ithin
the

system
)

of
a

from
the

set
X

of
prem

ises)
is

a
sequence

x
1 ,x

2 ,...,x
n

of
elem

ents
in
P

such
that

x
n

=
a

and
for

all
1
≤
i≤

n
one

has:

•
x
i ∈

X
or,

•
x
i

is
an

axiom
,
or

•
there

exist
1
≤
k
,l
<
i

such
that

x
l =

x
k
→
x
i

(i.e.
x
i

can
be

deduced
from

x
k

and
x
l
via

M
odus

P
onens).

T
he

proposition
a

is
called

an
X

-th
eorem

in
this

case.
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Som
etim

es
w

e
w

rite:
X
`
a
,

or
sim

ply
`
a
,

in
case

X
=
∅.

E
x
am

p
le

0.3.
For

all
a
,b,c∈

P
,
the

follow
ing

relations
are

true:

1.
`
a
→

(b→
a),

2.
`
a
→
a,

3.
{b}
`
a
→
b,

4.
{a
→

(c→
b),a

→
c}
`
a
→
b.
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P
roof.

T
he

first
proposition,

a
→

(b→
a),

is
an

axiom
.

For
a
→
a

w
e

can
w

rite
the

follow
ing

p
ro

of:

1.
a
→

((b→
a)→

a))→
((a
→

(b→
a))→

(a
→
a))

(by
A

2.)

2.
a
→

((b→
a)→

a)
(by

A
1.)

3.
(a
→

(b→
a))→

(a
→
a)

(by
M

odus
P
onens

from
2.

and
1.)

4.
a
→

(b→
a)

(by
A

1.)

5.
a
→
a

(by
M

odus
P
onens,

from
4.

and
3.).
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T
he

follow
ing

sequence
represents

an
{b}-p

ro
of:

1.
b→

(a
→
b)

2.
b

3.
a
→
b.
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F
inally,

the
follow

ing
sequence

represents
an

{a
→

(c→
b),a

→
c}-p

ro
of:

1.
(a
→

(c→
b))→

((a
→
c)→

(a
→
b))

2.
a
→

(c→
b)

3.
(a
→
c)→

(a
→
b).

4.
a
→
c

5.
a
→
b.
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T
he

follow
ing

theorem
,
due

to
H

erbrand,
m

akes
explicit

the
relation

betw
een

the
im

plication
(→

),
as

an
inner

operator
of

the
system

,
and

the
syntactical

derivation
(`

),
the

external
deduction.

D
ed

u
ction

T
h
eorem

.
Let

X
⊂
P
,
and

a
,b∈

P
.

T
he

follow
ing

statem
ents

are
equivalent:

a)
X
`
a
→
b,

b)
X
∪
{
a}
`
b.
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P
roof.

For
the

direct
im

plication
let

x
1 ,x

2 ,...,x
n

be
an

X
-p

ro
of

for
a
→
b.

T
hen

x
1 ,x

2 ,
...,x

n
,a
,b

is
an

X
∪
{a}-p

ro
of

for
b.

W
e

are
proving

the
converse

im
plication.

L
et
x

1 ,x
2 ,...,x

n
be

an
X
∪
{
a}-p

ro
of

for
b.

W
e

prove,
by

induction
on

i,
that

X
`
a
→
x
i .

For
i
=
n

w
e

get
the

desired
conclusion:

X
`
a
→
b,

as
x
n

=
b.
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T
here

are
four

possible
cases

to
be

discussed:

•
x
i ∈

X
:

since
{x

i }
`
a
→
x
i

one
deduces

X
`
a
→
x
i ,

as
x
i ∈

X
.

•
x
i
=
a:

since
`
a
→
a,

by
E

xam
ple

0.3,
X
`
a
→
a.

•
x
i

is
an

axiom
:

one
has
`
x
i ,

so
{x

i }
`
a
→
x
i ,

i.e.
X
`
a
→
x
i .

•
x
k

=
x
j →

x
i ,j,k

<
i:

by
hypothesis,

X
`
a
→
x
j

and
X
`
a
→
x
k .

B
y

virtue
of

E
xam

ple
0.3,

{a
→
x
j ,a
→

(x
j →

x
i )}
`
a
→
x
i ,

so
X
`
a
→
x
i .
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R
em

ark.
T

here
is

a
sim

pler,
sem

antical
analogue

of
the

D
eduction

T
heorem

.
It

reads
as

follow
ing:

Let
X
⊂
P
,
and

a
,b∈

P
.

T
he

follow
ing

statem
ents

are
equivalent:

a)
X
|=
a
→
b,

b)
X
∪
{
a}
|=
b.
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H
ere

are
tw

o
m

ore
exam

ples
of
X

-p
ro

ofs:

E
x
am

p
le

0.4.

1.
{f}
`
a,

for
all

a
∈
P

,

2.
{a
,¬
a}
`
b,

for
all

a
,b∈

P
.
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P
roof.

H
ere

is
an
{f}-p

ro
of

for
a:

1.
f

2.
f
→

((a
→
f)→

f)

3.
(a
→
f)→

f

4.
((a
→
f)→

f)→
a

5.
a.
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Starting
w

ith
the

sequence

a.
a

b.
a
→
f

c.
f

and
the

above
{f}-p

ro
of,

i.e.
steps

1.,2.,3.,4.,5.
w

e
get

an
arbitrary

proposition
b.
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A
d
e
q
u
a
cy

P
ro

b
le

m
s

It’s
tim

e
to

look
critically

at
our

system
.

Is
it

adequate?
Soundness

is
the

first
required

property,
as

w
e

are
interested

to
“describe”

only
tautologies.

Specifically,the
question

reads:
Is

any
th

eorem
a

tautology?
A

negative
answ

er
w

ould
ruin

the
w

hole
construction.
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W
e

start
proving

that
every

X
-th

eorem
can

be
sem

antically
deduced

from
X

:

P
rop

osition
.

For
all

X
⊂
P
,a
∈
P

,
if

X
`
a
,

then
X
|=
a
.

P
roof.

W
e

use
the

definition
of

an
X

-p
ro

of
inductively,

noticing
that

all
axiom

s
are

tautologies
and

M
odus

P
onens

is
an

invariant
rule.
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T
o

be
really

successful
w

e
need

to
prove

the
com

pleteness
of

our
system

.
T

he
follow

ing
proof

w
ill

give
som

e
m

ore
insight

on
the

nature
of

tautologies.

A
set

X
⊂
P

is
called

consistent
if

it
is

free
of

contradictions;
form

ally,
if

X
6`
f
.
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E
x
am

p
le

0.5.
T

he
em

pty
set

is
consistent.

T
he

set{a
,¬
a}

is
not

consistent.

P
roof.

Indeed,
if`

f,
then,|=

f,
w

hich
is

absurd
as

for
every

valuation
h

one
has

h(f)
=

0.
B

y
E

xam
ple

0.4,{a
,¬
a}
`
f.
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W
e

shall
prove

now
tw

o
technical

results
that

are
m

otivated
by

a
typical

algebraic
construction:

the
em

bedding
of

a
structure

in
a

m
axim

al
structure

of
the

sam
e

type.

L
em

m
a.

T
he

union
of

an
increasing

sequence
(under

set-theoretical
inclusion)

of
consistent

sets
is

still
a

consistent
set.
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P
roof.

L
et

B
1
⊂
B

2
⊂
···⊂

B
n
⊂
B
n
+

1
⊂
···

be
an

increasing
sequence

of
consistent

sets
and

put

B
= ⋃n≥

1

B
n
.

If,
by

absurd,
B

is
not

consistent,
then

B
`
f,

i.e.
there

exists
a

finite
set

X
⊂
B

such
that

X
`
f.

So,
X
⊂
B
m

,
for

som
e

natural
m
≥

1
(as

the
sequence

(B
i )
i≥

1 )
is

increasing).
T

his
contradicts

the
consistency

of
B
m

.
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A
set

X
⊂
P

is
called

m
axim

al
consistent

if
for

every
elem

ent
a
6∈
X

the
set

X
∪
{
a}

is
not

consistent.

P
roposition.

E
very

consistent
set

can
be

em
bedded

into
a

m
axim

al
consistent

set.

P
roof.

T
he

usual
w

ay
to

prove
such

a
result

is
to

invoke
Z
orn’s

L
em

m
a.

L
et
X

be
a

consistent
subset

of
P

.
T

he
set

Γ
=
{T
⊂
P
|X
⊂
T
,T
6`
f}

is
non-em

pty
(X
∈

Γ
).

M
ore,

every
chain

in
Γ

has
an

upper
bound:

if{T
α |α
∈

Λ}
is

a
totally

ordered
fam

ily
of

elem
ents

of
Γ

and
T

= ⋃
α
∈

Λ
T
α ,

then
X
⊂
T
⊂
P
,T
6`
f

(as,
if
f

is
provable

from
T

m
eans

that
f

is
provable

from
a

finite
subset

of
T

).
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U
se

now
Z
orn’s

L
em

m
a

(if
S

is
a

partially
ordered

set
in

w
hich

each
chain

has
an

upper
bound,

then
S

contains
a

m
axim

al
elem

ent)
to

assert
the

existence
of

a
m

axim
alelem

ent
in

Γ
.

In
general,no

claim
of

constructivity
can

be
m

ade
for

such
a

reasoning
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W
e

proceed
constructively,

i.e.
introducing

an
enum

eration
technique

usually
referred

to
as

a
gödelization.

A
ssum

e
that

w
e

have
an

one-one
enum

eration
v
i ,i

=
2,3,...

of
all

atom
ic

propositions.
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T
hen,

w
e

can
construct

an
one-one

function
g

:
P
→

N
as

follow
s.

A
ssum

e
that

our
enum

eration
{v
i }

w
as

“com
putable”,

in
the

sense
that

there
exists

an
algorithm

com
puting

v
i

w
hen

presented
i.

T
hen,the

function
g

is
itself

com
putable

and
given

i∈
g(P

)
w

e
can

effectively
discover

the
(unique)

proposition
x
∈
P

such
that

g(x)
=
i.
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P
ut

g(f)
=

0,

g(v
i )

=
2i−

1,i≥
1,

g(x
→
y)

=
2
g
(x

).3
g
(y

).

For
instance,,

g(v
1
→

(v
2
→
v
1 ))

=
2
g
(v

1
).3

g
(v

2 →
v
1
))

=
2
1.3

2
g
(
v
2
)3
g
(
v
1
)
=

2.3
2
3
.3

1
=

2.3
2
4.
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L
et
X
⊂
P

be
a

fixed
consistent

set.
U

sing
the

above
function

g
w

e
define

the
follow

ing
sequence

of
sets

of
propositions:

B
0

=
X
,

B
n
+

1
=

B
n
∪
g
−

1{n},
if
B
n
∪
g
−

1{n}
is

consistent,

=
B
n
,

otherw
ise.
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C
learly,

the
sequence

B
n

is
increasing

and
each

B
n

is
consistent.

So,
B

= ⋃
n≥

0
B
n

is
consistent

as
w

ell.
Since

B
0

=
X
⊂
B

the
only

fact
it

rem
ains

to
be

proven
is

the
m

axim
al

consistency
of
B

.
L
et

B
⊂
Y
⊂
P

be
such

that
B
6=
Y

,
i.e.

there
exists

a
proposition

g
−

1(n)∈
Y
,g
−

1(n)6∈
B
.
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From
the

relation
g
−

1(n)6∈
B

and
the

construction
of
B
n
+

1
it

follow
s

that
g
−

1(n)6∈
B
n
+

1
–

because
B
n
∪
{g
−

1(n)}
is

not
consistent,

i.e.
B
n
∪
{g
−

1(n)}
`
f
.

B
ut,

B
n
⊂
Y
,
g
−

1(n)∈
Y

,so
B
n
∪
{g
−

1(n)}
⊂
Y

and
Y
`
f,saying

that
Y

is
not

consistent.
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M
axim

al
consistent

sets
are

“fixed-points”
of

the
operator

generating
th

eorem
s

and
they

obey
the

B
ivalence

P
rinciple.

P
rop

osition
.

If
X
⊂
P

is
a

m
axim

al
consistent

set,
then

1.
{a
∈
P
|X
`
a}

=
X

,

2.
for

every
a
∈
P

,
one

and
only

one
of

the
follow

ing
relations

is
true:

a
∈
X

or
¬
a
∈
X

.
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P
roof.

1)
C

learly,
X
⊂
{a
∈
P
|X
`
a}.

B
ut

f
6∈
{a
∈
P
|X
`
a}

=
{a
∈
P
|{b∈

P
|X
`
b}
`
a}
,

so
{a
∈
P
|X
`
a}

is
consistent.

In
view

of
the

inclusion
X
⊂
{a
∈
P
|X
`
a}

w
e

can
m

ake
use

of
the

m
axim

ality
to

derive
the

equality.
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2)
If
a
6∈
X

,
then

X
∪
{
a}

is
not

consistent,
i.e.

X
∪
{a}
`
f
.

W
e

use
now

the
D

eduction
T

heorem
to

get

X
`
a
→
f

=
¬
a
.

B
y

virtue
of

1),¬
a
∈
X

.
If¬

a
6∈
X

,
then

X
∪
{¬
a}

is
not

consistent,
X
∪
{¬
a}
`
f
.
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B
y

the
D

eduction
T

heorem

X
`
¬
a
→
f

=
(a
→
f)→

f
=
¬¬

a
.

B
y

the
axiom

A
3.

¬¬
a
→
a
,

so
X
`
a,

i.e.
a
∈
X

by
virtue

of
m

axim
ality.

O
f
course,

it
is

not
the

case
that

both
a

and
¬
a

are
in
X

,
as
X

is
consistent.
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T
he

next
result

show
s

that
every

m
axim

al
consistent

set
of

propositions
X

has
a

m
odel.

P
rop

osition
.

Let
X

be
a

m
axim

al
consistent

set.
T

hen,
c
X

,
the

characteristic
function

of
X

(w
ith

respect
to
P

)
is

a
valuation

m
aking

true
all

propositions
in
X

.
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P
roof.

R
ecall

that
c
X

:
P
→
{0,1},

c
X

(a)
=

1
iff
x
∈
X

.
A

s
X

is
m

axim
al

consistent,
X
6`
f,

so
f
6∈
X

,
i.e.

c
X

(f)
=

0.

T
ake

now
a
,b∈

P
.

W
e

shall
prove

that

c
X

(a
→
b)

=
c
X

(a)
=⇒

c
X

(b).
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T
here

are
three

cases
to

be
analysed.

1.
If
b∈

X
,
then

c
X

(b)
=

1,
so

c
X

(a)
=⇒

c
X

(b)
=
c
X

(a)
=⇒

1
=

1.
O

ne
has

to
prove

that
c
X

(a
→
b)

=
1,

i.e.
a
→
b∈

X
.

W
e

know
that

X
is

m
axim

al
consistent,

so
a

fixed-point:

X
=
{c∈

P
|X
`
c}.

B
y

axiom
A

1.,`
b→

(a
→
b),

so

X
`
b→

(a
→
b).

B
y

hypothesis,
b∈

X
,
so
X
`
b

and
(by

M
odus

P
onens)

X
`
a
→
b.

A
gain,

by
m

axim
ality,

a
→
b∈

X
.
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2.
If
a
6∈
X

,
then

c
X

(a)
=

0,
so

c
X

(a)
=⇒

c
X

(b)
=

0
=⇒

c
X

(b)
=

1.
So,

w
e

have
to

prove
again

the
relation

c
X

(a
→
b)

=
1.

B
ut
a
6∈
X

im
plies,¬

a
∈
X

.
U

sing
the

D
eduction

T
heorem

(to
{a
,¬
a}
`
b)

w
e

get

{¬
a}
`
a
→
b.

Since
¬
a
∈
X

,
X
`
¬
a,

so
X
`
a
→
b,

i.e.
a
→
b∈

X
.
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3.
If
a
∈
X

and
b6∈

X
,
then

c
X

(a)
=

1,c
X

(b)
=

0,
so

c
X

(a)
=⇒

c
X

(b)
=

0.
T

he
relation

a
→
b6∈

X
rem

ains
to

be
proven.

Indeed,
if
a
→
b∈

X
,a
∈
X

,
then

b∈
X

,
a

contradiction.
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C
orollary.

If
X

is
consistent,

then
there

exists
a

valuation
h

:
P
→
{0,1}

such
that

h(a)
=

1,
for

all
a
∈
X

.

P
roof.

E
m

bed
the

given
consistent

set
into

a
m

axim
al

consistent
set

and
then

use
the

proposition
on

m
odels.
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W
e

are
now

able
to

prove

P
ost’s

C
om

p
leten

ess
T

h
eorem

.
For

every
set

of
propositions

X

and
every

proposition
a,

X
|=
a

iff
X
`
a
.
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P
roof.

O
nly

the
direct

im
plication

has
to

be
proven.

A
ssum

e
that

X
|=
a.

W
e

shall
prove

that
X
∪
{¬
a}

is
not

consistent.
If

it
w

ere
consistent,

then
w

e
w

ould
have,

a
valuation

h
such

that
h(b)

=
1,

for
all

b∈
X
∪
{¬
a},

i.e.

h(¬
a)

=
1,

and
h(b)

=
1,

for
all

b∈
X
.

From
h(¬

a)
=

1
one

deduces
h(a)

=
0,

so
w

e
have

contradicted
the

hypothesis
X
|=
a.
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From
the

inconsistency
of

the
set

X
∪
{¬
a}

w
e

deduce

X
∪
{¬
a}
`
f
.

U
se

again
the

D
eduction

T
heorem

X
`
¬
a
→
f

=
¬¬

a
,

and
the

axiom
A

3.
to

get
X
`
a
.
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P
rob

lem
:

D
oes

it
m

ean
that

actually
w

e
have

got
an

X
∪
{¬
a}

-
p
ro

of
for

f
or

only
an

assertion
telling

that
such

a
p
ro

of
does

exist?
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T
aking

X
=
∅

get

For
every

proposition
a,

|=
a

iff
`
a
.
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D
igression

:
T

hree
or

m
any

valued
logics.

T
he

proposition

(¬
a
→
a)→

a

is
clear

a
tautology

(it
seem

s
to

be
discovered

by
C

lavius,
1600

A
.C

.).
If

w
e

sw
itch

the
underlying

logic,
from

binary,
to,

say
ternary,

w
e

loose
the

tautological
property.

Indeed,
assum

e
w

e
w

ork
w

ith
the

ternary
logic

in
w

hich
the

truth
values

are
0,

12
(uncertain),1.

T
he

im
plication

valuation
w

ill
use

the
sam

e
form

ula,
i.e.

m
=⇒

n
=

m
ax{1

−
m
,n}.

T
his

m
eans

that
¬

12
=

12

and
12

=⇒
12

=
12 .

If
the

truth
value

of
a

is
uncertain,

then
the

proposition
(¬
a
→
a)→

a
is

also
uncertain.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

7
1

'&

$%

T
h
e

S
tru

ctu
re

o
f
T
a
u
to

lo
g
ie

s

O
ne

reason
w

hy
B

oolean
algebras

are
relevant

to
logic

is
that

propositional
operators

have
properties

sim
ilar

to
B

oolean
operations.

B
ased

on
this

analogy
w

e
cannot

ask
questions

such
as

“W
hat

is
a

proof?”
or

“H
ow

can
w

e
prove?”;

instead,
w

e
can

study
the

inner
“structure”

of
provable

propositions,
that

is,
via

the
C

om
pleteness

T
heorem

,
of

tautologies.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

7
2

'&

$%

T
o

every
valuation

h
w

e
associate

an
equivalence

relation
h∼

defined
on

P
as

follow
s:

a
h∼
b

iff
h(a)

=
h(b).

In
fact,

h∼
is

m
ore

than
an

equivalence
relation,

it
is

a
congruence,

in
the

sense
that

h∼
is

com
patible

w
ith

the
algebraic

structure
of
P

:
If
a
h∼
b

and
a
′
h∼
b ′,

then
a
→
a
′
h∼
b→

b ′.
Indeed,

from
h(a)

=
h(b),h(a

′)
=
h(b ′)

w
e

deduce

h(a
→
a
′)

=
h(a)

=⇒
h(a
′)

=
h(b)

=⇒
h(b ′)

=
h(b→

b ′).
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T
he

intersection
of

congruences
h∼
,
w

hen
h

runs
over

all
valuations,

∼
=

⋂h
valuation

h∼
,

is
still

a
congruence

on
P

.
T

he
equivalence

class
of

an
elem

ent
a
∈
P

is

[a]=
{b∈

P
|a

h∼
b,

for
every

valuation
h}.
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T
he

fam
ily

of
all

equivalence
classes,

P
/∼

=
{[a]}

a∈
P

can
be

endow
eded,

in
a

natural
w

ay,
w

ith
the

follow
ing

B
oolean

operations: a

¬
[a]=

[¬
a],

[a]∨
[b]=

[¬
a
→
b],

[a]∧
[b]=

[¬
((¬

a)∨
(¬
b))].

a
R

eca
ll

th
a
t
¬
a

is
a
n

a
b
b
rev

ia
tio

n
fo

r
th

e
p
ro

p
o
sitio

n
a
→
f
.
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T
hese

definitions
are

correct,
i.e.

they
do

not
depend

upon
the

chosen
“nam

es”
for

classes.
For

instance,if
a
∼
b,then

h(a)
=
h(b),

for
every

valuation
h,

so

h(¬
a)

=
h(a
→
f)

=
h(a)

=⇒
h(f)

=

h(a)
=⇒

0
=
h(b)

=⇒
0

=
h(b→

f)
=
h(¬

b),

m
eaning

that
[¬
a]=

[¬
b].

M
ore,(P

/∼
,∨
,∧
,¬

)
is

a
B

oolean
algebra

(called
L
indenbaum

algebra).
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T
he

follow
ing

identities
are

satisfied
for

all
u
,v
,w
∈
P
/∼

:

u
∧
v

=
v
∧
u
,
u
∨
v

=
v
∨
u
,

u
∧

(v
∧
w

)
=

(u
∧
v)∧

w
,
u
∨

(v
∨
w

)
=

(u
∨
v)∨

w
,

u
∧

(u
∨
v)

=
u
,u
∨

(u
∧
v)

=
u
,

u
∧

(v
∨
w

)
=

(u
∧
v)∨

(u
∧
w

),
u
∨

(v
∧
w

)
=

(u
∨
v)∧

(u
∨
w

),

(u
∧
¬
u)∨

v
=
v
,

(u
∨
¬
u)∧

v
=
v
.
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T
he

distinguished
elem

ent
“1”

of
this

B
oolean

algebra
is

T
au

t
=

[a]∨
¬

[a]=
[a]∨

[¬
a]=

[a
∨
¬
a],

and,
as
h(a
∨
¬
a)

=
1,

for
all

a
∈
P

,
coincides

w
ith

the
set

of
all

tautologies.
R

ecall
that

in
every

B
oolean

algebra
the

expression
x
∨
¬
x

does
not

depend
upon

the
actual

value
of
x;

this
is

the
elem

ent
“1”,

or
the

m
axim

al
elem

ent
of

the
algebra.
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W
e

m
ake

one
m

ore
step

further
in

our
generalization:

C
onsider

an
arbitrary

B
oolean

algebra
B

endow
ed

w
ith

the
operations

∨
,∧
,¬

,
w

hose
elem

ents
are

identified
w

ith
the

propositions
of

som
e

m
athem

atical
theory.

A
ssum

e
F
⊂
B

corresponds
to

the
set

of
provable

propositions
(theorem

s).
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T
he

com
m

on
m

athem
atical

experience
m

otivates
the

follow
ing

tw
o

statem
ents;

•
If
s,t∈

F
,
then

s
an

d
t∈

F
.

•
If
s
∈
F

and
t∈

B
,
then

s
or

t∈
F

.

T
he

above
tw

o
properties

are
sim

ilar
to

properties
defining

the
notion

of
B
oolean

filter.
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Is
this

only
a

superficial
analogy?

T
he

argum
ent

for
a

negative
answ

er
is

presented
in

the
follow

ing

T
h
eorem

.
Let

F
be

a
subset

of
the

B
oolean

algebra
B

.
T

hen,
the

follow
ing

tw
o

assertions
are

equivalent:

1.
T

he
set

F
is

a
filter. a

2.
O

ne
has:

a.
1
∈
F

.

b.
If
x
∈
F

and
x
→
y
∈
F

,
then

y
∈
F

.
a
T

h
a
t

is,
1
.

1
∈
F

,
2
.

F
o
r

a
ll
x
,y
∈
F
,x
∧
y
∈
F

,
3
.

F
o
r

a
ll
x
∈
F
,y
∈

B
,x
∨
y
∈
F

.
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P
roof.

For
the

direct
im

plication
w

e
assum

e
that

x
∈
F

and
x
→
y
∈
F

.
In

view
of

the
second

property
of

a
filter,

if
p
,q
∈
F

,
then

p
∧
q
∈
F

.
A

sim
ple

com
putation

show
s

that
x
∧

(x
→
y)

=
x
∧

(¬
x
∨
y)

=
(x
∧
¬
x)∨

(x
∧
y)∈

F
,i.e.

x
∧
y
∈
F

.
F
inally,

y
=
y
∨

(x
∧
y)

is
in
F

as
x
∧
y
∈
F

;w
e

have
used

the
third

property
of

a
filter.
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C
onversely,

let
x
,y
∈
F

.
W

e
have:

x
=
x
∧

(x
∨
y),

so

¬
x

=
¬
x
∨
¬

(x
∨
y)

=
¬
x
∨

(¬
x
∧
¬
y).

C
onsequently,

1
=
x
∨
¬
x

=
x
∨

(¬
x
∨

(¬
x
∧
¬
y))

=
(x
∨

(¬
x
∧
¬
y))∨

¬
x
∈
F
.

B
ut
x
∈
F

and
1
∈
F

,
so
x
∨

(¬
x
∧
¬
y)∈

F
and

¬
x
∨

((¬
x
∧
¬
y)∨

x)
=
¬
x
→

((¬
x
∧
¬
y)∨

x)
=

1
∈
F
.
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x
∨

(¬
x
∧
¬
y)

=
(x
∨
¬
y)∧

(x
∨
y)

=
x
∨
¬
y

=
y
→
x
∈
F
.

N
ow

w
e

are
using

the
second

hypothesis,
y
∈
F

:

y
→

(x
∧
y)

=
¬
y
∨

(x
∧
y)

=
(¬
y
∨
x)∨

(¬
y
∧
x)

=
¬
y
∨
x
∈
F
,

so
x
∧
y
∈
F

.

L
et
x
∈
F

and
y
∈
B

.
In

the
above

com
putation

w
e

substitute
¬
y

for
y

and
w

e
obtain

x
∨
¬

(¬
y)∈

F
,
i.e.

x
∨
y
∈
F

.
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W
e

can
now

com
e

back
to

our
concrete

exam
ple

of
B

oolean
algebra,

L
indenbaum

algebra
P
/∼

.
T
ake

X
⊂
P

and

F
(X

)
=
{[a]∈

P
/∼ |X

`
a}.

T
hen

F
(X

)
is

a
filter.

Indeed,
T
au

t
∈
F

(X
)

(if
a
∈

T
au

t,
then

|=
a,

so
by

the
C

om
pleteness

T
heorem

,`
a,

so
X
`
a).

N
ext

take
[a]∈

F
(X

)
and

[a]→
[b]=

[a
→
b]∈

F
(X

).
T

his
m

eans
that

X
`
a
,X
`
a
→
b,so

by
M

odus
P
onens,

X
`
b,i.e.

[b]∈
F

(X
).
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So,
from

a
structural

point
of

view
,{T

au
t}

is
a

filter
in

the
L
indenbaum

algebra
P
/∼

;
actually,

it
is

an
ultrafilter.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

8
6

'&

$%

U
ltra

fi
lte

rs
a
n
d

C
o
n
stru

ctiv
ity

L
et
B

be
a

B
oolean

algebra.
F
ilters

in
B

w
hich

are
m

axim
al

w
ith

respect
to

inclusion
are

called
ultrafilters.

It
is

not
hard

to
show

that
a

filter
F

is
an

ultrafilter
iff

for
every

x
∈
B

either
x
∈
F

or
¬
x
∈
F

,
but

not
both.
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T
he

key
result

on
ultrafilters

is
the

U
ltrafi

lter
T

h
eorem

.
E
very

filter
in

a
B
oolean

algebra
can

be
extended

to
an

ultrafilter.

T
o

illustrate
this

situation
w

e
consider

the
L
indenbaum

algebra
P
/∼

;
for

every
valuation

h
define

F
h

=
{[a]∈

P
/∼ |h(a)

=
1}.

A
sim

ple
argum

ent
show

s
that

F
h

is
a

filter,
in

fact,
an

ultrafilter.
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T
hese

facts
actually

m
otivate

another
approach

to
the

C
om

pleteness
T

heorem
,
a

path
follow

ed
by

R
asiow

a
and

Sikorski.
B

ell
and

Slom
son,

p.
49,

w
rote:

T
he

proofs
of

P
ost

and
K

alm
ár

both
provide

explicit
recipes

for
constructing

a
proof

of
a

given
tautology.

T
he

proof
that

w
e

have
given,

w
hich

is
due

to
R
asiow

a
and

Sikorski,
does

not
have

this
character,

and
since

it
depends

on
the

ultrafilter
theorem

is
not

a
constructive

proof.
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T
his

rem
ark

calls
for

a
m

ore
detailed

explanation.
T

he
problem

under
discussion

is
the

follow
ing:

H
aving

a
proposition

a
and

know
ing

that
a

is
a

tautology,
is

it
possible

to
get

a
p
ro

of,
w

ithin
the

considered
system

,
for

a?
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A
s

it
stands,

the
above

question
has

alw
ays

a
positive

answ
er,

by
the

C
om

pleteness
T

heorem
,
independently

of
the

proof
of

this
theorem

.
Indeed,

a
dovetailing

algorithm
—

aB
ritish

M
useum

algorithm
,
follow

ing
C

haitin—
running

through
all

possible
proofs

does
the

job,
as

w
e

know
that

eventually
the

right
p
ro

of
w

ill
be

discovered.
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In
fact,

this
is

exactly
the

algorithm
rejected

for
the

general
problem

discussed
at

the
beginning

a.
T

he
m

ain
difference

lies
in

the
extra

inform
ation

given
in

the
w

eaker
question:

w
e

know
that

a

is
a

tautology.
T

his
is

a
quite

subtle
situation,

in
w

hich
the

difference
betw

een
a

constructive
proof

and
a

non-constructive
proof

affects
very

little
the

“num
erical”

content
of

the
result.

a
H

a
v
in

g
a

p
ro

p
o
sitio

n
a
,

is
it

p
o
ssib

le
to

a
lg

o
rith

m
ica

lly
d
ecid

e
if
a

is
a

th
e
o
r
e
m

?
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T
o

get
m

ore
insight

on
this

phenom
enon

w
e

m
ake

use
of

som
e

rudim
ents

of
C

onstructive
M

athem
atics.

A
ccording

to
B

ridges
and

R
ichm

an:

W
e

engage
in

constructive
m

athem
atics

from
a

desire
to

clarify
the

m
eaning

of
m

athem
atical

term
inology

and
practice

–
in

particular,
the

m
eaning

of
existence

in
a

m
athem

atical
context.

T
he

classical
m

athem
atician,

w
ith

the
freedom

of
m

ethodology
advocated

by
H

ilbert,
perceives

an
object

x
to

exist
if

he
can

prove
the

im
possibility

of
its

nonexistence;
the

constructive
m

athem
atician

m
ust

be
presented

w
ith

an
algorithm

that
constructs

the
object

x

before
he

w
ill

recognize
that

x
exists.
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T
he

essential
difference

betw
een

a
classical

and
constructive

approach
to

m
athem

atics
can

be
grasped

by
considering

b
in

ary
seq

u
en

ces
generated

by
an

algorithm
.

L
et
b

=
b
1 b

2
...b

n
...

be
a

binary
sequence

and
consider

the
follow

ing
statem

ents:

S
(b)

:
b
n

=
1,

for
som

e
n
,

¬
S

(b)
:
b
n

=
0,

for
all

n
.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

9
4

'&

$%

H
ere
¬
S

(b)
is

the
denial

of
S

(b):
under

the
assum

ption
of
S

(b)
a

contradictory
statem

ent
(like

0
=

1)
holds.

A
constructive

proof
of

S
(b)∨

¬
S

(b)
m

ust
provide

an
algorithm

show
ing

that
b
n

=
0,for

all
n,

or
com

puting
a

positive
integer

n
such

that
b
n

=
1.
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A
B

rou
w

erian
cou

n
terex

am
p
le

to
an

assertion
is

a
proof

that
the

assertion
im

plies
som

e
unacceptable

principle
in

constructive
m

athem
atics.

T
he

m
ost

popular
such

principle
is

called
the

L
im

ited
P

rin
cip

le
of

O
m

n
iscien

ce,
L
P

O
:

If
(b
n )

is
a

binary
sequence,

then
either

there
exists

n
such

that
b
n

=
1,

or
else

b
n

=
0,

for
all

n.
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C
learly,

L
P

O
is

sim
ple

the
assertion

∀
b(S

(b)∨
¬
S

(b)).

W
hy

is
it

constructively
false?

Just
because

it
is

equivalent
to

the
H

altin
g

P
rob

lem
,w

hich
cannot

be
solved

algorithm
ically.

H
ere

is
the

outline
of

the
argum

ent.
F
irst

w
e

show
that

the
H

altin
g

P
rob

lem
is

not
decidable.

A
ssum

e,
for

the
sake

of
a

contradiction,
that

there
exists

a
h
altin

g
p
rogram

deciding
if

an
arbitrary

program
eventually

halts.
T

he
outputs,

if
any,

for
all

our
program

s
are

supposed
to

be
0

or
1;

also,
w

e
m

ay
assum

e,
w

ithout
loss

of
generality,

that
the

inputs
for

the
program

s
are

part
of

the
program

s
them

selves.
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•
read

a
natural

N
;

•
generate

all
program

s
up

to
N

bits
in

size;

•
use

the
h
altin

g
p
rogram

to
check

for
each

generated
program

w
hether

it
halts

and
filter

out
all

non-halting
program

s;

•
sim

ulate
the

running
of

the
above

generated
program

s;

•
m

ake
sure

that
the

running
tim

e
of

the
current

program
is

bigger
than

the
running

tim
e

of
allhalting

program
s,generated

above.
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F
irst,

notice
that

the
above

program
eventually

halts
for

every
natural

N
.

H
ow

long
is

the
above

program
?

It
is

about
log

2
N

bits.
Indeed,

the
program

consists
of

the
input

data
N

(w
hich

requires
about

log
2
N

bits)
and

a
constant

part.
G

lobally,
the

program
has

log
2
N

+
O

(1)
bits.

For
large

enough
N

,
the

above
program

w
ill

belong
to

the
set

of
program

s
having

less
than

N
bits

(because
log

2
N

+
O

(1)
<
N

).
A

ccordingly,
the

program
w

ill
be

generated
by

itself
–

at
som

e
stage

of
the

com
putation.

In
this

case
w

e
have

got
a

contradiction,
since

the
com

putation
tim

e
for

our
program

w
ill

be
bigger

than
the

com
putation

tim
e

of
itself!
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T
he

second
step

in
our

argum
ent

is
a

reduction:
w

e
prove

that
in

case
w

e
assum

e
L
P

O
,
then

the
H

altin
g

P
rob

lem
is

decidable.
Indeed,

let
π

1 ,π
2 ,...,π

n
,...

be
the

set
of

all
our

program
s

and
consider

the
follow

ing
(com

putable)
function

µ:

µ(m
,k)

= 
1,

if
π
m

(m
)

halts
in

tim
e

less
than

k,

0,
otherw

ise.
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A
pplying

L
P

O
to

the
set

of
binary

sequences

b
m1
,b
m2
,...,b

mi
,...,

w
here

b
mi

=
µ(m

,i),

w
ould

solve
the

H
altin

g
P

rob
lem

,
w

hich
is

im
possible.
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M
arkov

’s
P

rin
cip

le,
M

P
—

this
principle

is
rejected

by
B

rouw
er,

but
freely

used
by

the
R

ussian
school

in
constructive

m
athem

atics—
w

hich
corresponds

to
our

axiom
A

3.,
reads:

¬¬
S

(b)⇔
S

(b).
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T
o

illustrate
M

P
w

e
consider

an
one-one

enum
eration

of
all

possible
proofs

for
tautologies:p

1 ,p
2 ,...

L
et
a
∈

T
au

t
and

consider
the

predicate

P
red(a

,i)
=
p
i

is
a

proof
for

a
.

C
learly,

for
a

fixed
a,
P
red(a

,i)
is

algorithm
ically

decidable.
N

ext,
use

M
P

to
the

statem
ent

∃
iP
red(a

,i),

saying
that

it
w
ould

be
absurd

to
deny

that
there

is
a

positive
integer

i
such

that
P
red(a

,i).
From

this
fact

w
e

get
no

clue
or

com
putation

bound
for

the
construction

of
such

an
i.
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N
ote,

follow
ing

B
rouw

er,
that

the
statem

ent

¬¬¬
A
⇒
¬
A
,

is
constructively

m
eaningful.

Indeed,
under

the
assum

ption
¬¬¬

A

w
e

can
prove

¬
a

by
deriving

a
contradiction

from
A

:
if
A

,
then

¬
A

is
absurd,hence

¬¬
A

,w
hich

contradicts
¬¬¬

A
.

T
o

conclude,given
a

tautology
a,

w
e

surely
can

get
a

p
ro

of
for

a;
how

ever,
w

e
can

provide
no

indication
concerning

the
num

ber
of

proofs
necessary

to
inspect

before
getting

the
required

p
ro

of:
this

state
of

affairs
reflects

the
m

eaning
of

M
P

.
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D
e
cid

a
b
ility

a
n
d

C
o
m

p
le

x
ity

T
he

form
ulation

of
the

negative
result

cited
at

the
end

of
the

above
section

leaves
the

im
pression

that
the

property
of

being
a

th
eorem

of
the

propositional
calculus

is
algorithm

ically
decidable.

Is
this

true?
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Indeed,
the

above
decision

problem
is

algorithm
ically

decidable,
by

virtue
of

the
C

om
pleteness

T
heorem

.
T

h
eorem

s
coincide

w
ith

tautologies
and

testing
if

an
arbitrary

proposition
is

or
is

not
a

tautology
is

algorithm
ically

decidable.
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A
pparently,

sw
itching

from
th

eorem
s

to
tautologies

doesn’t
help

too
m

uch,
as

w
e

replace
the

(potential
infinite)

search
through

all
possible

proofs
by

a
search

through
all

possible
valuations

of
propositions

(an
infinite

set,
as

w
ell).

T
his

is
only

a
superficial

feeling!
If
a

contains
n

atom
ic

propositions,
then

w
e

don’t
have

to
go

through
all

possible
valuations

h,
but

to
exam

ine
only

the
restriction

of
these

valuations
to

the
set

of
atom

ic
propositions

in
a.

W
e

have
arrived

at
a

finite
set,

containing
2
n

elem
ents.



4
4
5
.3

1
5
/
1
9
9
8

M
a
th

e
m

a
tic

a
l
L
o
g
ic

1
0
7

'&

$%

Q
uestion

is:
H

ow
diffi

cult
is

to
decide

if
an

arbitrary
proposition

a

is
a

th
eorem

?
T
o

approach
this

question
w

e
w

illdiscuss
briefly

the
class

P
of

polynom
ial

algorithm
s.

T
he

E
uclidean

algorithm
(for

com
puting

the
greatest

com
m

on
divisor

of
tw

o
positive

integers)
is

an
exam

ple
of

a
polynom

ial
algorithm

,
in

the
sense

that
the

num
ber

of
basic

bit
operations

(the
tim

e
used

by
the

algorithm
)

is
a

polynom
ial

function
of

the
num

ber
of

bits
in

the
input.
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If
the

tw
o

inputs
have

at
m

ost
n

digits,
then

the
larger

input
is

less
than

2
n,

so
the

num
ber

of
steps

is
bounded

by
cn.

E
ach

step
involves

a
division,

i.e.
about

n
2

bit
operations,

w
hich

gives
finally

a
cubic

polynom
ial.

In
fact,

by
a

m
ore

involved
analysis

one
can

show
that

the
E

uclidean
algorithm

w
orks

in
tim

e
bounded

by
a

quadratic
function

of
the

length
of

inputs.
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Som
etim

es
w

e
are

not
able

to
design

a
polynom

ial
algorithm

for
a

problem
;
at

least,
w

e
can

prove
that

a
solution

for
the

problem
can

be
quickly

recognized
if

som
e

m
iraculously

source
furnishes

it
to

us.
A

good
exam

ple
is

the
problem

of
prim

ality.
It

is
not

easy
to

determ
ine

if
a

positive
integer

having
1,000

digits
is

com
posite.

B
ut

if
w

e
have

got
som

ehow
tw

o
num

bers
and

a
claim

that
they

m
ultiply

to
the

given
num

ber,
then

w
e

can
very

easily
check

if
the

claim
is

correct
or

not.
T

hese
tw

o
num

bers
form

a
certificate

of
their

com
positeness.

T
his

leads
to

the
im

portant
class

N
P

of
algorithm

s
running

in
nondeterm

inistic
polynom

ial
tim

e,
i.e.

algorithm
s

w
orking

in
polynom

ial
tim

e
under

the
assum

ption
that

a
certain

certificate
has

been
given.

O
ne

of
the

m
ost

intriguing
open

problem
s

in
theoretical

com
puter

science
pertains

exactly
the

relation
betw

een
P

and
N

P
:
P

=
?

N
P

.
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T
esting

if
an

arbitrary
proposition

a
is

a
th

eorem
along

the
path

suggested
at

the
beginning

of
this

section
requires

an
exponential

com
putation

tim
e.

Is
it

possible
to

do
it

better?
N

o
one

know
s

this.
W

e
can

see
readily

that
our

problem
is

in
co-N

P
,
as

guessing
an

valuation
w

hich
m

akes
a

false
solves

very
quickly

the
problem

.
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In
fact

the
problem

P
=

?
N

P
is

really
m

eta-m
athem

atical!
Indeed,

assum
e

an
appropriate

coding
and

m
easure

of
the

size
of

proofs.
So,

w
e

m
ay

have
polynom

ial
size

proofs
and

exponential
size

proofs.
T

he
difference

betw
een

P
and

N
P

–
if

any
–

m
ay

be
seen

as
a

difference
betw

een
constructing

a
polynom

ial
size

proof
and

verifying
a

polynom
ial

size
proof.

If
P

=
N

P
,
then

they
are

the
sam

e.


