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Abstract

A real � is computably enumerable if it is the limit of a computable, increasing, converging
sequence of rationals. A real � is random if its binary expansion is a random sequence. Our
aim is to o*er a self-contained proof, based on the papers (Calude et al., in: M. Morvan,
C. Meinel, D. Krob (Eds.), Proc. 15th Symp. on Theoretical Aspects of Computer Science,
Paris, Springer, Berlin, 1998, pp. 596–606; Chaitin, J. Assoc. Comput. Mach. 22 (1975) 329;
Slaman, manuscript, 14 December 1998, 2 pp.; Solovay, unpublished manuscript, IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, May 1975, 215 pp.), of the following
theorem: a real is c.e. and random if and only if it is a Chaitin � real, i.e., the halting
probability of some universal self-delimiting Turing machine. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

We will consider only reals in the unit interval. A real � is computably enumerable
(c.e.) if it is the limit of a computable, increasing, converging sequence of rationals;
during the process of approximation one may never know how close one is to the Anal
value. 1 A real � is random if its binary expansion is a random (inAnite) sequence
(cf. [8, 9, 1]); the choice of base is irrelevant (cf. [6]).

The halting probability of a universal self-delimiting Turing machine (Chaitin’s �
real, [8, 9, 11, 12]) is a random c.e. real. Are there other c.e. random reals? We will
show that the answer is negative: the set of c.e. random reals coincides with the set
of Chaitin’s � reals.

The proof uses an intermediate class of c.e. reals, Solovay’s �-like reals, and shows
that this class coincides with the class of � reals, on one hand, and with the class of
c.e. reals, on the other hand.

E-mail address: cristian@cs.auckland.ac.nz (C.S. Calude).
1 Contrast with the case of a computable real whose digits are given by a computable function.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00027 -5



4 C.S. Calude / Theoretical Computer Science 271 (2002) 3–14

Chaitin [8] proved that every � real is c.e. and random. Solovay [17] proved that
�-like reals are c.e. and random. Solovay also showed that every Chaitin � real is
�-like. In [5] Calude et al. showed that the converse implication is true as well: every
�-like real in the unit interval is the halting probability of a universal self-delimiting
Turing machine. Finally, Slaman [15] proved that every c.e. random real is �-like. The
result was announced in [2].

The paper is organised as follows. Section 2 is devoted to basic notation; in Section 3,
we introduce self-delimiting Turing machines, program-size complexity, Chaitin’s �
reals, and c.e. reals. In Section 4, we prove that every � real is c.e. and random.
Section 5 introduces Solovay’s domination relation and proves some basic facts about
it. In Section 6, we prove that every � real is �-like. In the next section, we prove the
converse implication, namely, that every �-like real is the halting probability of some
universal self-delimiting Turing machine. Section 8 shows that every c.e. random real
is �-like. Finally, Section 9 is dedicated to some comments.

2. Notation

By N we denote the set of nonnegative integers. A sequence q0; q1; q2; : : : of
numbers (integers, rationals, or reals) is said to be increasing (nondecreasing) if
qi¡qi+1 (if qi6qi+1) for all i. If f and g are natural number functions, the for-
mula f(n)6g(n) + O(1) means that there is a constant c¿0 with f(n)6g(n) + c,
for all n. If X and Y are sets, then f :X o→Y denotes a partial function deAned on a
subset of X .

Let �= {0; 1} denote the binary alphabet. Let �∗ be the set of (Anite) binary strings,
and �! the set of inAnite binary sequences. The length of a string x is denoted by |x|;
� is the empty string. Let ¡ be the quasi-lexicographical order on �∗ induced by 0¡1
and let stringn (n¿0) be the nth string under this ordering. For strings x; y∈�∗; xy
is the concatenation of x and y. For a sequence x= x0x1 · · · xn · · · ∈�! and an integer
number n¿1; x(n) denotes the initial segment of length n of x and xi denotes the ith
digit of x, i.e., x(n)= x0x1 · · · xn−1. Lower case letters k; l; m; n will denote nonnegative
integers, and x; y; z strings. By x; y; : : : we denote inAnite sequences from �!; Anally,
we reserve �; �; � for reals. Capital letters are used to denote subsets of �∗. We Ax
a standard computable pairing function 〈; 〉 deAned on N×�∗ with values in �∗. For
a set A⊆�∗ let Ak = {x | 〈k; x〉 ∈A}. For A⊆�∗; A�! denotes the set of sequences
{wx |w∈A; x∈�!}. The sets A�! are the open sets in the natural topology on �!.
Computably enumerable (c.e.) open sets are sets of the form A�!, where A⊆�∗ is
c.e. Let � denote the usual product measure on �!, given by �({w}�!)= 2−|w|, for
w∈�∗. For a measurable set C of inAnite sequences, �(C) is the probability that x∈C
when x is chosen by a random experiment in which an independent toss of a fair coin
is used to decide whether xn=1. A set A⊆�∗ is preAx-free if no string in A is a proper
preAx of another. If A is preAx-free, then �(A�!)=

∑
w∈A 2

−|w|:
We assume familiarity with Turing machine computations, cf. [16].
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3. c.e. Reals

A self-delimiting Turing machine (shortly, a machine) C is a Turing machine pro-
cessing binary strings such that its program set (domain)

PROGC = {x ∈ �∗ |C(x) halts}
is an instantaneous code, i.e., a preAx-free set of strings. Sometimes we will write
C(x)¡∞ when C halts on x and C(x)=∞ in the opposite case. Clearly, PROGC is
c.e.; conversely, every preAx-free c.e. set of strings is the domain of some machine.
The halting probability of C is the real

�C = �(PROGC�!) =
∑

x∈PROGC
2−|x|61:

The program-size complexity of the string x∈�∗ (relatively to C) is HC(x)=
min{|y| |y∈�∗; C(y)= x}, where min ∅=∞.

Theorem 3.1 (Invariance theorem). There is a machine U such that for every machine
C; HU (x)6HC(x) + O(1).

A machine U satisfying Theorem 3.1 is called universal.
Clearly, every universal self-delimiting machine produces every string. We denote by

x∗ the canonical program of x, i.e., x∗ =min {y∈�∗ |U (y)= x}, where the minimum
is taken on strings according to the quasi-lexicographical order.

The halting probability �U of a universal self-delimiting machine U is called a
Chaitin � real; see [8].

The following extension due to Chaitin [8] (see [4] for a short proof) of Kraft’s
inequality is very useful to construct machines satisfying certain properties:

Theorem 3.2 (Kraft–Chaitin). Given a c.e. list of “requirements” 〈ni; si〉 (i¿0; si ∈�∗;
ni ∈N) such that

∑
i 2

−ni61; we can e9ectively construct a machine C and a com-
putable one-to-one enumeration x0; x1; x2; : : : of strings xi of length ni such that C(xi)=
si for all i and C(x)=∞ if x =∈{xi | i∈N}. 2

Random (inAnite) sequences were deAned by Martin-LNof [14] using “randomness
tests”. A Martin-LNof test is a c.e. set A⊆�∗ satisfying the inequality �(Ai�!)62−i ; for
all i∈N. An alternative characterization can be obtained using program-size complexity
(see [1] for more details).

Theorem 3.3 (Chaitin [8]). Let x∈�!. The following statements are equivalent:
1. There is a constant c such that HU (x(n))¿n− c; for every integer n¿0.
2. For every Martin-L=of test A; x =∈⋂i¿0 (Ai�

!):
3. We have: limn→∞HU (x(n))− n=∞.

2 Notice that �C =
∑

i
2−ni .
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A real � is called c.e. if it is the limit of a computable increasing (non-decreasing)
sequence of rationals; equivalently, � is c.e. if the set of all rationals less than �
is c.e.

A sequence x∈�! is random if it satisAes one of the equivalent conditions in
Theorem 3.3. 3 A real � is random if its binary expansion x (i.e., �=0:x) is random. 4

4. � reals are c.e. and random

This section is devoted to the following result:

Theorem 4.1 (Chaitin [8]). The halting probability �U ; of a universal self-delimiting
machine U; is random.

Proof. Let f be a computable one-to-one function which enumerates PROGU , the
domain of U . Let !k =

∑k
j=0 2

−|f( j)|. Clearly, (!k) is a computable, increasing se-
quence of rationals converging to �U , so �U is c.e. Consider the binary expansion of
�U =0:�0�1 · · · .

We deAne a machine C as follows: on input x∈�∗; C Arst “tries to compute”
y=U (x) and the smallest number t with !t¿0:y. If successful, C(x) is the Arst (in
quasi-lexicographical order) string not belonging to the set {U (f(0)); U (f(1)); : : : ;
U (f(t))}; otherwise, C(x)=∞ if U (x)=∞ or t does not exist.

If x∈PROGC and x′ is a string with U (x)=U (x′), then C(x)=C(x′). Applying
this to x∈PROGC and the canonical program x′ =(U (x))∗ of U (x) yields

HC(C(x))6|x′| = HU (U (x)):

Furthermore, by the universality of U , for all x∈PROGC :

HU (C(x))6HC(C(x)) + O(1)6HU (U (x)) + O(1): (1)

Now, Ax a number n and assume that x is a string with U (x)=�0�1 · · ·�n−1.
Then C(x)¡∞. Let t be the smallest number (computed in the second step of the
computation of C) with !t¿0:�0�1 · · ·�n−1. We have

0:�0�1 · · ·�n−16!t¡!t +
∞∑

s=t+1
2−|f(s)| = �U60:�0�1 · · ·�n−1 + 2−n:

Hence,
∑∞

s=t+1 2
−|f(s)|62−n, which implies |f(s)|¿n, for every s¿t + 1.

3 Note that the program-size complexities of every two universal self-delimiting machines U and V are
asymptotically equal: HU (x)=HV (x) + O(1). Hence the choice of the underlying universal machine is
irrelevant in the above characterization.

4 The choice of the binary base does not play any role, cf. [6]: randomness is a property of reals not of
names of reals.
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From the construction of C we conclude that HU (C(x))¿n. Using (1) we obtain

n6HU (C(x))

6HC(C(x)) + O(1)

6HU (U (x)) + O(1)

= HU (�0�1 · · ·�n−1) + O(1):

which proves that the sequence �0�1 · · · is random, i.e., �U is random.

5. Domination and �-like reals

In order to compare the information contents of c.e. reals, Solovay [17] has intro-
duced the following deAnition (see also [9]): a c.e. real � dominates a c.e. real �
(write �6dom �) if there are two computable, increasing (or non-decreasing) sequences
(ai) and (bi) of rationals and a constant c with limn→∞ an= �; limn→∞ bn= �, and
c(�−an)¿�−bn, for all n. Equivalently, � dominates � if and only if there is a constant
c and a computable function T that transforms any rational x¡� to rational T (x)¡�
such that (� − T (x))6c(�− x).

The relation 6dom is transitive and rePexive, hence it naturally deAnes a partially
ordered set whose elements are the =dom-equivalence classes of c.e. reals.5;6

We continue by considering a relation between c.e. sets which is very close, but
not equivalent, to the domination relation. Let A; B be inAnite, preAx-free c.e. sets.
Following [5], we say that the set A strongly simulates the set B (write B6ss A) if
there is a partial computable function f :�∗ o→�∗ which satisAes the following three
conditions: (1) A=dom(f); (2) B=f(A); (3) |x|6|f(x)|+O(1), for all x∈A. Note
that 6ss is rePexive and transitive.

Lemma 5.1. If A; B are in?nite pre?x-free c.e. sets and B6ss A; then �(B�!)
6dom �(A�!).

Proof. Let (xi) be a one-to-one computable enumeration of A. Let f be a function and
c¿0 be a constant as in the above deAnition. For each n and each y∈B\{f(x0); : : : ;

5 This partially ordered set has a minimal element which is the equivalence class containing exactly all
computable reals. It has a maximal element which is the equivalence class containing exactly all Chaitin �
reals. In fact, it is an upper semilattice: the least upper bound of any two classes containing c.e. reals �
and �, respectively, is the class containing the c.e. real � + �; cf. [5].

6 There is an important relationship between domination and randomness. If �6dom �, then � is “more
random” than � in the sense that the program-size complexity of the Arst n digits of � does not exceed
the complexity of the Arst n digits of � by more than a constant, cf. [17]. The more random an e*ective
object is, the closer it is to Chaitin � numbers; the less random an e*ective object is, the closer it is
to computable reals. The converse implication is false, namely there are c.e. reals 0:x and 0:y such that
H (x(n))6H (y(n)) + O(1) and 0:y does not dominate 0:x; cf. [3].
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f(xn)} there is a string x∈A\{x0; : : : ; xn} with y=f(x) and |x|6|f(x)|+ c. Hence,

�(B�!)− �({f(x0); : : : ; f(xn)}�!) = �((B\{f(x0); : : : ; f(xn)})�!)
6 2c · �((A\{x0; : : : ; xn})�!)
= 2c · (�(A�!)− �({x0; : : : ; xn}�!)):

We conclude that �(B�!)6dom �(A�!).

The following partial converse of Lemma 5.1 is true and very important. 7

Theorem 5.2 (Calude et al. [5]). Let � be a c.e. real; and B be an in?nite pre?x-free
c.e. set. If �(B�!)6dom �; then there is an in?nite pre?x-free c.e. set A⊂�∗ such
that �= �(A�!) and B6ss A.

Proof. Assume that �(B�!)6dom �. Let (yi) be a one-to-one computable enumeration
of B and (an) be an increasing computable sequence of positive rationals converging
to �. In view of the domination property of �, there are an increasing, total computable
function f :N→N and a constant c∈N such that, for each n∈N,

2c · (�− an)¿�(B�!)−
f(n)∑
i=0

2−|yi|: (2)

Without loss of generality, we may assume that

a0¿
f(0)∑
i=0

2−|yi|−c (3)

(otherwise we increase c). We construct a computable sequence (ni) of numbers and
a computable double sequence (mi; j)i; j¿0 of elements in N∪{∞}. These numbers ni
and the numbers mi; j �=∞ will be the lengths of the strings in the set A which will
be constructed. The numbers ni will guarantee that B6ss A. The numbers mi; j will be
used “to All” the set A up in order to get exactly �= �(A�!). This will follow directly
from Eq. (4) below.
Construction of (ni): Put ni= |yi|+ c for all i.
Beginning of construction of (mi; j).
Stage 0. Let mi; j =∞, for all i¡f(0) and j∈N, and deAne the positive integers

(mf(0); j) inductively in such a way that

∞∑
j=0

2−mf(0); j = a0 −
f(0)∑
i=0

2−ni :

7 In [5] one proves the existence of two inAnite preAx-free c.e. sets A and B such that
�(A�!)= �(B�!)= 1 but A�ss B and B �ss A.
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Stage s (s¿1). If

as6
f(s)∑
i=0

2−ni +
f(s−1)∑
i=0

∞∑
j=0

2−mi; j ;

then let mi; j =∞, for all i with f(s − 1)¡i6f(s) and j∈N. Otherwise, let
mi; j =∞, for all i with f(s − 1)¡i¡f(s) and j∈N, and let positive integers
(mf(s); j)j¿0 be inductively deAned in such a way that

∞∑
j=0

2−mf(s); j = as −
(
f(s)∑
i=0

2−ni +
f(s−1)∑
i=0

∞∑
j=0

2−mi; j
)
:

End of construction of (mi; j).
Next, we prove the equality

� =
∞∑
i=0

(
2−ni +

∞∑
j=0

2−mi; j
)
; (4)

by distinguishing the following two cases:
Case 1. If there are inAnitely many stages s such that

as =
f(s)∑
i=0

(
2−ni +

∞∑
j=0

2−mi; j
)
;

then (4) holds.
Case 2. Assume the inequality as¡

∑f(s)
i=0 (2

−ni +
∑∞

j=0 2
−mi; j) holds true for almost

all s∈N and we notice that

� = lim
s→∞ as6

∞∑
i=0

(
2−ni +

∞∑
j=0

2−mi; j
)
: (5)

For the inverse estimate, we deAne s0 to be the largest stage such that

as0 =
f(s0)∑
i=0

(
2−ni +

∞∑
j=0

2−mi; j
)
:

Such a stage s0 exists because of (3) and the construction. By (2) we have

�− as0¿
∞∑

i=f(s0)+1
2−|yi|−c:

Hence, by the construction,

�¿
∞∑
i=0

(
2−ni +

∞∑
j=0

2−mi; j
)
: (6)

By combining (5) and (6) we obtain equality (4) also in this case.
Let h :N→{(i; j)∈N2 |mi; j �=∞} be a computable bijection (note that by con-

struction the set {(i; j)∈N2 |mi; j �=∞} is inAnite) and deAne a computable sequence
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(m′
i) of numbers by m′

i =mh(i). Using this sequence, we deAne (n′i) by n′2i= ni and
n′2i+1 =m

′
i . By Kraft–Chaitin Theorem 3.2 and (4), combined with 0¡�61, we can

construct a one-to-one computable sequence (xi) of strings with |xi|= n′i such that the
set {xi | i∈N} is preAx-free. Set A= {xi | i∈N} and, using (4), obtain

�(A�!) =
∞∑
i=0

2−n
′
i =

∞∑
i=0

2−ni +
∞∑
i=0

2−m
′
i = �:

Finally we deAne a computable function g :A→B by g(x2i)=yi and such that |g(x2i+1)|¿
|x2i+1|, for all i. This is possible because B is inAnite. Obviously, g(A)=B, and
|x|6|g(x)|+ c, for all x∈A, showing that B6ss A.

6. � reals are �-like

Following Solovay [17] we say that a computable increasing, and converging se-
quence (ai) of rationals is universal if for every computable, increasing and converging
sequence (bi) of rationals there exists a number c¿0 such that c(�− an)¿�− bn; for
all n, where �= limn→∞ an and �= limn→∞ bn. Solovay called a real �-like if it is
the limit of a universal computable, increasing sequence of rationals.

In [5] Calude et al. proves the following:

Theorem 6.1 (Solovay). Let U be a universal machine. Every computable; increasing
sequence of rationals converging to �U is universal.

Proof. Let (an) be an increasing, computable sequence of rationals with limit �U ,
and let (bn) be an increasing, computable, converging sequence of rationals. Set �=
limn→∞ bn. We have to show that there is a constant c¿0 with c(�U − an)¿� − bn
for all n.

Let (xi) be a one-to-one, computable enumeration of PROGU , and �U;n=
∑n

i=0 2
−|xi|.

We deAne a total computable, increasing function g :N→N, where we also deAne
g(−1)=−1, by

g(n) = min {j ¿ g(n− 1) |�U; j¿an}:
The sequence (�U;g(n)) is an increasing, computable sequence with limit �U . In view
of the inequality �U −an¿�U −�U;g(n); it is suRcient to prove that there is a constant
c¿0 with c(�U − �U;g(n))¿� − bn for all n.

For each i∈N, let yi be the Arst string (with respect to the quasi-lexicographical or-
dering) which is not in the set {U (xj) | j6g(i)}∪ {yj | j¡i}. Furthermore, put
ni= [− log(bi+1− bi)]+1. Since

∑∞
i=0 2

−ni6�− b0¡1, by Kraft–Chaitin Theorem 3.2
we can construct a machine C such that, for every i∈N, there is a string ui ∈�ni
satisfying C(ui)=yi. Hence, there is a constant cC such that HU (yi)6ni+ cC . In view
of the choice of yi, there is a string x′i ∈PROGU\{xj | j6g(i)} such that |x′i |6ni+ cC
and U (x′i)=yi. For di*erent i and j we have yi �=yj, whence x′i �= x′j . Finally we
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obtain

�U − �U;g(n) =
∞∑

i=g(n)+1
2−|xi|¿

∞∑
i=n

2−|x′i |

¿
∞∑
i=n

2−ni−cC¿2−cC−1
∞∑
i=n

(bi+1 − bi) = 2−cC−1(� − bn);

which proves the assertion.

7. �-like reals are � reals

First we note that

Lemma 7.1. Any �-like real dominates every c.e. real.

Theorem 7.2 (Calude et al. [5]). Every �-like real � is an � real; i.e.; there exists
a universal machine U such that �=�U .

Proof. Let V be a universal machine. Since � is �-like it dominates every c.e. real,
in particular, �(PROGV�!)6dom �. By Theorem 5.2 there exist an inAnite preAx-free
c.e. set A with �(A�!)= �, a computable function f :A→PROGV with A=dom(f);
f(A)=PROGV , and a constant c¿0 such that |x|6|f(x)|+c, for all x∈A. We deAne
a machine U by U (x)=V (f(x)). The universality of V implies the universality of U
and

� = �(A�!) = �(PROGU�!) = �U :

In view of Lemma 7.1 and Theorem 7.2 we get 8

Theorem 7.3. Let � be a c.e. real. The following statements are equivalent:
1. There exists a universal computable; increasing sequence of rationals converging
to �.

2. Every computable; increasing sequence of rationals with limit � is universal.
3. The real � dominates every c.e. real.

8. Every c.e. random real is �-like

Theorem 3.3 can be rephrased directly for reals as follows: A real � is random if and
only if for every Martin-L=of test A; � =∈⋂i¿0 Ai: In the context of reals, a Martin-LNof
test A is a uniformly c.e. sequence of c.e. open sets (An) of the space �! such that
�(An)62−n.

8 The equivalence of the statements 1 and 3 comes from [9].
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Lemma 8.1 (Slaman [15]). Let (an); (bn) be two computable; increasing sequences of
rationals converging to � and �; respectively. One of the following two conditions
hold:
(A) There is a Martin-L=of test A such that �∈⋂i¿0 Ai:
(B) There is a rational constant c¿0 such that c(�− ai)¿� − bi; for all i.

Proof. We enumerate the Martin-LNof set A by stages. Let An[s] be the union of Anitely
many open c.e. sets that have been enumerated into An during stages less than s. Put
An[0]= ∅ and An[s+1]=An[s]∪ (as; as+(bs−bs0 )2−n); in case as =∈An[s] and bs �= bs0 ;
here s0 is the last stage during which we enumerated a c.e. open set into An or s0 = 0 if
there was no such stage; otherwise, An[s+1]=An[s]. Clearly, An=

⋃
s An[s] is a disjoint

union of c.e. open sets.
Let t1; t2; : : : ; tn; : : : be the sequence of stages during which we do enumerate open

sets into An. Then,

�(An) = �
(⋃

s
An[s]

)
=
∑
i¿1
�(An[ti])

=
1
2n

(bt1 − b0) + (bt2 − bt1 ) + (bt3 − bt2 ) + · · ·

=
1
2n

(� − b0)6 1
2n
:

If �∈⋂i¿0 Ai, then (A) holds. Assume that � =∈An, for some n. We shall prove that
2i(�− ai)¿� − bi; for almost all i, so (B) holds.

If the open set (as; as+(bs− bs0 )2−n) is enumerated into An at stage s, then there is
a stage t¿s such that at¿as + (bs − bs0 )2−n. Fix i¿0 and let t0 be the greatest stage
t6i such that we enumerate something into An during stage t or t0 = 0; otherwise. Let
t1; t2; : : : ; tn; : : : be the sequence of stages after t0 during which we do enumerate open
sets into An. Clearly, t06i6t1. As

�− at1 ¿ atk − at1 + (btk − btk−1 )2
−n

for all k and atk =∈An[t1]∪An[t2]∪ · · · ∪An[tk−1], it follows that

atk − at1 ¿ atk−1 − at1 + (btk−1 − btk−2 )2
−n;

so

�− at1¿
∑
k¿1

(btk − btk−1 )2
−n = (� − bt0 )2−n:

Finally, for every i¿max{t0; t1},

�− ai¿�− at1¿(� − bt0 )2−n¿(� − bi)2−n;

because (an); (bn) are increasing.
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Theorem 8.2 (Slaman [15]). Every c.e. random real is �-like.

Proof. Apply Lemma 8.1: if (A) holds, then � is not random; if (B) holds, then
�6dom �, and the theorem follows as � has been arbitrarily chosen.

9. Final comments

The following theorem summarizes the characterization of c.e. and random reals:

Theorem 9.1. Let �∈ (0; 1). The following conditions are equivalent:
1. The real � is c.e. and random.
2. For some universal machine U; �=�U .
3. The real � is �-like.
4. Every computable; increasing sequence of rationals with limit � is universal.

The c.e. random reals are dense in the unit interval. They have many other interesting
properties; for example, they are wtt-complete, but not tt-complete (cf. [7]).

Open problem

Following Freund and Staiger [13], call a real number DTN if it is the limit of
a computable sequence of rationals (not necessarily non-decreasing). Note that the set
of DTN reals is a real Aeld, so there are more (random) DTN reals than c.e. random
reals. Characterize the set of random DTN reals.
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