
Fundamenta Informaticae 72 (2006) 1–18 1

IOS Press
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Cezar Câmpeanu

Department of Computer Science and Information Technology

University of Prince Edward Island

Charlottetown, P.E.I., C1A 4P3 Canada

cezar@sun11.math.upei.ca

Monica Dumitrescu

Department of Probability Theory Statistics and Operational Research

Faculty of Mathematics and Informatics

Str. Academiei 14, Bucharest, Romania

mdumi@pcnet.ro

Abstract. How likely is that a randomly given (non-) deterministic finite automaton recognizes no
word? A quick reflection seems to indicate that not too many finite automata accept no word; but,
can this intuition be confirmed?

In this paper we offer a statistical approach which allows us to conclude that for automata, with
a large enough number of states, the probability that a given (non-) deterministic finite automaton
recognizes no word is close to zero. More precisely, we will show, with a high degree of accuracy
(i.e., with precision higher than 99% and level of confidence 0.9973), that for both deterministic and
non-deterministic finite automata: a) the probability that an automaton recognizes no word tends
to zero when the number of states and the number of letters in the alphabet tend to infinity, b) if
the number of states is fixed and rather small, then even if the number of letters of the alphabet of

�
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the automaton tends to infinity, the probability is strictly positive. The result a) is obtained via a
statistical analysis; for b) we use a combinatorial and statistical analysis.

The present analysis shows that for all practical purposes the fraction of automata recognizing no
words tends to zero when the number of states and the number of letters in the alphabet grow indef-
initely. From a theoretical point of view, the result can motivate the search for “certitude”, that is, a
proof of the fact established here in probabilistic terms.

In the last section we critically discuss the result and the method used in this paper.

Keywords: Finite automata, emptiness problem, statistical analysis, sampling method

1. Introduction

In this paper we ask the question: “How likely is that a randomly given (non-) deterministic finite au-
tomaton recognizes no word?” A quick reflection seems to indicate that not too many finite automata
accept no word; but, can we offer a proof supporting this intuition? For small automata, i.e., automata
with a few states and letters in the alphabet, exact formulae can be obtained; they confirm the intuition.
However, it is not clear how to derive similar formulae for ‘larger’ automata.

A different approach would be to estimate the required probabilities using various techniques of
enumerating non-isomorphic finite automata (see, for example, [7]). This method is not only notoriously
difficult, but also “problem-sensitive”, in the sense that approximations change drastically if we change
the problem, e.g., if instead of the emptiness problem we consider the infinity problem. Consequently,
in this paper we take a completely new approach, namely we use statistical sampling, see [6, 9]. This
approach can be viewed as part of the so-called “experimental mathematics” (see [1, 2, 5]); we will come
back to this issue in Section 7.

A deterministic finite automaton (shortly, DFA)
���������
	������������

consists of a finite set
�

of
states, an input alphabet

	
, a fixed initial state,

�
, a transition (total) function

��������	����
,

and a subset
�

of
�

of final states. By
	 �

we denote the set of all words (strings) over
	

, with � as
the empty word. The transition function

�
extends to

��� �!��	 � �"�
by the equations

���$#%� � �&�#%� ���$#%�('�)*�+�,�%� �*�$#%�('-���)*�
, for all

#/.0���)1.0	
and

'2.0	 �

. The language accepted by
�

is3 �$�-�4�65�'/.7	 �-8 ���$���('-�9.:��;
.

A non-deterministic finite automaton (shortly, NFA)
�<�=�����
	������>?����

consists of the same com-
ponents as a DFA with the only exception that the transition function

>
is defined on the power set of�

, that is,
>��@�1�A	B�,CED

. The transition function can be naturally extended to
>��FC�D��A	 � �GCHD

by the equations
>I�KJ:� � �9�<J:� >L�KJ:�('�)*�9�=M�N�O PRQ SUT VXWY>L�$#%�)*���

for all
J�Z<�

,
'=.[	 � �)I.[	

. It is

seen that
>I� >L�KJ:�(\X���(]*�^� >L�KJ:�(\F]*�

, for all
J,Z1���

and
\_�(][.�	 �

. The language accepted by
�

is3 �$�-�4�65�'/.7	 �-8 >L�$���('-�_`?�ba�BcY;
.

If
>I�$#%�)*�

has just one element for every
#�.7�

and
)&.7	

, then the automaton is deterministic (and
the transition function is denoted by

�
). By d we will denote either a deterministic transition

�
, or a

non-deterministic transition
>

.
So, for a DFA or NFA

�e�f�����
	����� d ���� the question we are interested in is: “How likely is that3 �$�-�R�<c
?” Note that the problem of deciding whether

3 �$�-�
is empty is decidable in polynomial time.

For more details see [10, 11, 12].
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In what follows we will fix the states
� � 5 ��� � ������� ����� � ;

and the alphabet
	0� 5 � ������� ��� ;

,
and we will count isomorphic copies only once. Let us denote by 	�
� ��� ���X� and ��
� ��� ���X� the
sets of deterministic and non-deterministic finite automata with

�
states and

�
letters in the alpha-

bet ( � ��� �+��� � � ��	 �[���
); let 	�
����������� ��� ���X�+�25 � . 	�
� ��� ���X� 8 3 �$�-�+� cY;

and
��
����������� ��� ���X� � 5 ��. ��
� ��� ���X� 8 3 �$�-����cY;

. In order to answer our question we eval-
uate the proportions of automata accepting the empty language,

� � ��� ���X� � � �H��! �"	�
����������� ��� ���X�
�"	�
� ��� ���X� , � # ��� ���X�4� � �H��! �"��
����������� ��� ���X�

�"��
� ��� ���X� ,

and answer the equivalent question: “How likely is that
�$� ��� ���X�4� ��� � # ��� ���X�4� �

?”
The paper is organized as follows. In the next section we will give exact formulae for the number

of DFAs and NFAs recognizing no word. In Section 3 we will describe the statistical method, sampling
and prediction. In Sections 4 and 5 we present our main results for DFAs and NFAs, and in Section 6
we briefly describe the programs used for this study. We conclude our paper with a brief section on
conclusions, the list of references and data summarizing the main statistical results.

2. Exact formulae

Let
�<�=�����
	����� d ���� be a DFA or NFA (recall that d .75 ����>&; �

. Assume that
�

has
�

elements and	
has

�
elements. A state

#
is reachable (accessible) in the DFA

�
if
#?� ���$���('-�

, for some
' . 	 �

;
similarly,

#
is reachable in the NFA

�
if
#�. >L�$���('-�

, for some
'/.7	 �

. The language
3 �$�-�

is empty if
all reachable states are non-final. This is equivalent to the existence of two sets of states

��% �
��&�Z �"'%5 �%;
such that:

(1)
�(%*)L��& �<�+' 5 �%;

,
�(% `L��& �Bc

,

(2)
�=Z ��&

,

(3) d �(���(% ):5 �%; � � 	 �RZ �(%*):5 �%; .
As

��&�� �,' � 5 �%;-)7�(%
�
, to count the automata accepting the empty language is enough to count the

number of sets
��&

(or
�(%

), for each possible set of final states
�

. Hence, the sets of deterministic and
non-deterministic automata with states

�
and alphabet

	
accepting the empty language are given by the

following formulae:

./10 	�
����������� �����
	��
�(% �4� 2
�(% Z �+' 5 �%;E�
� aZ/� 5 �%;3)L�(% �

5������
	������������ 8 �%�(���(%4):5 �%; � �:	 �UZ �(%*):5 �%;H;U�

./10 ��
����������� �����
	��
�(% �4� 2
�(%9Z �+' 5 �%;E�

�=Z �+'-� 5 �%;5)L�(%
�

5%�����
	������������ 8 >L�(���(% ):5 �%; � � 	 �RZ �(%*):5 �%;E;6�

We first compute the number of DFAs accepting the empty language for a fixed set
�7%-Z/�

with 8
elements, then we multiply the result by the number of subsets

��%
with 8 elements. Hence, for a fixed
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set of states
�"%

with 8 elements, the number of DFAs having reachable states in
��% )�5 �%;

and final states
in
� '����(% ):5 �%; �

is

� 5%�����
	������������ 8 �%�(���(%4):5 �%; � � 	 �RZ �(% ):5 �%;Y�� '�� 5 �%;5)L�(%
�; � � 8 � � ��� Q���� % W !�� Q � Q � � � � % W W ! C � � � � %
� � 8 � � � � Q���� % W !Y� C � � � Q � � � � % W �

�(� � �(% � � �(� Q
	��� Q
	 D�� � % W W !%�(� � � �� Q
	��� Q
	 D � 	 D�� � % W W ! C 	4Q D��(D���������� W �
For non-deterministic automata, this number is

� 5%�����
	������>?���� 8 >L�(���(% ):5 �%; � � 	 �RZ �(% )L5 �%;%�� '�� 5 �%;5)L�(%
�; � � C Q���� % W � Q �  Q���� % W W !Y� C � � Q �  Q � � � � % W W ! C Q � � � � % W
�!C�� Q���� % W�� ! C Q � � � % W$Q � � � � % W
�!C�� Q���� % W����_Q � � � % W$Q � � � � % W �

If
��� % � �(%

and
�(%

,
��� %

have properties 1.) – 3). above, then the automata accepting the empty
language considered for

�!� %
are included in the set of automata accepting the empty language considered

for
�(%

; therefore, to count them only once, we have to eliminate duplicates. To this aim, the number
of DFAs with

�
states over an alphabet with

�
letters, accepting the empty language and having exactly

8 � �
reachable states will be denoted by

/#"%$ ��� ���_� 8 �G� � 5%�����
	������������ 8 � �(%9� 8 ���%�(���(%4):5 �%; � � 	 �RZ �(% ):5 �%;E�� '�� 5 �%;5)L�(%
���
and for all

�&� % � �(% �
�%�(����� % ):5 �%; � � 	 � aZ ��� % ):5 �%;

or
�baZ �+'-� 5 �%;5)L��� % �; � (1)

For NFAs, this number will be denoted by

/#"(' ��� ���_� 8 �G� � 5%�����
	������>?���� 8 � �(%U� 8 ��>L�(���(%4):5 �%; � �:	 �UZ �(%*):5 �%;Y��=Z �+' �(%*' 5 �%;E�
and for all

�&� % � �(%��
>L�(����� % ):5 �%; � �:	 ��aZ ��� % ):5 �%;

or
�baZ �+'-� 5 �%;3)L��� % �; � (2)

Now, we can write the formulae as:

	�
����������� ��� ���X�4�
� � %)��* � /#"%$ ��� ���_� 8 ��� ��
����������� ��� ���X�4�

� � %)��* �
For example, in the case

�I� �
, these formulae become:

/#"%$ ��� � � � 8 �R�,+ ��� �
8.- !%� 8 � � �*! � � � � � % ! C � � � � % �

and /#"(' ��� � � � 8 �R� + �7� �
8.- !Y� C � C ��� % �*!Y� C � � � � � � % ! C � � � � % �
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therefore,

�"	�
����������� ��� � � �R�
� � %)��* � /#"%$ ��� � � � 8 �,�

� � %)��* � + �7� �
8 - !Y� 8 � � �*!�� � � � � % ! C � � � � %

�
�)��* % + ��� �

8 � � - ! 8 !�� � � � ! C � � � �
�"��
����������� ��� � � �4�

� � %)��* � /#"(' ��� � � � 8 �,�
� � %)��* � + �7� �

8 - !Y� C � C ��� % �*! C � � � � � % ! C � � � � %
�

�)��* % + ��� �
8 � � - ! C & ��� % �_Q � � % W$Q � � � W �

Since computing the above functions is difficult for arbitrary
�

, we restrict the computation to
���

� ��C%� �
.

For DFAs, we have the following formulae:

1. �"	�
����������� � � ���X�4� �
,

2. �"	�
����������� � C%���X�4�BC � � � � C � ���
3. �"	�
����������� � � ���X�4� ���  � � � &  � � % � C � � % ! ��� � C &  � � � � �
Thus, the proportions of DFAs accepting the empty language are:

� � ��C%���X�4� � �H��! C � � � � C � �C & ! C & � � � �H�
C & � � �H�

C � � & ,

� � � � ���X�4� � �H��! ���
 � � � &  � � % � C � � % ! ��� � C &  � � � �

C � ! � � � � � �H�
C � � � �H�

C � ! � � � % � � �H�
C & + C� - � ! C � � �

� � .

Hence, ��������
	
� � � C%���X�R�BC���&� ��������
	

� � � � ���X�4� � C � ����
For NFAs, we have the following formulae:

1. �"��
����������� � � ���X�R�BC � ,
2. �"��
����������� � C%���X�R�BC�� � � C � � �
3. �"��
����������� � � ���X�R�BC�� � � �-! C�� � � C�� � � %

.

Thus, the proportions of NFAs accepting the empty language are:

� # � C%���X�4� � �H��! C�� � � C � �C & Q & � � % W � � �H�
C & � � �H�

C & � � ,

� # � � ���X�4� � �H��! C�� � � �-! C�� � � C�� � � %
C � Q � � � % W � � �H�

C � � � �H�
C & � � � � � �H�

C � � � & .
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Hence, ��������
	
� # ��C%���X�4�BC���&� ��������
	

� # � � ���X�4� � C � ����
These results can be verified against the exact results obtained using brute force algorithms in Table 2

and Table 4.

3. Sampling and Prediction

The formulae established for
�:�BC%� �

offer the exact values of
�$� � C%���X�

,
� � � � ���X�

,
� # � C%���X�

,
� # � � ���X�@�

for any
� ��C%� � �������

As for
� � �

it is very difficult to obtain exact formulae, we use a statistical
approach in order to construct a predictor of

� ��� ���X�
(here

�
is
�$�

or
� #

). Using the vector notation0 �0��� ���X��� �
we construct a predictor

�� � � �H�"���-� 0 �@�
where
�

is an unknown, smooth surface. The
steps of the statistical approach are the following:

� Choose a grid of 8 classes of automata of type
����� ���	� �F��
 � � ������� � 8 .

� For each

�

take a random sample of size � from the family of automata characterized by
0 ���

���� ���	� ���
and determine the proportion of automata recognizing the empty language in the sample.

Thus we obtain an estimation
� �

of
� � 0 ��� �

� Consider the set of available data, obtained through random sampling� 0 �_�e���� ���	����� � � ������
 � � ������� � 8 �

Since
�

depends on
��� ���X�F�

we use the traditional statistical interpretation:
0 � ��� ���X���

is the
design variable, and

�
is the response variable. A statistical model of this dependence can be

presented as � � � �H������� 0 � ����������� �
where
�

is an unknown, smooth surface, verifying the condition

�-� 0 ���4� � �H��� � � ��
 � � ������� � 8 �
We estimate the function

�-� 0 �
through the natural thin plate spline interpolant.

The populations we will sample from are the sets of DFAs or NFAs, and their parameters are pairs��� ���X�@�
with

� �GC%� � �������
,
�f��C%� � �������

The volumes of these populations (the total number � of
automata) increase exponentially with

�
and

�
according to the following formulae: � % �<C

� ! � � � �
for

DFAs, and � &��<C
�YQ�� � � % W �

for NFAs. In order to classify these populations according to their sizes, we
will use the results in Table 1 and Table 5.

From a statistical point of view, populations with ��� �%��H�H�
are considered small sized and, for

their investigations, one would take a census. Families with
�%��H�H��� � � C ����H�H� are considered

medium sized, and those with � � C ����H�H� would be looked upon as large populations.
For each family, characterized by a couple

��� ���X�@�
we are interested in the estimation of the proportion�

of automata which recognize no words, the property ! � For medium sized populations, sampling
without replacement (according to a hyper-geometric scheme) has been used, while for large ones we
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used sampling with replacement. The estimator
��

is the proportion of automata in the sample accepting
the empty language. The size � of the sample has been established in such a way that the estimator��

offers a specified level of precision. This precision can be expressed in terms of the coefficient of
variation

� � � � ] � �� � � � � ) � � �� �� � �� � � � � � �
� � � ! � � �

� � ,

for medium sized populations. We take into consideration the most “severe” case
� � ��� C%�

therefore,
for a specified precision � � � the sample size � is given by the expression

� � �� � � &� � � � � � .
For large families, the normal approximation can be applied. Hence, the following relation is true:�	��
 8 �� � � 8 �� % � Q���� & W � � ) � � �� ���e� � ���R�

where
� % � Q���� & W is the

� � � ��� � CE���
quantile of the normal � �$��� � �

distribution. The sample size � which
offers the precision � � is the solution of the equation� % � Q���� & W ! � � � � � � �

�
� � � �

In the absence of any prior knowledge about
� �

we will choose the value which maximizes the product� � � � � �F�
that is

� � ��� C �
Hence, for large (infinite) populations, the “safest” estimation of the sample

size � is

� �
� &% � Q���� & W ! C%� � �H�� &� ,

with � � expressed as a percentage; see [6, 8].
In our study, we use the precision � � � � 

and the confidence level
� ���B�f� � ����� �

. Hence, the
sample sizes � % (for DFAs) and � & (for NFAs) are presented in Table 3 and Table 6.

Actually, as we have exact formulae for
�

for
�6��C

and for
�6� � �

we do not perform random
sampling for automata of the types

� C%���X�
and

� � ���X� �
Therefore, all generated samples for families of

automata with
��� ���X��� � � � � have the size � �BCHC%� � �H� �

For prediction, let us assume that a grid of 8 classes of automata characterized by
��� � ���	���@� 
?�

� ������� � 8 , has been chosen, and
� �_� � ���� ���	���

has been estimated through
�� �

by the above method.
Given the data

���� � ���	���@� � � �F�	
 � � ������� � 8 � the natural way to view the relationship between the
design variable

0 � ��� ���X� �
and the response variables

�
by fitting a model of the form

� � � �H��� �-� 0 � ����������� �
to the available data. Here

�
is a

C �
dimensional surface, and its estimation can be obtained by a rough-

ness penalty method. Since the main purpose of this approach is to use the design-response model for pre-
diction, we want to find a smooth curve

�
that interpolates the points

���� � ���	���@� � ���@�
that is
�-��� � ���	���4� � �

,
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for all

-� � ������� � 8 . The method we use, called thin plate splines, is a natural generalization of cubic

splines and the associated predictor is called the thin plate spline predictor, see [9].
Suppose that

0 �9�0���� ���	� ��� � 
�� � ������� � 8 , are the available knots in
� & �

and
� � � 
�� � ������� � 8 , are

known values. We look for a smooth function
�-� 0 �F�

such that
�-� 0 � � � � �

for

9� � ������� � 8 � To this aim

we define the function � � � � by � � � � � �� � %% ��� � & ���
	 � & � for
� � ���

���
for
� � ���

and the matrix

� ���� � � ����� �
� % � & ����� � �
� % � & ������� �

���� �
(3)

A function
�-� 0 �

is called a thin plate spline on the data set
0 � ��
 � � ������� � 8 � if � is of the form

�-� 0 � �
�) � * % � � ! � ��� 0 � 0 ��� � � �$) % � ) & � � ) � �X�F�

for suitable constants
���

and
) � �

If the vector
�

of coefficients
���

satisfies the equation � �-���X�
then
�

is
said to be a natural thin plate spline (NTPS).

Interpolation will be based on the following result presented in [9]: Suppose that
0 �-� ���� ���	� ��� �
 � � ������� � 8 , are non-collinear knots in

� & �
and

� � � 
 � � ������� � 8 , are given values. There exists a unique
NTPS
�F�

such that
��� 0 ��� � � � ��
 � � ������� � 8 � which uniquely minimizes � � �*�@� where� � �*�4������� ��� +! & � � & - & � C +" & � �  � - & � +� & � � & - &$#&% � % � �

Based on the above result we can use the following NTPS interpolation algorithm. The input data
consists of:

1. 8 is the number of interpolation knots,

2.
0 � ��
 � � ������� � 8 , are the points in

� & � 0 � �=���� ���	��� �
,

3.
� � � �� � � 
�� � ������� � 8 , are the calculated percentages of automata recognizing at least one word
(the estimated values obtained by sampling).

As matrices we use � in (3) and define the 8 � 8 matrix � �=� � � ' �
by� � '�� � ��� 0 � � 0 '(� �4� �

�*),+ � 0 � � 0 '-� & ���
	 � 0 � � 0 '(� & �
Denote . �0��� %���������� � � ���

. To construct the NTPS interpolant (predictor) we calculate the coefficients�-� � � %�������� ��� � � � ��/�� � ) % �) & �) � ��� of the NTPS
�-� 0 �

, interpolating the values
���

, as the solution of
the linear system 
 � � �

� � � 
 �/ �e� 
 . � ���
whose matrix is of full rank.
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The knots we use for interpolation,
� ���� ���	� �F� �� ���

,

 � � ������� � 8 � are obtained by statistical means and

the confidence level for the estimations
�� � ��
�� � ������� � 8 is

� � ��� �
, at a specified precision � � . Hence,

the prediction based on the NTPS
�-� 0 �

has the same precision � � � with the confidence level
� � ��� �

.
In our study we use the precision � � � � 

and the confidence level
� ���[� � � ����� �

.
Using the function

��� 0 �
, estimated through the thin-plate spline method, we obtain a predictor for the

percent–empty, which can be used for all
0 ����� ���X� �

. The predictor is forced to tend to a flat function
(a plane) for

��� � � ��� � . Of course, one would not expect negative values for
�

, therefore, the

predictor we choose is
�� � �

��� 5 � �H��� � � 0 �; .
4. Deterministic Finite Automata

This section presents the samples, estimations, and predictions for both DFAs and NFAs corresponding
to a precision of � � � � 

and confidence level
� � �[� � � ����� �

.
Table 7 gives the number of DFAs accepting the empty language and the computed percent of DFAs

accepting a non-empty language, using randomly generated samples.
We tested DFA samples, randomly generated for the first 13 values of

�
and

�
in Table 7, obtaining

the corresponding percentage of DFAs accepting the empty language for each such pair
��� ���X�

. Using
these values, we computed the NTPS predictor

�
for the last

)
values of

�
and

�
in Table 7, obtaining the

results in Table 8.
Computing the percent of DFAs accepting the empty language for values of

�
and

�
ranking from 14

to 24 (see Table 7) and the corresponding NTPS predictor
�

for the last 6 values of
�

and
�

in Table 7, we
obtain the results in Table 9. As we can see, the difference between the statistical results obtained by gen-
erating samples and the estimated percent computed using the NTPS predictor (the “Precision” column)
is less than 1% in both cases, for all six values of

��� ���X�R�@���*� �H��� ���%� ) ��� � �%� �E�
� � � �����%�
� � ��� � � ��� � � �%�
CE�
.

The prediction of the proportion
�

of DFAs recognizing at least one word can be expressed in terms
of the NTPS, by taking advantage of the exact formulae too.

Thus, for
� �BC%�

the exact predictor of
�

is

� � C%���X�4� � �H�
C & � � �H�

C � � & ,
��������
	

� � C%���X�4� ������
In a similar way, the exact predictor of

�
when

� � �
is

� � � ���X�4� � �H�
C � � � �H�

C � ! � � � % � � �H�
C & + C� - � ! C � � �

� � ,
��������
	

� � � ���X�R�	���1� ����
The construction of the NTPS predictor has been made by using 8 �0C �

knots, which have been
chosen to “cover” the region

��
 � ����
 C �
(As we have mentioned before, the predictor has the precision� � � � 

and the confidence level
� ���[� � � ����� �

.)
The validation of the predictor has been obtained by comparisons between predictions and statisti-

cally generated values of
�

for six different points
� ���� ���	���@� �� ���(�

The numerical results are presented in

Table 8 and Table 9, where we can see that the precision of the prediction is always less than � � ��� � � �  �
.

Consequently, with a high degree of accuracy (i.e., with precision higher than 99% and level of confi-
dence 0.9973), the probability that a DFA recognizes no word tends to zero when the number of states
and the number of letters in the alphabet tend to infinity.
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5. Non-deterministic Finite Automata

Table 10 gives the number of NFAs accepting the empty language and the computed percent of NFAs
accepting a non-empty language using randomly generated samples.

Applying the same procedure described for DFAs, but this time for NFAs, we obtain the NTPS
predictor

�
for NFA accepting the empty language. Using the first 13 values from Table 10, we obtain

the results for the NTPS predictor
�

in Table 11. Using the first 13 values and the supplementary 11
values from Table 10, we get the results in Table 12.

As we can see, the difference between the percentage obtained by generating samples and the one
computed using the NTPS predictor is again less than 1.65%, if we are using only 13 knots, and less than
0.999%, if we are using 24 knots.

Again, for NFAs we obtained the same conclusion as for DFAS: with a high degree of accuracy (i.e.,
with precision higher than 99% and level of confidence 0.9973), the probability that an NFA recognizes
no word tends to zero when the number of states and the number of letters in the alphabet tend to infinity.

6. Programs

We used the following uniform binary representation of both finite deterministic and non-deterministic
automata

�B�=��	��
��� d ������� of type
��� ���X�

:

� �6�65 ��� � ������� ����� � ;
,
	��65 � ������� ��� ;

;� states are represented by their characteristic functions, i.e., state



is represented by the binary
vector

�$������������ ���� � ���������� ��Y�
with

�
on the


th position;

� � ���������� ��Y�
represents the initial state;� the transition d and the vector

�
are represented by an array

�
consisting of

� � �A��� � �L�
’s

and
�
’s; the first

� � �A���
binary digits of

�
represent the characteristic vector of the transition

function d , so we have
���6�

groups of
�

digits, each of them representing the characteristic vector
of a value of d � 
� � � , � � 
 � � ,

� � � � � ;� the last
�

digits of

�
represent the characteristic vector of the final states

�
.

Both DFAs and NFAs use the same representation, the only difference being that for d � 
� � � we have
a characteristic vector with exactly one value of

�
for DFAs, while for NFAs, the number of

�
’s can be��� � ������� ���

. Therefore, we use the same code for testing the emptiness property for both DFAs and NFAs:
first, we compute reachable states, afterwards, we check if any reachable state is final.

For example, the DFA
�f�!��	��
�������������

where
	/� 5 � ��CY;E�
�!�b5 ��� � ;E���� 5 ��� � ;?� 5%��� ���@� �

� �X�����
;
and

�%�$��� � �-� � �!� �X����� ���%�$����CE�^�1�I�!��� ���@� ���%� � � � �^�1�%� � ��CE�^� � ��� �X�����
is represented

by the binary string
����� � ��� �������

. The NFA �
�b��	��
��� d ������� where all components are the same

as in
�

except the transition d �$��� � � �=5 ��� � ; �f��� ����� � d �$����CE� � 5 �%; �f��� ���@� � d � � � � � � d � � ��CE� �5 � ;^�=� �X�����
is represented by the binary string

����� � ��� �������
.

For computing the number of automata accepting the empty language, for fixed values of
�

and
�

, we
generate in lexicographical order all possible binary vectors

�
and test each of them whether it accepts

or not no word. Obviously, the number of automata grows exponentially with
�

and
�

(
� � � !(C �

for DFAs
and

C � � � ���
for NFAs). The method was used for the values presented in Table 2 and Table 4. One can see

that our formulae obtained in Section 2 match the results in these tables. For sampling, we test randomly
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generated automata (DFAs and NFAs of different types) by a simple Mathematica program. The results
are presented in Table 7 and Table 10. Note that the statistics is very close to those in Table 2 and Table 4,
respectively. For most of them, the difference is less than 1%. We always consider

�
to be the initial

state. Since we generate (in lexicographical order) binary strings with the last
�

digits being interpreted
as an array of final states, each of the first

� � �
generated automata recognizes the empty language for

DFA, and each of the first
C � � �

generated automata recognizes the empty language for NFA. The last� � � C � � %
generated automata recognize a non-empty language for DFA and the last

C � � � ��� � %
generated

automata recognize a non-empty language for NFA.
For the NTPS predictor we have codes for solving systems of linear equations using the substitution

lemma, computing the function � , building the system of equations for the NTPS predictor, constructing
the NTPS predictor

�
, and computing the NTPS predictor corresponding to the given values

�
and

�
.

We use the language C, compiled with a GNU compiler for Linux. The programs were run on a
PC Pentium 4 1.6A with 64 MB memory, for more than 1 week to obtain the results in Table 2 and
Table 4. The size of memory was not important since every time we store only one automaton and
no swapping of data is used. All programs and data used for this paper can be found at the website���������	����
�
�
�������������������������������������������� �����!���������"��#�$��%�����&�����������'�"�&�(�)�&�*�&�"�+����

.

7. Conclusions

In this paper we offered an answer to the question: “How likely is that a randomly given (non-) deter-
ministic finite automaton recognizes no word?” The intuition seems to indicate that not too many finite
automata accept no word; but, is there a proof supporting this intuition? For small automata, i.e., au-
tomata with a few states and letters in the alphabet, exact formulae can be obtained; they confirm the
intuition. However, it is not clear how to derive similar formulae for ‘larger’ automata (see [7] for formu-
lae which might be relevant; enumeration is not only notoriously difficult, but also “problem-sensitive”,
in the sense that approximations change drastically if we change the problem). Consequently, in this
paper we took a completely new approach, namely, statistical sampling, see [6, 9].

We have shown that, with a high degree of accuracy (i.e., with precision higher than 99% and level of
confidence 0.9973), for both deterministic and non-deterministic finite automata: a) the probability that
an automaton recognizes no word tends to zero when the number of states and the number of letters in
the alphabet tend to infinity, b) if the number of states is fixed and rather small, then even if the number
of letters of the alphabet of the automaton tends to infinity, the probability is strictly positive.

It is interesting to examine briefly the meaning of our results. First and foremost, the main claims of
the paper are statistically true: the statements a) and b) above are true with a high degree of accuracy
(i.e., with precision higher than 99% and level of confidence 0.9973). Is this just a simple ‘guess’? Do
we use a valid method for ascertaining mathematical truth? Does this analysis really add anything to our
knowledge of the phenomenon studied? Is the result interesting?

The sampling method is neither simple “guess”, nor “bad mathematics”. It is part of a trend called
“experimental mathematics”, in which we proceed heuristically and ‘quasi-inductively’, with a blend of
logical and empirical–experimental arguments (see, for example, [1, 2, 5]). It is one of the possible ways
to cope with the complexity of mathematical phenomena, a valid method for ascertaining mathematical
truth. The present analysis shows that for all practical purposes the fraction of automata recognizing no
words tends to zero when the number of states and the number of letters in the alphabet grow indefinitely.
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Of course, the result obtained in this note is not unexpected. Therefore, some may argue that it is
not very interesting from the point of view of automata theory. We believe this is not the case for the
following reasons. a) Sampling and simulation are current methods in other areas of mathematics and
computer science, and their absence in automata theory was a matter of time. b) We have a probabilistic
result which can motivate/guide the search for “certitude”, that is, a proof of the fact established here in
probabilistic terms. c) In fact, the method used is much more important than the result itself, and this
is the reason we tested it for such a simple problem. The method is “general” in the sense that it can
be applied to a variety of questions in automata theory, certainly more difficult ones than the problem
solved in this note. For example, an interesting question is “How likely is that a randomly given (non-)
deterministic finite automaton recognizes an infinite set of words?”.

Acknowledgement: We thank Sheng Yu for useful suggestions leading to a better presentation.
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Appendix: Data

In this section we present the main statistical data on which our analysis is based upon.
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Table 1. DFAs recognizing no words

� % � � � � C � � � )
C ) � C�� ) � ��EC�� �*���� ) �*) � � ���
� � � � C � � ��� � ) � � � � � ��C�� � � � � ��� � � � � � � � � ��� � � �������?� � ���
� � �� � � ) � � ��� C � ) ��� �?� � ��� ����� ����� �����
� � � � C�� � � ��� ����� ����� ����� �����

Table 2. DFA exact results

No.
� �

Total num-
ber of DFAs

DFAs accepting
empty languages

DFAs accepting
non-empty lan-
guages

Non-
empty
percent

1 2 2 64 20 44 68.75%

2 2 3 256 72 184 71.875%

3 2 4 1024 272 752 73.4375%

4 2 5 4096 1056 3040 74.2188%

5 2 6 16384 4160 12224 74.6094%

6 2 7 65536 16512 49024 74.8047%

7 2 8 262144 65792 196352 74.9023%

8 2 9 1048576 262656 785920 74.9512%

9 2 10 4194304 1049600 3144704 74.9756%

10 2 11 16777216 4196352 12580864 74.9878%

11 2 12 67108864 16781312 50327552 74.9939%

12 2 13 268435456 67117056 201318400 74.9969%

13 2
�

exact formulae

14 3 2 5832 1188 4644 79.6296%

15 3 3 157464 24894 132570 84.1907%

16 3 4 4251528 590004 3661524 86.1225%

17 3 5 114791256 15008166 99783090 86.9257%

18 3
�

exact formulae

19 4 2 1048576 148640 899936 85.8246%

20 4 3 268435456 26036864 242398592 90.3005%

21 5 2 312500000 32383000 280117000 89.6374%
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Table 3. Sample sizes for DFAs

� % �F��� � �X� 2 3 4 5 6

2 64 256 1,024 4,096
) ��C � �

3
� � ) ��� CHC%� � �H� CHC%� � �H� CHC%� � �H� CHC%� � �H�

4
CHC%� � �H� CHC%� � �H� CHC%� � �H� CHC%� � �H� CHC%� � �H�

5
CHC%� � �H� CHC%� � �H� ����� ����� �����

Table 4. NFA: exact results

No.
� �

Total number
of NFAs

NFAs
accepting
non-empty
languages

NFAs
accepting
non-empty
languages

Non-
empty
percent

1 2 2 1024 704 320 68.75%

2 2 3 16384 11776 4608 71.875%

3 2 4 262144 192512 69632 73.4375%

4 2 5 4194304 3112960 1081344 74.2188%

5 2
�

exact formulae

6 3 2 2097152 1761280 335872 83.9844%

7 3 3 1073741824 929562624 144179200 86.5723%

8 3
�

exact formulae

9 4 2 68719476736 63671631873 5047844863 92.6544%

10 5 2 36028797018963968 Beyond the
computing power

N/A N/A

Table 5. NFAs recognizing no words

� % � � � � C � � �
C � ��EC�� �*) � � ��� C � ) C � �?� � � � � � � ��� � � � ���
� C ������ C � � ��� � �� � � � � � ��� ����� �����
� ) � ��� � � � � � % � ����� ����� �����

Table 6. Sample sizes for NFAs

� &��F��� ��� �X� 2 3 4 5

2 1024
) ��C � � CHC%� � �H� CHC%� � �H�

3
CHC%� � �H� CHC%� � �H� CHC%� � �H� CHC%� � �H�

4
CHC%� � �H� CHC%� � �H� ����� �����
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Table 7. The number of DFAs accepting the empty language using randomly generated samples

No.
� �

Total
number of
DFAs

DFAs
accepting
non-
empty
languages

DFAs
accepting
non-
empty
languages

Non-empty
percent

1 3 2 22500 17893 4607 79.52 %

2 3 3 22500 19017 3483 84.52 %

3 3 8 22500 19695 2805 87.53 %

4 3 15 15500 13498 2002 87.08 %

5 4 2 22500 19425 3075 86.33 %

6 4 6 22500 21063 1437 93.61 %

7 6 2 22500 21034 1466 93.48 %

8 6 6 22500 22122 378 98.32 %

9 6 10 22500 22155 345 98.47 %

10 8 2 22500 21761 739 96.72 %

11 8 3 22500 22308 192 99.15 %

12 8 8 22500 22413 87 99.61 %

13 10 5 22500 22471 29 99.87 %

14 4 10 22500 21068 1432 93.64 %

15 5 3 22500 21376 1124 95 %

16 5 5 22500 21743 757 96.64 %

17 5 10 22500 21779 721 96.8 %

18 6 4 22500 22115 385 98.29 %

19 6 8 22750 22426 324 98.58 %

20 6 11 22500 22118 382 98.3 %

21 7 9 22500 22312 188 99.16 %

22 9 4 22500 22434 66 99.71 %

23 10 3 22500 22435 65 99.71 %

24 14 2 22500 22371 129 99.43 %

25 4 7 22500 21064 1436 93.62 %

26 8 6 22500 22402 98 99.56 %

27 9 5 22500 22454 46 99.8 %

28 10 4 22500 22476 24 99.89 %

29 13 3 22500 22487 13 99.94 %

30 15 2 15400 15332 68 99.56 %
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Table 8. Comparative results for DFA NTPS predictor using 13 knots

DFAs % DFAs NTPS

No
� �

NFAs accepting accepting
� ��� ���X�

estimated Precision

tested at least at least empty

one word one word percent

1 4 7 22500 21064 93.620% 92.754207 7.245793
� � � ) ��� � �

2 8 6 22500 22402 99.560% 99.693417 0.306583
� � � � ��� � � �

3 9 5 22500 22454 99.800% 99.869872 0.130128
� � � � ) � ��� C

4 10 4 22500 22476 99.890% 99.844233 0.155767
� � � � ��� ) �

5 13 3 22500 22487 99.940% 100.00 0.00
� � � � )

6 15 2 15400 15332 99.560% 100.00 0.00
� � � � �

Table 9. Comparative results for DFA NTPS predictor using 24 knots

NFAs % NFAs NTPS

No
� �

NFAs accepting accepting
� ��� ���X�

estimated Precision

tested at least at least empty

one word one word percent

1 4 7 22500 21064 93.620% 93.358144 6.641856
� � C ) � ��� )

2 8 6 22500 22402 99.560% 99.330491 0.669509
� � CHC���� ���

3 9 5 22500 22454 99.800% 99.484803 0.229509
� � � � � � ���

4 10 4 22500 22476 99.890% 100 0.00000
� � � � �

5 13 3 22500 22487 99.940% 100.000 0.000
� � � � )

6 15 2 15400 15332 99.560% 100.000 0.000
� � � � �
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Table 10. The number of NFAs accepting the empty language using randomly generated samples

Total NFAs accepting NFAs accepting Non-empty

No.
� �

number non-empty non-empty percent

of NFAs languages languages

1 3 2 22500 18906 3594 84.03 %

2 3 3 22500 19491 3009 86.63 %

3 3 8 22500 19651 2849 87.34 %

4 3 15 22500 19775 2725 87.89 %

5 4 2 22500 20842 1658 92.63 %

6 4 6 22500 21098 1402 93.77 %

7 4 7 22500 21121 1379 93.87 %

8 4 10 22500 21094 1406 93.75 %

9 5 5 22500 21778 722 96.79 %

10 5 10 22500 21807 693 96.92 %

11 6 2 22500 22127 373 98.34 %

12 6 4 22500 22147 353 98.43 %

13 6 6 22500 22126 374 98.34 %

14 6 8 22500 22161 339 98.49 %

15 6 10 22500 22137 363 98.39 %

16 6 11 22500 22130 370 98.36 %

17 7 9 22500 22352 148 99.34 %

18 8 2 22500 22407 93 99.59 %

19 8 3 22500 22419 81 99.64 %

20 8 6 22500 22403 97 99.57 %

21 8 8 22500 22426 74 99.67 %

22 9 4 22500 22458 42 99.81 %

23 9 5 22500 22448 52 99.77 %

24 10 3 22500 22477 23 99.9 %

25 10 4 22500 22479 21 99.91 %

26 10 5 22500 22477 23 99.9 %

27 13 3 22500 22499 1 100 %

28 14 2 22500 22498 2 99.99 %

29 15 2 22500 22499 1 100 %
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Table 11. Comparative results for NFA NTPS predictor using 13 knots

NFAs % NFAs NTPS

No
� �

NFAs accepting accepting
� ��� ���X�

estimated Precision

tested at least at least empty

one word one word percent

1 6 8 22500 22161 98.490% 99.462347 0520447
� � � ��� C � � �

2 6 10 22500 22137 98.390% 100.000 0.000
� � � ) �

3 6 11 22500 22130 98.360% 100.000 0.000
� � � ) �

4 7 9 22500 22352 99.340% 100.000 0.000
� � � )
)

5 8 2 22500 22407 99.590% 100.000 0.000
� � � � �

6 8 3 22500 22419 99.640% 100.000 0.000
� � � �
)

7 8 6 22500 22403 99.570% 100.000 0.000
� � � � �

8 8 8 22500 22426 99.670% 100.000 0.000
� � � ���

9 9 4 22500 22458 99.810% 100.000 0.000
� � � � �

10 9 5 22500 22448 99.770% 100.000 0.000
� � � C �

11 10 3 22500 22477 99.900% 100.000 0.000
� � � � �

12 10 4 22500 22479 99.910% 100.000 0.000
� � � ���

13 10 5 22500 22477 99.900% 100.000 0.000
� � � �

14 13 3 22500 22499 100.000% 100.000 0.000
�

15 14 2 22500 22498 99.990% 100.000 0.000
� � � � �

16 15 2 22500 22499 100.000% 100.000 0.000
�

Table 12. Comparative results for NFA NTPS predictor using 24 knots

NFAs % NFAs NTPS

No
� �

NFAs accepting accepting
� ��� ���X�

estimated Precision

tested at least at least empty

one word one word percent

1 4 7 22500 21121 93.870% 92.871409 7.128591
� � ��� ����� �

2 8 6 22500 22403 99.570% 99.595426 0.404574
� � � �EC����YC )

3 9 5 22500 22448 99.770% 99.772234 0.227766
� � � �H�ECHC � �

4 10 4 22500 22479 99.910% 99.902063 0.097937
� � �H� � � � �

5 13 3 22500 22499 100% 100.000 0.000
�

6 15 2 22500 22499 100% 100.000 0.000
�


