Computer Science 750 (2019)

Assignment 2

This assignment is worth 40 marks representing 7.5% of your total course grade. Due date: 22 September 2019, before 23.50 in Canvas

Name:

ID:

Questions

1.	1. Compare the de-quantisation of the Deutsch's problem discussed in a in the paper D. Collins, K. W. Kim, and W. C. Holton. Deutsch-Jozs quantum computation, <i>Phys. Rev. A</i> 58, R1633-R1636 (1998).	class with the one described a algorithm as a test of
		[20 marks]
2.	2. Choose one of the following questions (A) or (B):	
	(A) Use IBM quantum simulator https://quantum-computing.ibm.com/login to program the square-root of NOT circuit.	[10 marks]
	Justify your implementation.	[10 marks]
	(B) Given an undirected graph $G = (V, E)$, a proper 2-colouring o of V into two subsets V_1 and V_2 such that for all $\{i, j\} \in E$ eit $j \in V_2$ or $i \in V_2$ and $j \in V_1$.	f G is a partition her $i \in V_1$ and
	Consider the following problem:	
	The 2-Colouring Problem:	
	Instance:Graph $G = (V, E).$ Question:Find a proper 2-colouring of G if one exists.	
	1. Write a QUBO formulation for the 2-Colouring Problem and tr the number of variables and/or the density of the QUBO matrix	ry to minimise c. [6 marks]
	2. Write a program for solving the 2-Colouring Problem with the simulator.	D-Wave [4 marks]
	3. Run the program on the D-Wave simulator for an instance of a	graph with 5 vertices. [2 marks]
	4. Write a program for solving the 2-Colouring Problem with the	exact solver. [4 marks]
	5. Run the exact solver program for the same instance as in 3 abo	ve. [2 marks]
	6. Propose three metrics to compare the performances of the simuland use them for the solutions obtained at 3 and 5.	lator and exact solver [2 marks]