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R. Hamming

“The purpose of computing is insight, not numbers.”
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Assignment and exam 4

Assignment 1: 21 August 2009; 8:30pm (ADB time)

Midterm test 18 August (in class): prepare all results discussed in
class and tutorials
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Finite machines

Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0’s)?

Using “states” to remember the ‘property’ seems a good idea, but don’t
we have to keep adding newer and newer ‘states’ as the input gets
longer and longer?

Re-phrased: Is a finite memory enough? In general the answer seems
to be negative, but . . .
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Finite machines

A simple example

Probably the simplest finite machine operates a switch as follows:

So, if the switch is down, then the light goes on and if the switch is up,
then the light goes off.

To this device, the switch position is an input and the light on/off is the
output. The machine works with finitely many “states” for any
sequence of modifications of the switch.
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DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ
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DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F ) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.
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DFA

DFA: example 1

M = (Q,Σ, δ, s, F ):

Q = {q0, q1, q2, q3}
Σ = {a, b}

δ Σ
Q a b
q0 q1 q2

q1 q0 q3

q2 q3 q0

q3 q2 q1

s = q0

F = {q2}

q0

q1

q2

q3

a

a

b

b

b

b

a

a
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DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F ) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.
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DFA

Questions

Given a DFA M, check which strings M accepts.

Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states) DFA
recognising the language?

Which properties of DFAs can be checked algorithmically?
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DFA

DFA: example 2

The language accepted by
this DFA is empty, i.e. the
DFA accepts no string.

q0

a, b
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DFA

DFA: example 3

The language accepted by
this DFA consists of all strings
over Σ = {a, b}, i.e. the lan-
guage Σ∗ = {a, b}∗.

q0

a, b
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DFA

DFA: example 1 continued

The language ac-
cepted by this
DFA consists of
all strings over
Σ = {a, b} which
contain an even
number of a’s and
an odd number of
b’s.

q0

q1

q2

q3

a

a

b

b

b

b

a

a
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DFA

DFA: example 4

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which contain the
substring aba, i.e.
all the strings of
the form uabav with
u, v ∈ {a, b}∗.

q0

b

q1

a

q2

q3

a, ba

b

b

a
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DFA

DFA: example 5

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which start with a,
i.e. all the strings of
the form av , with v ∈
Σ∗ = {a, b}∗.

q0

q1

a, b

q2

a, b

a

b
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DFA

DFA: example 6

The language
accepted by
this DFA con-
sists of only
one string over
Σ = {a, b},
namely
abbab.

q0 q1 q2 q3 q4 q5

q6

a b b a b

b
a

a b a a, b

a, b
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DFA

DFA: example 7

The language accepted
by this DFA is
{ambn | m, n > 0},
where am means
aa · · · a (m times).

q0 q1 q2

q3

a b

a
b

a b

a, b
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DFA

Not all languages are accepted by DFAs

The language
L = {anbn | n > 0}

is not accepted by any DFA.

Why?

Informally, because a DFA can ‘count’ only up to the number of its
states.

More formally, because, if n is greater than the number of states of a
DFA supposed to accept L, then any trace (path) labelled by an passes
twice through some state. That is, the there are strings ai and aj for
i < j ≤ n that fall into the same state. Thus both aibi and ajbi are
accepted/rejected which contradicts the definition of L.
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DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F ), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F ).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F ), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.
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DFA

Simple properties of DFAs 2

It is algorithmically decidable whether a DFA M accepts no string.
Proof: Given the DFA M check whether there is a path from the
initial state s (has a trace of a computation) to a final state in F .
We have: L(M) = ∅ if and only if there there is no path from the
initial state to a final state.
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DFA

Simple properties of DFAs 3

It is algorithmically decidable whether a DFA M accepts infinitely
strings.
Proof: Given the DFA M, L(M) is infinite if and only if there is a
path from the initial state (has a trace of a computation) s to a final
state in F having the following additional property: some state q in
the path possesses a loop, i.e. there is a path from q to q.
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NFA

The reverse operation

The reverse of a string

w = c1c2c3 · · · cn

is the string
R(w) = cncn−1 · · · c2c1.

For example, R(abaaa) = aaaba, R(abba) = abba, R(bac) = cab.

The reverse of a language A is the language

R(A) = {R(w) | w ∈ A}.

Problem: Is R(A) regular whenever A is regular?
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NFA

DFA: example 7 revisited

The language accepted by
the DFA M is
A = {ambn | m, n > 0}.
Is
R(A) = {bnam | m, n > 0}
regular?

q0 q1 q2

q3

a b

a
b

a b

a, b
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NFA

A possible solution?

Is
R(A) = {bman | m, n > 0}
accepted by this
machine, M ′?

q0 q1 q2

q3

a b
a

b

a b

a, b
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NFA

The solution ‘under microscope’: M vs M ′ 1

q0 q1 q2

q3

a b

a
b

a b

a, b

q0 q1 q2

q3

a b
a

b

a b

a, b
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NFA

The solution ‘under microscope’: M vs M ′ 2

What did we do, in more general terms?

1 The initial state of M becomes the accept state of M ′.
2 Every accept state of M becomes an initial state of M ′.
3 If δ(q1, c) = q2 is in M then δ(q2, c) = q1 is in M ′. That is, all

transitions are reversed.
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NFA

The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.
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NFA

The solution ‘under microscope’ 4

Transforming this DFA M
into M ′ produces:
a) two initial states: q2, q3

b) multiple transitions
with the same label (e.g.
δ(q4, 0) = {q1, q2, q3, q4})

q0 q1 q2

q3 q4

0

1 0

1

0, 1
0, 1

0, 1
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NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F ) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.
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NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F ) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.
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NFA

NFA: comments

The state transition function δ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have δ(q, c) empty (undefined) for some
q ∈ Q and c ∈ Σ. This means that that we can design automata
such that no state moves are possible for when in some state q
and the next character read is c (that is, the human designer does
not have to worry about all cases).

Every DFA can be viewed as a special case of an NFA.
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NFA

NFA: example 1 1

Σ = {a, b}

δ Σ
States a b

q0 {q0} {q0, q1}
q1 {q2} {q2}
q2 ∅ ∅

S = {q0}
F = {q2}

q0

a, b

q1

q2

a, b

b
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NFA

NFA: example 1 2

The string aba is accepted: there are two traces,

q0
a
→q0

b
→q0

a
→q0,

q0
a
→q0

b
→q1

a
→q2

The string baa is not accepted: there are two traces,

q0
b
→q0

a
→q0

a
→q0,

q0
b
→q1

a
→q2

a
→?

The language accepted by this NFA is

{uba, ubb | u ∈ {a, b}∗}.
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NFA

NFA: example 2

Σ = {1, 2, 3}

δ Σ
States 1 2 3

q0 {q0, q1} {q0, q2} {q3}
q1 {q1, q3} ∅ {q1}
q2 {q2} {q2} {q2}
q3 ∅ ∅ {q2}

S = {q0}
F = {q2}

q0

1, 2

q1

1, 3

q2

q3

1, 2, 3

1

2

1

3

3
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NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.
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NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F )
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.
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NFA

NFAtoDFA: an example 1

q0

q1

q2

2

1

1, 2

1
1

The NFA N
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NFA

NFAtoDFA: an example 2

q′

0 = {q0} q′

1 = {q1, q2} q′

2 = {q0, q2}

q′

3 = {q2} q′

4 = {q0, q1, q2}

2 1

1

2

1

2

1

2 2
1

Equivalent DFA M
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NFA

Closure properties of regular languages 1

The union of two regular languages is also regular.
Proof: Given two NFAs NA, NB with no common states such that
A = L(NA), B = L(NB), the NFA N consisting of the union of all
components of NA, NB recognises A ∪ B.

More precisely, if NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB,Σ, δA ∪ δB , SA ∪ SB, FA ∪ FB).

The intersection of two regular languages is also regular.
Proof: A ∩ B = A ∪ B.
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NFA

Closure under union: an example 1

q2 q0 q1

a, b

a
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NFA

Closure under union: an example 2

q2

q0 q1

a, b

a
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NFA

Closure under intersection: an example 1

q0 q1

a

b

b

NFA N1

q3

b

NFA N2
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NFA

Closure under intersection: an example 2

q0 q1

a

b

b

NFA accepting the complement of N1?
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NFA

Closure under intersection: an example 3

q0 q1 q3

a

b a

b a, b

DFA M1 equivalent to N1
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NFA

Closure under intersection: an example 4

q0 q1 q3

a

b a

b a, b

DFA M1 recognising the complement of M1
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NFA

Closure under intersection: an example 5

q3 q4

b

a

a, b

DFA M2 equivalent to N2
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NFA

Closure under intersection: an example 6

q3 q4

b

a

a, b

DFA M2 recognising the complement of M2
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NFA

Closure under intersection: an example 7

q0 q1 q2

q3 q4

a

b a

b a, b

b

a

a, b

NFA N3 recognising L(M2) ∪ L(M2)
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NFA

Closure under intersection: an example 8

Last two steps:

Construct a DFA M3 equivalent to the NFA N3

Construct the complement of
L(M3) = L(N1) ∩ L(N2) = {bk | k ≥ 1}

Recap:

L(N1) = {anbm | n ≥ 0, m ≥ 1}

L(N2) = {bm | m ≥ 0}

L(M3) = {bk | k ≥ 1}
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NFA

Closure properties of regular languages 2

The closure (or Kleene star) of a language A, denoted by A∗, is the set
of all strings that can be formed by concatenating together any finite
number of strings of A.

Examples:

{a}∗ = {ε, a, aa, aaa, . . . , an, . . .}

{a, ab}∗ = {ε, a, ab, aa, abab, aab, aba, . . .}

The Kleene star of a regular language is also regular.
Proof: Given an NFA NA that recognizes a language A we can
build an NFA NA∗ that recognises the closure of A by making a
start state accept state and, adding transitions, with
corresponding labels, from all accept state(s) to the neighbours of
the initial state(s).
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NFA

Closure operation: an example

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

1
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NFA

Closure properties of regular languages 3

The concatenation of two languages A, B is defined to be the set of
strings that can be formed by concatenating all strings of A with all
strings of B, i.e.

AB = {xy | x ∈ A, y ∈ B}.

Example: If A = {an | n ≥ 0} and B = {bw | w ∈ {a, b}∗}, then

AB = {anbw | w ∈ {a, b}∗, n ≥ 0} = {ubv | u, v ∈ {a, b}∗}.
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NFA

Closure under concatenation: an example 1.1

q0

a

q1 q2

a, b

b
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NFA

Closure under concatenation: an example 1.2

q0 q1 q2

a a, b

b?
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NFA

Closure under concatenation: an example 1.3

q0 q1 q2

a a, b

b

b
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NFA

Closure under concatenation: an example 1.3’

q0 = q1 q2

a a, b

b
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NFA

Closure under concatenation: an example 2.1

q0 q1

b
q2 q3

a, b

a
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NFA

Closure under concatenation: an example 2.2

q0 q1 q2 q3
b ?

?
a

a, b
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NFA

Closure under concatenation: an example 2.3

q0

q1 = q2

q3

a, b
b

?

a
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NFA

Closure under concatenation: an example 2.4

q0

q1 = q2

q3

a, b
b a
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NFA

Closure under concatenation: an example 2.4’

q0

q1 = q2

q3

a, b
b a

a
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NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F ) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.
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NFA

Closure under repeated concatenation

Let A be a language and n ≥ 1. We define:

An = {x1x2 · · · xn | x1, x2, . . . , xn ∈ A}.

If A is a regular language, then for each n ≥ 1, An is also regular.
Proof: A1 = A, A2 = AA, . . . , An = AA · · ·A

︸ ︷︷ ︸

n times

, so the result follows

from the closure under concatenation.
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NFA

More decidable properties of regular languages 1

It is algorithmically decidable whether two DFAs accept the same
language.
Proof: If A, B are two languages recognised by the DFAs MA, MB,
respectively, then (using the closure properties of regular
languages) we can construct a DFA M such that:

L(M) = A ∆ B = (A ∩ B) ∪ (B ∩ A),

and then use the equivalence:

A = B ⇔ A ∆ B = ∅.
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NFA

More decidable properties of regular languages: an example 1.1

q0 q1

a

b

a, b

DFA M1

{anbu | n ≥ 0, u ∈ {a, b}∗}

q3

a, b

DFA M2

{a, b}∗
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NFA

More decidable properties of regular languages: an example 1.2

q0 q1

a

b

a, b

DFA M1

{an | n ≥ 0}

q3

a, b

DFA M2

∅
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NFA

More decidable properties of regular languages: an example 1.3

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩ M2

∅

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩ M2

{an | n ≥ 0}
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NFA

More decidable properties of regular languages: an example 1.4

{(q0, q3), (q0, q3)} {(q0, q3), (q1, q3)}

{(q1, q3), (q0, q3)} {(q1, q3), (q1, q3)}

a a

a a, b

b

b

b

DFA M1∆M2: {an | n ≥ 0} 6= ∅ implies L(M1) 6= L(M2)
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NFA

More decidable properties of regular languages 2

It is algorithmically decidable whether a DFA M accepts only one
a string w .
Proof: Take A = L(M) and B = {w}.

It is algorithmically decidable whether the language accepted by a
DFA M includes the language accepted by a DFA M ′.
Proof: We use the equivalence

L(M) ⊆ L(M ′) ⇔ L(M) ∩ L(M ′) = L(M).
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Minimisation of DFAs

Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a DFA
M produce a new DFA M ′ such that:

L(M) = L(M ′),

M ′ has less states than M.
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Minimisation of DFAs

Minimisation of DFAs 2

q0

q1

q2

q3

a, b

a, b

a, b
a

b

The state q3 can be removed without modifying the accepted language
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Minimisation of DFAs

Minimisation of DFAs 3

From a DFA
M = (Q,Σ, δ, s, F )

and any state q ∈ Q we define the new DFA

Mq = (Q,Σ, δ, q, F )

by simply replacing the initial state s with q.

We say two states p and q of M are distinguishable (k-distinguishable)
if there exists a string w ∈ Σ∗ (of length k) such that exactly one of Mp

or Mq accepts w .

If there is no such string w then we say p and q are equivalent.
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Minimisation of DFAs

Minimisation of DFAs 4

Questions:

Does there exist an algorithm deciding whether two states p and q
are distinguishable?

Does there exist an algorithm deciding whether two states p and q
are k-distinguishable?

Does there exist an algorithm deciding whether two states p and q
are equivalent?
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Minimisation of DFAs

Minimisation of DFAs: elimination lemma 5

If a DFA M has two equivalent states p and q, then one of these states
can be eliminated without modifying the accepted language, hence we
can construct a smaller DFA M′ such that L(M) = L(M ′).

Proof: Assume M = (Q,Σ, δ, s, F ) and p 6= s. We create an equivalent
DFA

M ′ = (Q \ {p},Σ, δ′, s, F \ {p}),

where δ′ is δ with all instances of δ(qi , c) = p replaced with
δ′(qi , c) = q, and all instances of δ(p, c) = qi deleted.

The resulting automaton M ′ is deterministic and accepts L(M).
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Minimisation of DFAs

Minimisation of DFAs: distinguish lemma 6

Two states p and q are k-distinguishable if and only if for some c ∈ Σ,
the states δ(p, c) and δ(q, c) are (k − 1)-distinguishable.

Proof: Consider all strings w = cw ′ of length k . If δ(p, c) and δ(q, c)
are (k − 1)-distinguishable by some string w ′, then p and q must be
k-distinguishable by w .

Likewise, if p and q are k-distinguishable by w , then there exist two
states δ(p, c) and δ(q, c) that are (k − 1)-distinguishable by the shorter
string w ′.
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Minimisation of DFAs

Minimisation of DFAs: the algorithm 7

The algorithm minimizeDFA finds the equivalent states of a DFA
M = (Q,Σ, δ, s, F ). It defines a series of equivalence relations ≡0, ≡1,
. . . on the states of Q:

p ≡0 q if both p and q are in F or both not in F .
p ≡k+1 q if p ≡k q and, for each c ∈ Σ, δ(p, c) ≡k δ(q, c).

It stops generating these equivalence classes when ≡n and ≡n+1 are
identical.
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Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???
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Minimisation of DFAs

Minimisation of DFAs: example 1 9

The DFA M is not minimal as:
≡0= {{q0}, {q1, q2}},
q1 ≡1 q2,
≡1= {{q0}, {q1, q2}},
≡0=≡1

because
δ(q1, a) = q2 ≡0 δ(q2, a) = q1,
δ(q1, b) = q0 ≡0 δ(q2, b) = q0

q0 q1

q2

b

a

b

a

a

b
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Minimisation of DFAs

Minimisation of DFAs: example 1 10

The following DFA is minimal and equivalent to M:

q0 q1

ab

a

b
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Minimisation of DFAs

Minimisation of DFAs: example 2 11

The DFA M is not minimal as:
≡0= {{q0, q1, q3}, {q2, q4}},

≡1= {{q0}, {q1, q3}, {q2, q4}},
≡2=≡1,
because
δ(q2, 0) = q2 ≡0 δ(q4, 0) = q4,
δ(q2, 1) = q4 ≡0 δ(q4, 1) = q4,
δ(q0, 0) = q1 6≡0 δ(q1, 0) = q2,
δ(q0, 0) = q1 6≡0 δ(q3, 0) = q2,
δ(q1, 0) = q2 ≡0 δ(q3, 0) = q2,
δ(q1, 1) = q2 ≡0 δ(q3, 1) = q4

q0 q1 q2

q3 q4

0

0, 1

0

1

0, 1

1

0

1
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Minimisation of DFAs

Minimisation of DFAs: example 2 12

The following DFA is minimal and equivalent to M:

q0 q1

q2

0, 1

0, 1

0, 1
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Pattern matching

Searching with GREP

A grep pattern, also known as a regular expression, describes the text
that we are looking for.

For instance, a pattern can describe words that begin with C and end
in l. A pattern like this would match “Call”, “Cornwall”, and as well as
many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in your
favourite editor) match themselves. For instance, if you are looking for
the letter “s”, Grep stops and reports a match when it encounters an
“s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except a
newline.
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Pattern matching

Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets they
designate are:

1 Any c ∈ Σ is a regular expression denoting the set {c}.
2 If E1, E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E∗

1 which denotes the Kleene closure S∗

1 .
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Pattern matching

Regular expressions
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Pattern matching

Examples of regular expressions

Sample regular expressions over Σ = {a, b, c} and their corresponding
sets (languages):

regular expression denoted set (language)
a {a}
ab {ab}
a + bb {a, bb}
(a + b)c {ac, bc}
c∗ {ε, c, cc, ccc, . . .}
(a + b + c)cba {acba, bcba, ccba}
a∗ + b∗ + c∗ {ε, a, b, c, aa, bb, cc, aaa, bbb, ccc, . . .}
(a + b∗)c(c∗) {ac, acc, accc, . . . , c, cc, ccc, . . . ,

bc, bcc, bbccc, . . .}
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Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.
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Pattern matching

Kleene’s Theorem 2

Verification: If E = {c} for some c ∈ Σ, then we can take
N = (Q,Σ, δ, S, F ) where Q = {q0, q1}, S = {q0}, F = {q1} and
there is one transition δ(q0, c) = q1.
Induction:

◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,
respectively, then in view of the closure under union the NFA Nunion

accepts the language denoted by E1 + E2:

L(Nunion) = L(N1) ∪ L(N2).
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Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123



Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123



Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123



Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)
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Pattern matching

Kleene’s Theorem: other examples 2

Construct a regular expression denoting the language:

A = {0n1m | n, m ≥ 0}.

The language L is regular and

A = {0n1m | n, m ≥ 0}

= {0n | n ≥ 0}{1m | m ≥ 0}

so A is denoted by 0∗1∗.

There is no a regular expression denoting the language:

B = {0n1n | n ≥ 0}

because B is not regular.

COMPSCI 220: Automata and Pattern Matching 92 / 123



Pattern matching

Kleene’s Theorem: other examples 2

Construct a regular expression denoting the language:

A = {0n1m | n, m ≥ 0}.

The language L is regular and

A = {0n1m | n, m ≥ 0}

= {0n | n ≥ 0}{1m | m ≥ 0}

so A is denoted by 0∗1∗.

There is no a regular expression denoting the language:

B = {0n1n | n ≥ 0}

because B is not regular.

COMPSCI 220: Automata and Pattern Matching 92 / 123



Pattern matching

Kleene’s Theorem: other examples 3

There is no a regular expression denoting the language:

C = {uuww | u, w ∈ {a, b}∗}

because C is not regular. Prove this fact!
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Pattern matching

The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T , (over an
alphabet Σ) determine whether P appears somewhere in T .

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.
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Pattern matching

Naive string matching 1

Try each possible position the pattern P[1..m] could appear in the text
T [1..n]:

for (i=0; T[i] != ’\0’; i++)
{

for (j=0; T[i+j] != ’\0’ && P[j] != ’\0’
&& T[i+j]==P[j]; j++) ;

if (P[j] == ’\0’) found a match
}

There are two nested loops; the inner one takes O(m) iterations and
the outer one takes O(n) iterations so the total time is the product,
O(mn). This is slow!
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Pattern matching

Naive string matching 2

An example: if T [1..n] is an, and P[1..m] is b, then it takes m
comparisons each time to discover that we don’t have a match, so mn
overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next
position without going through all m steps.

Can we do it better?
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Pattern matching

Pattern matching and regular languages 1

Solution: Consider the language

A(P) = {x | x contains the pattern P}.

Assume that A(P) is regular! Let M be a DFA for A(P). When
processing an input M must enter an accepting state when it has just
finished ‘seeing’ the first occurrence of P, and thereafter it must remain
in some accepting state or other.
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Pattern matching

Pattern matching and regular languages 2

Is A(P) regular?

Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then

A(P) = {x ∈ {a, b}∗ | x = uPv , for some u, v ∈ {a, b}∗},

or

A(P) = {uabav | u, v ∈ {a, b}∗}.
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Pattern matching

Pattern matching and regular languages 3

q0

b

q1

a

q2

q3

a, ba

b

b

a

A DFA for AP(aba)
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Pattern matching

Pattern matching and regular languages 4

q0

q1

q3

q2

a, b

a, b

a

a

b

An NFA for A(aba)
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Pattern matching

Pattern matching and regular languages 5

For every string P, the language

A(P) = {uPv | u, v ∈ {a, b}∗}

is regular.

Proof: Let M be a DFA recognising exactly {P}. An NFA recognising
A(P) can be obtained from a DFA M by adding loops labelled with a
and b to the initial and final states of M.
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Pattern matching

Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem for
A(P) which is the same as testing whether P appears in the input text
T .

How complex is this algorithm?
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Pattern matching

An efficient “automata-theoretic” solution

We will present an efficient “automata-theoretic” solution which
consists of:

1 “pre-processing”: building a DFA M for each pattern P[1..m], then
2 running M on the text T [1..n].

The complexity of this solution is the sum of the complexities of the
above two steps.
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Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k ], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .
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Pattern matching

Prefix, suffix and the suffix function 2

The suffix function associated to the pattern P[1..m] is the function

σ : Σ∗ → {0, 1, . . . , m}

defined as follows: σ(x) is the length of the longest prefix of P that is a
suffix of x ,

σ(x) = max{k : Pk ≤suffix x}.
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Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.
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Pattern matching

Aho-Corasick automaton 1

The automaton states will record partial matches to the
pattern.

In particular they will tell whether

we have already matched P[1..m] in T [1..n], and, if not,

we could possibly be in the middle of a match.

So we will have m + 1 states: the initial and accept states are clear:
0, m, respectively.

The transition function from (state, character) to state is the longest
string that is simultaneously a prefix of the pattern and a suffix of that
prefix of the pattern plus the character we have just scanned.
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Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F ) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.
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Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.
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Pattern matching

Aho-Corasick automaton 4

The transition function δ is calculated as follows:

δ(0, a) = σ(P0a) = σ(εa) = σ(a) = 0
δ(0, b) = σ(P0b) = σ(εb) = σ(b) = 0
δ(0, n) = σ(P0n) = σ(εn) = σ(n) = 1
δ(0, o) = σ(P0o) = σ(εo) = σ(0) = 0

δ(1, a) = σ(P1a) = σ(na) = 2
δ(1, b) = σ(P1b) = σ(nb) = 0
δ(1, n) = σ(P1n) = σ(nn) = 1
δ(1, o) = σ(P1o) = σ(no) = 0

δ(2, a) = σ(P2a) = σ(naa) = 0
δ(2, b) = σ(P2b) = σ(nab) = 0
δ(2, n) = σ(P2n) = σ(nan) = 3
δ(2, o) = σ(P2o) = σ(nao) = 0
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Aho-Corasick automaton 5

δ(3, a) = σ(P3a) = σ(nana) = 2
δ(3, b) = σ(P3b) = σ(nanb) = 0
δ(3, n) = σ(P3n) = σ(nann) = 1
δ(3, o) = σ(P3o) = σ(nano) = 4

δ(4, a) = σ(P4a) = σ(nanoa) = 0
δ(4, b) = σ(P4b) = σ(nanob) = 0
δ(4, n) = σ(P4n) = σ(nanon) = 1
δ(4, o) = σ(P4o) = σ(nanoo) = 0
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Aho-Corasick automaton 6

A compact presentation of the transition function:

δ(q, x) a b n o P

0 0 0 1 0 n
1 2 0 1 0 a
2 0 0 3 0 n
3 2 0 1 4 o
4 0 0 1 0
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Aho-Corasick automaton 7
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Pattern matching

Aho-Corasick automaton 8

The following procedure computes the transition function:

COMPUTE-TRANSITION-FUNCTION (P,Σ)
1. m = length[P]
2. for q = 0 to m
3. do for each character x ∈ Σ
4. do k = min(m + 1, q + 2)
5. repeat k = k − 1
6. until Pk ≤suffix Pqx
7. δ(q, a) = k
8. return δ
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Pattern matching

Aho-Corasick automaton 9

The procedure computes δ(q, x) in a straightforward manner: it starts
with the largest possible value for k , which is min(m, q + 1) and
decreases k until Pk ≤suffix Pqx .

The running time is O(m3 × number of elements in Σ): the outer loops
contribute a factor of m× number of elements in Σ, the inner loops can
run at most m + 1 times and the test Pk ≤suffix Pqx on line 6. can
require to compare up to m characters.

A clever algorithm requiring O(m × number of elements in Σ) exists!
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Aho-Corasick automaton 10

The following algorithm runs Aho-Corasick automaton for the pattern P
on the text T :

FINITE-AUTOMATON-MATCHER (Σ, δ, T )
1. n = length[T ]
2. q = 0
3. for i=1 to n
4. do q = δ(q, T [i])
5. if q = m
6. then print ‘Pattern occurs at

position i − m’ and return
7. Print ‘Pattern doesn’t occur’
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Pattern matching

Aho-Corasick automaton 11

The simple loop structure of the above algorithm shows that the
running time on T [1..n] is O(n). The overall running time, i.e. which
includes the pre-processing, is now

O(m × number of elements in Σ) + O(n).
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Pattern matching

Aho-Corasick automaton 12

Consider the example for the alphabet Σ = {a, b, n, o} and pattern
P = nano. Running the Aho-Corasick automaton M described above
on the text T = annnaananoaa we get:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] a n n n a a n a n o a a
state 0 0 1 1 1 2 0 1 2 3 4 0 0

n a n o

so the match was found at position i − m = 11 − 4 = 7.
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Pattern matching

Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt algorithm uses the prefix function associated to the
pattern P[1..m]

π : {1, 2, . . . , m} → {0, 1, 2, . . . , m − 1}

defined by

π(q) = max{k : k < q and Pk ≤suffix Pq},

i.e. the length of the shortest prefix of P that is a proper suffix of
Pq.The overall running time is

O(m + n).
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Pattern matching

Regexes 1

In the practice of computing regular expressions (abbreviated as regex
or regexp, with plural forms regexes) differ from the Kleene definition
discussed before.

Regexes are written in a formal language that can be interpreted by a
regular expression processor, a program that either serves as a parser
generator or examines text and identifies parts that match the provided
specification.
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Pattern matching

Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match in
the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(.∗)\1(.∗)\2,

where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.
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Pattern matching

Regex and Google search

Although in many cases system administrators can run regex-based
queries internally, most search engines do not offer regex support to
the public.

With one exception of Google Code Search:

http://www.google.com/codesearch
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Test distribution

Capacity Room UPI first letter Number of students
279 MLT1 A-R 127
122 PLT2 S-Z 57

401 184
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