
COMPSCI 220: Automata and Pattern Matching

Cristian S. Calude

Term 2 2009

COMPSCI 220: Automata and Pattern Matching 1 / 123

R. Hamming

“The purpose of computing is insight, not numbers.”

COMPSCI 220: Automata and Pattern Matching 2 / 123

Thanks to

Elena Calude, Michael Dinneen, Nick Hay, and Radu Nicolescu for
stimulating discussions and critical comments.

COMPSCI 220: Automata and Pattern Matching 3 / 123

Outline

1 Finite machines

2 DFA

3 NFA

4 Minimisation of DFAs

5 Pattern matching

COMPSCI 220: Automata and Pattern Matching 4 / 123

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Bibliography 3

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction
to Algorithms, MIT Press, 2001 (second ed.)

M. Crochemore, W. Rytter. Jewels of Stringology, World Scientific,
2002.

M. J. Dinneen, G. Gimel’farb, M. C. Wilson. Introduction to
Algorithms, Data Structures and Formal Languages, Prentice Hall,
2009. (textbook)

JFLAP, http://www.jflap.org . (simulation software)

Regex simulator, http://osteele.com/tools/reanimator .

Animation of the Aho-Corasick Automaton,
http://www-sr.informatik.uni-tuebingen.de/ ˜ buehler/AC/AC.ht

COMPSCI 220: Automata and Pattern Matching 5 / 123

http://www.jflap.org
http://osteele.com/tools/reanimator
http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html

Outline

Assignment and exam 4

Assignment 1: 21 August 2009; 8:30pm (ADB time)

Midterm test 18 August (in class): prepare all results discussed in
class and tutorials

COMPSCI 220: Automata and Pattern Matching 6 / 123

Outline

Assignment and exam 4

Assignment 1: 21 August 2009; 8:30pm (ADB time)

Midterm test 18 August (in class): prepare all results discussed in
class and tutorials

COMPSCI 220: Automata and Pattern Matching 6 / 123

Outline

Assignment and exam 4

Assignment 1: 21 August 2009; 8:30pm (ADB time)

Midterm test 18 August (in class): prepare all results discussed in
class and tutorials

COMPSCI 220: Automata and Pattern Matching 6 / 123

Finite machines

Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0’s)?

Using “states” to remember the ‘property’ seems a good idea, but don’t
we have to keep adding newer and newer ‘states’ as the input gets
longer and longer?

Re-phrased: Is a finite memory enough? In general the answer seems
to be negative, but . . .

COMPSCI 220: Automata and Pattern Matching 7 / 123

Finite machines

Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0’s)?

Using “states” to remember the ‘property’ seems a good idea, but don’t
we have to keep adding newer and newer ‘states’ as the input gets
longer and longer?

Re-phrased: Is a finite memory enough? In general the answer seems
to be negative, but . . .

COMPSCI 220: Automata and Pattern Matching 7 / 123

Finite machines

Question

Are there finite memory machines accepting as input finite binary
sequences of any length and deciding whether the sequence has a
certain property (for example, it has an even number of 0’s)?

Using “states” to remember the ‘property’ seems a good idea, but don’t
we have to keep adding newer and newer ‘states’ as the input gets
longer and longer?

Re-phrased: Is a finite memory enough? In general the answer seems
to be negative, but . . .

COMPSCI 220: Automata and Pattern Matching 7 / 123

Finite machines

A simple example

Probably the simplest finite machine operates a switch as follows:

So, if the switch is down, then the light goes on and if the switch is up,
then the light goes off.

To this device, the switch position is an input and the light on/off is the
output. The machine works with finitely many “states” for any
sequence of modifications of the switch.

COMPSCI 220: Automata and Pattern Matching 8 / 123

Finite machines

A simple example

Probably the simplest finite machine operates a switch as follows:

So, if the switch is down, then the light goes on and if the switch is up,
then the light goes off.

To this device, the switch position is an input and the light on/off is the
output. The machine works with finitely many “states” for any
sequence of modifications of the switch.

COMPSCI 220: Automata and Pattern Matching 8 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Bits, bit-strings, alphabets

Bit strings: ε (empty string), 0, 1, 00, 01, 10, 11, . . .

B = {0, 1} and B∗ is the set of all binary strings

Strings can be concatenated: from x and y get xy
The length of the string x is denoted by |x |

◮ |ε| = 0, |0| = |1| = 1, |00| = |01| = |10| = |11| = 2, . . .
◮ |xy | = |x | + |y |

Other alphabets: Σ = {a, b, c, d}, the set of 7-bit ASCII characters

Σ∗ is the set of all strings over the alphabet Σ

COMPSCI 220: Automata and Pattern Matching 9 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

Deterministic finite automata

A deterministic finite automaton (DFA, for short) is a five-tuple
M = (Q,Σ, δ, s, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a transition function from Q × Σ to Q
4 s ∈ Q is the start state
5 F ⊆ Q is the accepting (final/membership) states.

COMPSCI 220: Automata and Pattern Matching 10 / 123

DFA

DFA: example 1

M = (Q,Σ, δ, s, F):

Q = {q0, q1, q2, q3}
Σ = {a, b}

δ Σ
Q a b
q0 q1 q2

q1 q0 q3

q2 q3 q0

q3 q2 q1

s = q0

F = {q2}

q0

q1

q2

q3

a

a

b

b

b

b

a

a

COMPSCI 220: Automata and Pattern Matching 11 / 123

DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.

COMPSCI 220: Automata and Pattern Matching 12 / 123

DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.

COMPSCI 220: Automata and Pattern Matching 12 / 123

DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.

COMPSCI 220: Automata and Pattern Matching 12 / 123

DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.

COMPSCI 220: Automata and Pattern Matching 12 / 123

DFA

DFA: accepted strings and language

Let M = (Q,Σ, δ, s, F) be a DFA and w = w1w2 · · ·wn be a string over
Σ.

The trace (path) of the computation of w on M is the (unique)
sequence of states

s1, s2, · · · , sn, sn+1
such that

s1 = s, δ(s1, w1) = s2, . . . , δ(sn−1, wn−1) = sn, δ(sn, wn) = sn+1.

The string w is accepted (or recognised) by M if sn+1 ∈ F ;
otherwise, w is rejected by M.

The language accepted by M, denoted by L(M), is the set of all
accepted strings by M; if A = L(M), for some DFA M, then A is
called regular.

COMPSCI 220: Automata and Pattern Matching 12 / 123

DFA

Questions

Given a DFA M, check which strings M accepts.

Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states) DFA
recognising the language?

Which properties of DFAs can be checked algorithmically?

COMPSCI 220: Automata and Pattern Matching 13 / 123

DFA

Questions

Given a DFA M, check which strings M accepts.

Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states) DFA
recognising the language?

Which properties of DFAs can be checked algorithmically?

COMPSCI 220: Automata and Pattern Matching 13 / 123

DFA

Questions

Given a DFA M, check which strings M accepts.

Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states) DFA
recognising the language?

Which properties of DFAs can be checked algorithmically?

COMPSCI 220: Automata and Pattern Matching 13 / 123

DFA

Questions

Given a DFA M, check which strings M accepts.

Given a language (set of strings) can we build a DFA M that
recognises just them? If the answer is affirmative can we
construct a minimal (in the sense of the number of states) DFA
recognising the language?

Which properties of DFAs can be checked algorithmically?

COMPSCI 220: Automata and Pattern Matching 13 / 123

DFA

DFA: example 2

The language accepted by
this DFA is empty, i.e. the
DFA accepts no string.

q0

a, b

COMPSCI 220: Automata and Pattern Matching 14 / 123

DFA

DFA: example 3

The language accepted by
this DFA consists of all strings
over Σ = {a, b}, i.e. the lan-
guage Σ∗ = {a, b}∗.

q0

a, b

COMPSCI 220: Automata and Pattern Matching 15 / 123

DFA

DFA: example 1 continued

The language ac-
cepted by this
DFA consists of
all strings over
Σ = {a, b} which
contain an even
number of a’s and
an odd number of
b’s.

q0

q1

q2

q3

a

a

b

b

b

b

a

a

COMPSCI 220: Automata and Pattern Matching 16 / 123

DFA

DFA: example 4

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which contain the
substring aba, i.e.
all the strings of
the form uabav with
u, v ∈ {a, b}∗.

q0

b

q1

a

q2

q3

a, ba

b

b

a

COMPSCI 220: Automata and Pattern Matching 17 / 123

DFA

DFA: example 5

The language ac-
cepted by this DFA
consists of all strings
over Σ = {a, b}
which start with a,
i.e. all the strings of
the form av , with v ∈
Σ∗ = {a, b}∗.

q0

q1

a, b

q2

a, b

a

b

COMPSCI 220: Automata and Pattern Matching 18 / 123

DFA

DFA: example 6

The language
accepted by
this DFA con-
sists of only
one string over
Σ = {a, b},
namely
abbab.

q0 q1 q2 q3 q4 q5

q6

a b b a b

b
a

a b a a, b

a, b

COMPSCI 220: Automata and Pattern Matching 19 / 123

DFA

DFA: example 7

The language accepted
by this DFA is
{ambn | m, n > 0},
where am means
aa · · · a (m times).

q0 q1 q2

q3

a b

a
b

a b

a, b

COMPSCI 220: Automata and Pattern Matching 20 / 123

DFA

Not all languages are accepted by DFAs

The language
L = {anbn | n > 0}

is not accepted by any DFA.

Why?

Informally, because a DFA can ‘count’ only up to the number of its
states.

More formally, because, if n is greater than the number of states of a
DFA supposed to accept L, then any trace (path) labelled by an passes
twice through some state. That is, the there are strings ai and aj for
i < j ≤ n that fall into the same state. Thus both aibi and ajbi are
accepted/rejected which contradicts the definition of L.

COMPSCI 220: Automata and Pattern Matching 21 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 1

The complement of a regular language is also regular.
Proof: if A = L(M), where M = (Q,Σ, δ, s, F), then its
complement, A = L(M ′), where M ′ = (Q,Σ, δ, s, F).

It is algorithmically decidable whether a DFA M accepts the empty
string.
Proof: If M = (Q,Σ, δ, s, F), then ε ∈ L(M) if and only if s ∈ F .

It is algorithmically decidable whether a DFA M accepts a string w .
Proof: Construct the trace of the computation of w on M and
check whether its last state is final.

COMPSCI 220: Automata and Pattern Matching 22 / 123

DFA

Simple properties of DFAs 2

It is algorithmically decidable whether a DFA M accepts no string.
Proof: Given the DFA M check whether there is a path from the
initial state s (has a trace of a computation) to a final state in F .
We have: L(M) = ∅ if and only if there there is no path from the
initial state to a final state.

COMPSCI 220: Automata and Pattern Matching 23 / 123

DFA

Simple properties of DFAs 2

It is algorithmically decidable whether a DFA M accepts no string.
Proof: Given the DFA M check whether there is a path from the
initial state s (has a trace of a computation) to a final state in F .
We have: L(M) = ∅ if and only if there there is no path from the
initial state to a final state.

COMPSCI 220: Automata and Pattern Matching 23 / 123

DFA

Simple properties of DFAs 3

It is algorithmically decidable whether a DFA M accepts infinitely
strings.
Proof: Given the DFA M, L(M) is infinite if and only if there is a
path from the initial state (has a trace of a computation) s to a final
state in F having the following additional property: some state q in
the path possesses a loop, i.e. there is a path from q to q.

COMPSCI 220: Automata and Pattern Matching 24 / 123

DFA

Simple properties of DFAs 3

It is algorithmically decidable whether a DFA M accepts infinitely
strings.
Proof: Given the DFA M, L(M) is infinite if and only if there is a
path from the initial state (has a trace of a computation) s to a final
state in F having the following additional property: some state q in
the path possesses a loop, i.e. there is a path from q to q.

COMPSCI 220: Automata and Pattern Matching 24 / 123

NFA

The reverse operation

The reverse of a string

w = c1c2c3 · · · cn

is the string
R(w) = cncn−1 · · · c2c1.

For example, R(abaaa) = aaaba, R(abba) = abba, R(bac) = cab.

The reverse of a language A is the language

R(A) = {R(w) | w ∈ A}.

Problem: Is R(A) regular whenever A is regular?

COMPSCI 220: Automata and Pattern Matching 25 / 123

NFA

DFA: example 7 revisited

The language accepted by
the DFA M is
A = {ambn | m, n > 0}.
Is
R(A) = {bnam | m, n > 0}
regular?

q0 q1 q2

q3

a b

a
b

a b

a, b

COMPSCI 220: Automata and Pattern Matching 26 / 123

NFA

A possible solution?

Is
R(A) = {bman | m, n > 0}
accepted by this
machine, M ′?

q0 q1 q2

q3

a b
a

b

a b

a, b

COMPSCI 220: Automata and Pattern Matching 27 / 123

NFA

The solution ‘under microscope’: M vs M ′ 1

q0 q1 q2

q3

a b

a
b

a b

a, b

q0 q1 q2

q3

a b
a

b

a b

a, b

COMPSCI 220: Automata and Pattern Matching 28 / 123

NFA

The solution ‘under microscope’: M vs M ′ 2

What did we do, in more general terms?

1 The initial state of M becomes the accept state of M ′.
2 Every accept state of M becomes an initial state of M ′.
3 If δ(q1, c) = q2 is in M then δ(q2, c) = q1 is in M ′. That is, all

transitions are reversed.

COMPSCI 220: Automata and Pattern Matching 29 / 123

NFA

The solution ‘under microscope’: M vs M ′ 2

What did we do, in more general terms?

1 The initial state of M becomes the accept state of M ′.
2 Every accept state of M becomes an initial state of M ′.
3 If δ(q1, c) = q2 is in M then δ(q2, c) = q1 is in M ′. That is, all

transitions are reversed.

COMPSCI 220: Automata and Pattern Matching 29 / 123

NFA

The solution ‘under microscope’: M vs M ′ 2

What did we do, in more general terms?

1 The initial state of M becomes the accept state of M ′.
2 Every accept state of M becomes an initial state of M ′.
3 If δ(q1, c) = q2 is in M then δ(q2, c) = q1 is in M ′. That is, all

transitions are reversed.

COMPSCI 220: Automata and Pattern Matching 29 / 123

NFA

The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.

COMPSCI 220: Automata and Pattern Matching 30 / 123

NFA

The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.

COMPSCI 220: Automata and Pattern Matching 30 / 123

NFA

The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.

COMPSCI 220: Automata and Pattern Matching 30 / 123

NFA

The solution ‘under microscope’: M vs. M ′ 3

Do we have a problem with M ′?
Answer: yes: M ′ is not a DFA!

Still, the procedure seems reasonable!

What should we do? Well, let’s examine another example.

COMPSCI 220: Automata and Pattern Matching 30 / 123

NFA

The solution ‘under microscope’ 4

Transforming this DFA M
into M ′ produces:
a) two initial states: q2, q3

b) multiple transitions
with the same label (e.g.
δ(q4, 0) = {q1, q2, q3, q4})

q0 q1 q2

q3 q4

0

1 0

1

0, 1
0, 1

0, 1

COMPSCI 220: Automata and Pattern Matching 31 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

Nondeterministic finite automata

Should we abandon the transformation M → M ′?

No. We turn it into a new concept!

A nondeterministic finite automaton (NFA, for short) is a five-tuple
N = (Q,Σ, δ, S, F) where

1 Q is the finite set of machine states
2 Σ is the finite input alphabet
3 δ is a function from Q × Σ to 2Q, the set of subsets of Q
4 S ⊆ Q is a set of start (initial) states
5 F ⊆ Q is the accepting (final/membership) states.

Informally, an NFA accepts a string w if there exists a
(nondeterministic) trace (path) following the transition function δ on
input w from an initial state to an accept state.

COMPSCI 220: Automata and Pattern Matching 32 / 123

NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.

COMPSCI 220: Automata and Pattern Matching 33 / 123

NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.

COMPSCI 220: Automata and Pattern Matching 33 / 123

NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.

COMPSCI 220: Automata and Pattern Matching 33 / 123

NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.

COMPSCI 220: Automata and Pattern Matching 33 / 123

NFA

NFA: accepted strings and language

Let N = (Q,Σ, δ, S, F) be a NFA and w = w1w2 · · ·wn be a string over
Σ.

A trace (path) of a computation of w on N is a sequence of states

s1, s2, · · · , sn, sn+1

such that

s2 ∈ δ(s1, w1), . . . , sn ∈ δ(sn−1, wn−1), sn+1 ∈ δ(sn, wn).

The string w is accepted (or recognised) by N if there is a trace
s1, s2, · · · , sn, sn+1 labelled by w such that s1 ∈ S and sn+1 ∈ F ;
otherwise, w is rejected by N.

The language accepted by N, denoted by L(N), is the set of all
accepted strings by N.

COMPSCI 220: Automata and Pattern Matching 33 / 123

NFA

NFA: comments

The state transition function δ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have δ(q, c) empty (undefined) for some
q ∈ Q and c ∈ Σ. This means that that we can design automata
such that no state moves are possible for when in some state q
and the next character read is c (that is, the human designer does
not have to worry about all cases).

Every DFA can be viewed as a special case of an NFA.

COMPSCI 220: Automata and Pattern Matching 34 / 123

NFA

NFA: comments

The state transition function δ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have δ(q, c) empty (undefined) for some
q ∈ Q and c ∈ Σ. This means that that we can design automata
such that no state moves are possible for when in some state q
and the next character read is c (that is, the human designer does
not have to worry about all cases).

Every DFA can be viewed as a special case of an NFA.

COMPSCI 220: Automata and Pattern Matching 34 / 123

NFA

NFA: comments

The state transition function δ is more general for NFAs than
DFAs. Besides having transitions to multiple states for a given
input symbol, we can have δ(q, c) empty (undefined) for some
q ∈ Q and c ∈ Σ. This means that that we can design automata
such that no state moves are possible for when in some state q
and the next character read is c (that is, the human designer does
not have to worry about all cases).

Every DFA can be viewed as a special case of an NFA.

COMPSCI 220: Automata and Pattern Matching 34 / 123

NFA

NFA: example 1 1

Σ = {a, b}

δ Σ
States a b

q0 {q0} {q0, q1}
q1 {q2} {q2}
q2 ∅ ∅

S = {q0}
F = {q2}

q0

a, b

q1

q2

a, b

b

COMPSCI 220: Automata and Pattern Matching 35 / 123

NFA

NFA: example 1 2

The string aba is accepted: there are two traces,

q0
a
→q0

b
→q0

a
→q0,

q0
a
→q0

b
→q1

a
→q2

The string baa is not accepted: there are two traces,

q0
b
→q0

a
→q0

a
→q0,

q0
b
→q1

a
→q2

a
→?

The language accepted by this NFA is

{uba, ubb | u ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 36 / 123

NFA

NFA: example 1 2

The string aba is accepted: there are two traces,

q0
a
→q0

b
→q0

a
→q0,

q0
a
→q0

b
→q1

a
→q2

The string baa is not accepted: there are two traces,

q0
b
→q0

a
→q0

a
→q0,

q0
b
→q1

a
→q2

a
→?

The language accepted by this NFA is

{uba, ubb | u ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 36 / 123

NFA

NFA: example 1 2

The string aba is accepted: there are two traces,

q0
a
→q0

b
→q0

a
→q0,

q0
a
→q0

b
→q1

a
→q2

The string baa is not accepted: there are two traces,

q0
b
→q0

a
→q0

a
→q0,

q0
b
→q1

a
→q2

a
→?

The language accepted by this NFA is

{uba, ubb | u ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 36 / 123

NFA

NFA: example 2

Σ = {1, 2, 3}

δ Σ
States 1 2 3

q0 {q0, q1} {q0, q2} {q3}
q1 {q1, q3} ∅ {q1}
q2 {q2} {q2} {q2}
q3 ∅ ∅ {q2}

S = {q0}
F = {q2}

q0

1, 2

q1

1, 3

q2

q3

1, 2, 3

1

2

1

3

3

COMPSCI 220: Automata and Pattern Matching 37 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 1

Every NFA can be simulated by a DFA.

In fact, there is an algorithm which converts an NFA N into an
equivalent DFA M, that is L(M) = L(N).

Idea: Create potentially a state in M for every subset of states of N. In
the worst case, if N has n states, then M has 2n states.

Comment: Many of these states are not reachable so the algorithm
often terminates with a smaller DFA than the worst case.

Algorithm: NFAtoDFA is a method for constructing a DFA equivalent
with a given NFA.

Theorem: A language is regular if and only if it is recognised by an
NFA.

COMPSCI 220: Automata and Pattern Matching 38 / 123

NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F)
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.

COMPSCI 220: Automata and Pattern Matching 39 / 123

NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F)
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.

COMPSCI 220: Automata and Pattern Matching 39 / 123

NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F)
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.

COMPSCI 220: Automata and Pattern Matching 39 / 123

NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F)
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.

COMPSCI 220: Automata and Pattern Matching 39 / 123

NFA

NFA=DFA 2

Input: NFA N = (Q,Σ, δ, S, F)
Output: DFA M = (QM ,Σ, δM , sM , FM)

The set of states of M is the set of all subsets of Q, QM = 2Q.

The transition from a set of states A on an element x ∈ Σ is the
set of all states produces by N on each pair (q, x) with q ∈ A,
δM(A, x) = {δ(q, x) | q ∈ A}.

The initial state sM of M is the set of all initial states of N, sM = S.

The accepting states FM of M is the set of states that have an
accepting state of N, FM = {A ⊆ Q | A ∩ F 6= ∅}.

Note: the algorithm NFAtoDFA follows the above construction, but
eliminates all non-reachable states.

COMPSCI 220: Automata and Pattern Matching 39 / 123

NFA

NFAtoDFA: an example 1

q0

q1

q2

2

1

1, 2

1
1

The NFA N

COMPSCI 220: Automata and Pattern Matching 40 / 123

NFA

NFAtoDFA: an example 2

q′

0 = {q0} q′

1 = {q1, q2} q′

2 = {q0, q2}

q′

3 = {q2} q′

4 = {q0, q1, q2}

2 1

1

2

1

2

1

2 2
1

Equivalent DFA M

COMPSCI 220: Automata and Pattern Matching 41 / 123

NFA

Closure properties of regular languages 1

The union of two regular languages is also regular.
Proof: Given two NFAs NA, NB with no common states such that
A = L(NA), B = L(NB), the NFA N consisting of the union of all
components of NA, NB recognises A ∪ B.

More precisely, if NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB,Σ, δA ∪ δB , SA ∪ SB, FA ∪ FB).

The intersection of two regular languages is also regular.
Proof: A ∩ B = A ∪ B.

COMPSCI 220: Automata and Pattern Matching 42 / 123

NFA

Closure properties of regular languages 1

The union of two regular languages is also regular.
Proof: Given two NFAs NA, NB with no common states such that
A = L(NA), B = L(NB), the NFA N consisting of the union of all
components of NA, NB recognises A ∪ B.

More precisely, if NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB,Σ, δA ∪ δB , SA ∪ SB, FA ∪ FB).

The intersection of two regular languages is also regular.
Proof: A ∩ B = A ∪ B.

COMPSCI 220: Automata and Pattern Matching 42 / 123

NFA

Closure properties of regular languages 1

The union of two regular languages is also regular.
Proof: Given two NFAs NA, NB with no common states such that
A = L(NA), B = L(NB), the NFA N consisting of the union of all
components of NA, NB recognises A ∪ B.

More precisely, if NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB,Σ, δA ∪ δB , SA ∪ SB, FA ∪ FB).

The intersection of two regular languages is also regular.
Proof: A ∩ B = A ∪ B.

COMPSCI 220: Automata and Pattern Matching 42 / 123

NFA

Closure properties of regular languages 1

The union of two regular languages is also regular.
Proof: Given two NFAs NA, NB with no common states such that
A = L(NA), B = L(NB), the NFA N consisting of the union of all
components of NA, NB recognises A ∪ B.

More precisely, if NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB) with QA ∩ QB = ∅, then A ∪ B is
recognised by the NFA

N = (QA ∪ QB,Σ, δA ∪ δB , SA ∪ SB, FA ∪ FB).

The intersection of two regular languages is also regular.
Proof: A ∩ B = A ∪ B.

COMPSCI 220: Automata and Pattern Matching 42 / 123

NFA

Closure under union: an example 1

q2 q0 q1

a, b

a

COMPSCI 220: Automata and Pattern Matching 43 / 123

NFA

Closure under union: an example 2

q2

q0 q1

a, b

a

COMPSCI 220: Automata and Pattern Matching 44 / 123

NFA

Closure under intersection: an example 1

q0 q1

a

b

b

NFA N1

q3

b

NFA N2

COMPSCI 220: Automata and Pattern Matching 45 / 123

NFA

Closure under intersection: an example 2

q0 q1

a

b

b

NFA accepting the complement of N1?

COMPSCI 220: Automata and Pattern Matching 46 / 123

NFA

Closure under intersection: an example 3

q0 q1 q3

a

b a

b a, b

DFA M1 equivalent to N1

COMPSCI 220: Automata and Pattern Matching 47 / 123

NFA

Closure under intersection: an example 4

q0 q1 q3

a

b a

b a, b

DFA M1 recognising the complement of M1

COMPSCI 220: Automata and Pattern Matching 48 / 123

NFA

Closure under intersection: an example 5

q3 q4

b

a

a, b

DFA M2 equivalent to N2

COMPSCI 220: Automata and Pattern Matching 49 / 123

NFA

Closure under intersection: an example 6

q3 q4

b

a

a, b

DFA M2 recognising the complement of M2

COMPSCI 220: Automata and Pattern Matching 50 / 123

NFA

Closure under intersection: an example 7

q0 q1 q2

q3 q4

a

b a

b a, b

b

a

a, b

NFA N3 recognising L(M2) ∪ L(M2)

COMPSCI 220: Automata and Pattern Matching 51 / 123

NFA

Closure under intersection: an example 8

Last two steps:

Construct a DFA M3 equivalent to the NFA N3

Construct the complement of
L(M3) = L(N1) ∩ L(N2) = {bk | k ≥ 1}

Recap:

L(N1) = {anbm | n ≥ 0, m ≥ 1}

L(N2) = {bm | m ≥ 0}

L(M3) = {bk | k ≥ 1}

COMPSCI 220: Automata and Pattern Matching 52 / 123

NFA

Closure under intersection: an example 8

Last two steps:

Construct a DFA M3 equivalent to the NFA N3

Construct the complement of
L(M3) = L(N1) ∩ L(N2) = {bk | k ≥ 1}

Recap:

L(N1) = {anbm | n ≥ 0, m ≥ 1}

L(N2) = {bm | m ≥ 0}

L(M3) = {bk | k ≥ 1}

COMPSCI 220: Automata and Pattern Matching 52 / 123

NFA

Closure properties of regular languages 2

The closure (or Kleene star) of a language A, denoted by A∗, is the set
of all strings that can be formed by concatenating together any finite
number of strings of A.

Examples:

{a}∗ = {ε, a, aa, aaa, . . . , an, . . .}

{a, ab}∗ = {ε, a, ab, aa, abab, aab, aba, . . .}

The Kleene star of a regular language is also regular.
Proof: Given an NFA NA that recognizes a language A we can
build an NFA NA∗ that recognises the closure of A by making a
start state accept state and, adding transitions, with
corresponding labels, from all accept state(s) to the neighbours of
the initial state(s).

COMPSCI 220: Automata and Pattern Matching 53 / 123

NFA

Closure properties of regular languages 2

The closure (or Kleene star) of a language A, denoted by A∗, is the set
of all strings that can be formed by concatenating together any finite
number of strings of A.

Examples:

{a}∗ = {ε, a, aa, aaa, . . . , an, . . .}

{a, ab}∗ = {ε, a, ab, aa, abab, aab, aba, . . .}

The Kleene star of a regular language is also regular.
Proof: Given an NFA NA that recognizes a language A we can
build an NFA NA∗ that recognises the closure of A by making a
start state accept state and, adding transitions, with
corresponding labels, from all accept state(s) to the neighbours of
the initial state(s).

COMPSCI 220: Automata and Pattern Matching 53 / 123

NFA

Closure operation: an example

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

q0

q2

q1

q3

0, 1

0

1

0

1

0, 1

1

COMPSCI 220: Automata and Pattern Matching 54 / 123

NFA

Closure properties of regular languages 3

The concatenation of two languages A, B is defined to be the set of
strings that can be formed by concatenating all strings of A with all
strings of B, i.e.

AB = {xy | x ∈ A, y ∈ B}.

Example: If A = {an | n ≥ 0} and B = {bw | w ∈ {a, b}∗}, then

AB = {anbw | w ∈ {a, b}∗, n ≥ 0} = {ubv | u, v ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 55 / 123

NFA

Closure under concatenation: an example 1.1

q0

a

q1 q2

a, b

b

COMPSCI 220: Automata and Pattern Matching 56 / 123

NFA

Closure under concatenation: an example 1.2

q0 q1 q2

a a, b

b?

COMPSCI 220: Automata and Pattern Matching 57 / 123

NFA

Closure under concatenation: an example 1.3

q0 q1 q2

a a, b

b

b

COMPSCI 220: Automata and Pattern Matching 58 / 123

NFA

Closure under concatenation: an example 1.3’

q0 = q1 q2

a a, b

b

COMPSCI 220: Automata and Pattern Matching 59 / 123

NFA

Closure under concatenation: an example 2.1

q0 q1

b
q2 q3

a, b

a

COMPSCI 220: Automata and Pattern Matching 60 / 123

NFA

Closure under concatenation: an example 2.2

q0 q1 q2 q3
b ?

?
a

a, b

COMPSCI 220: Automata and Pattern Matching 61 / 123

NFA

Closure under concatenation: an example 2.3

q0

q1 = q2

q3

a, b
b

?

a

COMPSCI 220: Automata and Pattern Matching 62 / 123

NFA

Closure under concatenation: an example 2.4

q0

q1 = q2

q3

a, b
b a

COMPSCI 220: Automata and Pattern Matching 63 / 123

NFA

Closure under concatenation: an example 2.4’

q0

q1 = q2

q3

a, b
b a

a

COMPSCI 220: Automata and Pattern Matching 64 / 123

NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.

COMPSCI 220: Automata and Pattern Matching 65 / 123

NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.

COMPSCI 220: Automata and Pattern Matching 65 / 123

NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.

COMPSCI 220: Automata and Pattern Matching 65 / 123

NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.

COMPSCI 220: Automata and Pattern Matching 65 / 123

NFA

Closure properties of regular languages 3

The concatenation of two regular languages is also regular.
Proof: Given two NFAs NA = (QA,Σ, δA, SA, FA) and
NB = (QB,Σ, δB , SB, FB), QA ∩ QB = ∅, recognising the languages
A, B, respectively, we can build an NFA N = (Q,Σ, δ, S, F) that
recognises the concatenation of A and B as follows:

◮ Q = QA ∪ QB
◮ S = SA ∪ SB if one state of SA is a final state; otherwise, S = SA
◮ F = FB
◮

δ(q, c) =







δA(q, c), if q ∈ QA \ FA,

δB(q, c), if q ∈ QB \ SB ,

δA(q, c) ∪ {δB(q′, c) | q′ ∈ SB}, if q ∈ FA.

COMPSCI 220: Automata and Pattern Matching 65 / 123

NFA

Closure under repeated concatenation

Let A be a language and n ≥ 1. We define:

An = {x1x2 · · · xn | x1, x2, . . . , xn ∈ A}.

If A is a regular language, then for each n ≥ 1, An is also regular.
Proof: A1 = A, A2 = AA, . . . , An = AA · · ·A

︸ ︷︷ ︸

n times

, so the result follows

from the closure under concatenation.

COMPSCI 220: Automata and Pattern Matching 66 / 123

NFA

Closure under repeated concatenation

Let A be a language and n ≥ 1. We define:

An = {x1x2 · · · xn | x1, x2, . . . , xn ∈ A}.

If A is a regular language, then for each n ≥ 1, An is also regular.
Proof: A1 = A, A2 = AA, . . . , An = AA · · ·A

︸ ︷︷ ︸

n times

, so the result follows

from the closure under concatenation.

COMPSCI 220: Automata and Pattern Matching 66 / 123

NFA

More decidable properties of regular languages 1

It is algorithmically decidable whether two DFAs accept the same
language.
Proof: If A, B are two languages recognised by the DFAs MA, MB,
respectively, then (using the closure properties of regular
languages) we can construct a DFA M such that:

L(M) = A ∆ B = (A ∩ B) ∪ (B ∩ A),

and then use the equivalence:

A = B ⇔ A ∆ B = ∅.

COMPSCI 220: Automata and Pattern Matching 67 / 123

NFA

More decidable properties of regular languages 1

It is algorithmically decidable whether two DFAs accept the same
language.
Proof: If A, B are two languages recognised by the DFAs MA, MB,
respectively, then (using the closure properties of regular
languages) we can construct a DFA M such that:

L(M) = A ∆ B = (A ∩ B) ∪ (B ∩ A),

and then use the equivalence:

A = B ⇔ A ∆ B = ∅.

COMPSCI 220: Automata and Pattern Matching 67 / 123

NFA

More decidable properties of regular languages 1

It is algorithmically decidable whether two DFAs accept the same
language.
Proof: If A, B are two languages recognised by the DFAs MA, MB,
respectively, then (using the closure properties of regular
languages) we can construct a DFA M such that:

L(M) = A ∆ B = (A ∩ B) ∪ (B ∩ A),

and then use the equivalence:

A = B ⇔ A ∆ B = ∅.

COMPSCI 220: Automata and Pattern Matching 67 / 123

NFA

More decidable properties of regular languages: an example 1.1

q0 q1

a

b

a, b

DFA M1

{anbu | n ≥ 0, u ∈ {a, b}∗}

q3

a, b

DFA M2

{a, b}∗

COMPSCI 220: Automata and Pattern Matching 68 / 123

NFA

More decidable properties of regular languages: an example 1.2

q0 q1

a

b

a, b

DFA M1

{an | n ≥ 0}

q3

a, b

DFA M2

∅

COMPSCI 220: Automata and Pattern Matching 69 / 123

NFA

More decidable properties of regular languages: an example 1.3

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩ M2

∅

{q0, q3} {q1, q3}

a

b

a, b

DFA M1 ∩ M2

{an | n ≥ 0}

COMPSCI 220: Automata and Pattern Matching 70 / 123

NFA

More decidable properties of regular languages: an example 1.4

{(q0, q3), (q0, q3)} {(q0, q3), (q1, q3)}

{(q1, q3), (q0, q3)} {(q1, q3), (q1, q3)}

a a

a a, b

b

b

b

DFA M1∆M2: {an | n ≥ 0} 6= ∅ implies L(M1) 6= L(M2)

COMPSCI 220: Automata and Pattern Matching 71 / 123

NFA

More decidable properties of regular languages 2

It is algorithmically decidable whether a DFA M accepts only one
a string w .
Proof: Take A = L(M) and B = {w}.

It is algorithmically decidable whether the language accepted by a
DFA M includes the language accepted by a DFA M ′.
Proof: We use the equivalence

L(M) ⊆ L(M ′) ⇔ L(M) ∩ L(M ′) = L(M).

COMPSCI 220: Automata and Pattern Matching 72 / 123

NFA

More decidable properties of regular languages 2

It is algorithmically decidable whether a DFA M accepts only one
a string w .
Proof: Take A = L(M) and B = {w}.

It is algorithmically decidable whether the language accepted by a
DFA M includes the language accepted by a DFA M ′.
Proof: We use the equivalence

L(M) ⊆ L(M ′) ⇔ L(M) ∩ L(M ′) = L(M).

COMPSCI 220: Automata and Pattern Matching 72 / 123

NFA

More decidable properties of regular languages 2

It is algorithmically decidable whether a DFA M accepts only one
a string w .
Proof: Take A = L(M) and B = {w}.

It is algorithmically decidable whether the language accepted by a
DFA M includes the language accepted by a DFA M ′.
Proof: We use the equivalence

L(M) ⊆ L(M ′) ⇔ L(M) ∩ L(M ′) = L(M).

COMPSCI 220: Automata and Pattern Matching 72 / 123

Minimisation of DFAs

Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a DFA
M produce a new DFA M ′ such that:

L(M) = L(M ′),

M ′ has less states than M.

COMPSCI 220: Automata and Pattern Matching 73 / 123

Minimisation of DFAs

Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a DFA
M produce a new DFA M ′ such that:

L(M) = L(M ′),

M ′ has less states than M.

COMPSCI 220: Automata and Pattern Matching 73 / 123

Minimisation of DFAs

Minimisation of DFAs 1

We want to minimise the number of states of a DFA, i.e. given a DFA
M produce a new DFA M ′ such that:

L(M) = L(M ′),

M ′ has less states than M.

COMPSCI 220: Automata and Pattern Matching 73 / 123

Minimisation of DFAs

Minimisation of DFAs 2

q0

q1

q2

q3

a, b

a, b

a, b
a

b

The state q3 can be removed without modifying the accepted language

COMPSCI 220: Automata and Pattern Matching 74 / 123

Minimisation of DFAs

Minimisation of DFAs 3

From a DFA
M = (Q,Σ, δ, s, F)

and any state q ∈ Q we define the new DFA

Mq = (Q,Σ, δ, q, F)

by simply replacing the initial state s with q.

We say two states p and q of M are distinguishable (k-distinguishable)
if there exists a string w ∈ Σ∗ (of length k) such that exactly one of Mp

or Mq accepts w .

If there is no such string w then we say p and q are equivalent.

COMPSCI 220: Automata and Pattern Matching 75 / 123

Minimisation of DFAs

Minimisation of DFAs 3

From a DFA
M = (Q,Σ, δ, s, F)

and any state q ∈ Q we define the new DFA

Mq = (Q,Σ, δ, q, F)

by simply replacing the initial state s with q.

We say two states p and q of M are distinguishable (k-distinguishable)
if there exists a string w ∈ Σ∗ (of length k) such that exactly one of Mp

or Mq accepts w .

If there is no such string w then we say p and q are equivalent.

COMPSCI 220: Automata and Pattern Matching 75 / 123

Minimisation of DFAs

Minimisation of DFAs 3

From a DFA
M = (Q,Σ, δ, s, F)

and any state q ∈ Q we define the new DFA

Mq = (Q,Σ, δ, q, F)

by simply replacing the initial state s with q.

We say two states p and q of M are distinguishable (k-distinguishable)
if there exists a string w ∈ Σ∗ (of length k) such that exactly one of Mp

or Mq accepts w .

If there is no such string w then we say p and q are equivalent.

COMPSCI 220: Automata and Pattern Matching 75 / 123

Minimisation of DFAs

Minimisation of DFAs 4

Questions:

Does there exist an algorithm deciding whether two states p and q
are distinguishable?

Does there exist an algorithm deciding whether two states p and q
are k-distinguishable?

Does there exist an algorithm deciding whether two states p and q
are equivalent?

COMPSCI 220: Automata and Pattern Matching 76 / 123

Minimisation of DFAs

Minimisation of DFAs 4

Questions:

Does there exist an algorithm deciding whether two states p and q
are distinguishable?

Does there exist an algorithm deciding whether two states p and q
are k-distinguishable?

Does there exist an algorithm deciding whether two states p and q
are equivalent?

COMPSCI 220: Automata and Pattern Matching 76 / 123

Minimisation of DFAs

Minimisation of DFAs 4

Questions:

Does there exist an algorithm deciding whether two states p and q
are distinguishable?

Does there exist an algorithm deciding whether two states p and q
are k-distinguishable?

Does there exist an algorithm deciding whether two states p and q
are equivalent?

COMPSCI 220: Automata and Pattern Matching 76 / 123

Minimisation of DFAs

Minimisation of DFAs: elimination lemma 5

If a DFA M has two equivalent states p and q, then one of these states
can be eliminated without modifying the accepted language, hence we
can construct a smaller DFA M′ such that L(M) = L(M ′).

Proof: Assume M = (Q,Σ, δ, s, F) and p 6= s. We create an equivalent
DFA

M ′ = (Q \ {p},Σ, δ′, s, F \ {p}),

where δ′ is δ with all instances of δ(qi , c) = p replaced with
δ′(qi , c) = q, and all instances of δ(p, c) = qi deleted.

The resulting automaton M ′ is deterministic and accepts L(M).

COMPSCI 220: Automata and Pattern Matching 77 / 123

Minimisation of DFAs

Minimisation of DFAs: distinguish lemma 6

Two states p and q are k-distinguishable if and only if for some c ∈ Σ,
the states δ(p, c) and δ(q, c) are (k − 1)-distinguishable.

Proof: Consider all strings w = cw ′ of length k . If δ(p, c) and δ(q, c)
are (k − 1)-distinguishable by some string w ′, then p and q must be
k-distinguishable by w .

Likewise, if p and q are k-distinguishable by w , then there exist two
states δ(p, c) and δ(q, c) that are (k − 1)-distinguishable by the shorter
string w ′.

COMPSCI 220: Automata and Pattern Matching 78 / 123

Minimisation of DFAs

Minimisation of DFAs: the algorithm 7

The algorithm minimizeDFA finds the equivalent states of a DFA
M = (Q,Σ, δ, s, F). It defines a series of equivalence relations ≡0, ≡1,
. . . on the states of Q:

p ≡0 q if both p and q are in F or both not in F .
p ≡k+1 q if p ≡k q and, for each c ∈ Σ, δ(p, c) ≡k δ(q, c).

It stops generating these equivalence classes when ≡n and ≡n+1 are
identical.

COMPSCI 220: Automata and Pattern Matching 79 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: correctness of the algorithm 8

Is the algorithm correct?

Distinguish lemma guarantees no more non-equivalent states.

Since there can be at most the number of states non-equivalent states,
the number of equivalence relations ≡k generated cannot be larger
than the number of states.

We can eliminate one state from M (using the elimination lemma)
whenever there exist two states p and q such that p ≡n q.

Is the algorithm minimizeDFA optimal?

???

COMPSCI 220: Automata and Pattern Matching 80 / 123

Minimisation of DFAs

Minimisation of DFAs: example 1 9

The DFA M is not minimal as:
≡0= {{q0}, {q1, q2}},
q1 ≡1 q2,
≡1= {{q0}, {q1, q2}},
≡0=≡1

because
δ(q1, a) = q2 ≡0 δ(q2, a) = q1,
δ(q1, b) = q0 ≡0 δ(q2, b) = q0

q0 q1

q2

b

a

b

a

a

b

COMPSCI 220: Automata and Pattern Matching 81 / 123

Minimisation of DFAs

Minimisation of DFAs: example 1 10

The following DFA is minimal and equivalent to M:

q0 q1

ab

a

b

COMPSCI 220: Automata and Pattern Matching 82 / 123

Minimisation of DFAs

Minimisation of DFAs: example 2 11

The DFA M is not minimal as:
≡0= {{q0, q1, q3}, {q2, q4}},

≡1= {{q0}, {q1, q3}, {q2, q4}},
≡2=≡1,
because
δ(q2, 0) = q2 ≡0 δ(q4, 0) = q4,
δ(q2, 1) = q4 ≡0 δ(q4, 1) = q4,
δ(q0, 0) = q1 6≡0 δ(q1, 0) = q2,
δ(q0, 0) = q1 6≡0 δ(q3, 0) = q2,
δ(q1, 0) = q2 ≡0 δ(q3, 0) = q2,
δ(q1, 1) = q2 ≡0 δ(q3, 1) = q4

q0 q1 q2

q3 q4

0

0, 1

0

1

0, 1

1

0

1

COMPSCI 220: Automata and Pattern Matching 83 / 123

Minimisation of DFAs

Minimisation of DFAs: example 2 12

The following DFA is minimal and equivalent to M:

q0 q1

q2

0, 1

0, 1

0, 1

COMPSCI 220: Automata and Pattern Matching 84 / 123

Pattern matching

Searching with GREP

A grep pattern, also known as a regular expression, describes the text
that we are looking for.

For instance, a pattern can describe words that begin with C and end
in l. A pattern like this would match “Call”, “Cornwall”, and as well as
many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in your
favourite editor) match themselves. For instance, if you are looking for
the letter “s”, Grep stops and reports a match when it encounters an
“s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except a
newline.

COMPSCI 220: Automata and Pattern Matching 85 / 123

Pattern matching

Searching with GREP

A grep pattern, also known as a regular expression, describes the text
that we are looking for.

For instance, a pattern can describe words that begin with C and end
in l. A pattern like this would match “Call”, “Cornwall”, and as well as
many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in your
favourite editor) match themselves. For instance, if you are looking for
the letter “s”, Grep stops and reports a match when it encounters an
“s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except a
newline.

COMPSCI 220: Automata and Pattern Matching 85 / 123

Pattern matching

Searching with GREP

A grep pattern, also known as a regular expression, describes the text
that we are looking for.

For instance, a pattern can describe words that begin with C and end
in l. A pattern like this would match “Call”, “Cornwall”, and as well as
many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in your
favourite editor) match themselves. For instance, if you are looking for
the letter “s”, Grep stops and reports a match when it encounters an
“s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except a
newline.

COMPSCI 220: Automata and Pattern Matching 85 / 123

Pattern matching

Searching with GREP

A grep pattern, also known as a regular expression, describes the text
that we are looking for.

For instance, a pattern can describe words that begin with C and end
in l. A pattern like this would match “Call”, “Cornwall”, and as well as
many other words, but not “Computer”.

Most characters that we type into the Find & Replace dialogue (in your
favourite editor) match themselves. For instance, if you are looking for
the letter “s”, Grep stops and reports a match when it encounters an
“s” in the text.

A range of characters can be enclosed in square brackets. For
example [a-z] would denote the set of lower case letters. A
period . is a wild card symbol used to denote any character except a
newline.

COMPSCI 220: Automata and Pattern Matching 85 / 123

Pattern matching

Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets they
designate are:

1 Any c ∈ Σ is a regular expression denoting the set {c}.
2 If E1, E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E∗

1 which denotes the Kleene closure S∗

1 .

COMPSCI 220: Automata and Pattern Matching 86 / 123

Pattern matching

Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets they
designate are:

1 Any c ∈ Σ is a regular expression denoting the set {c}.
2 If E1, E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E∗

1 which denotes the Kleene closure S∗

1 .

COMPSCI 220: Automata and Pattern Matching 86 / 123

Pattern matching

Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets they
designate are:

1 Any c ∈ Σ is a regular expression denoting the set {c}.
2 If E1, E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E∗

1 which denotes the Kleene closure S∗

1 .

COMPSCI 220: Automata and Pattern Matching 86 / 123

Pattern matching

Regular expressions

The Kleene regular expressions over the alphabet Σ and the sets they
designate are:

1 Any c ∈ Σ is a regular expression denoting the set {c}.
2 If E1, E2 are regular expressions and E1 denotes the set S1, E2

denotes the set S2, then so are:
◮ E1 + E2 (or E1|E2) which denotes the union S1 ∪ S2,
◮ E1E2 which denotes the concatenation S1S2,
◮ E∗

1 which denotes the Kleene closure S∗

1 .

COMPSCI 220: Automata and Pattern Matching 86 / 123

Pattern matching

Examples of regular expressions

Sample regular expressions over Σ = {a, b, c} and their corresponding
sets (languages):

regular expression denoted set (language)
a {a}
ab {ab}
a + bb {a, bb}
(a + b)c {ac, bc}
c∗ {ε, c, cc, ccc, . . .}
(a + b + c)cba {acba, bcba, ccba}
a∗ + b∗ + c∗ {ε, a, b, c, aa, bb, cc, aaa, bbb, ccc, . . .}
(a + b∗)c(c∗) {ac, acc, accc, . . . , c, cc, ccc, . . . ,

bc, bcc, bbccc, . . .}

COMPSCI 220: Automata and Pattern Matching 87 / 123

Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.

COMPSCI 220: Automata and Pattern Matching 88 / 123

Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.

COMPSCI 220: Automata and Pattern Matching 88 / 123

Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.

COMPSCI 220: Automata and Pattern Matching 88 / 123

Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.

COMPSCI 220: Automata and Pattern Matching 88 / 123

Pattern matching

Kleene’s Theorem 1

A regular set over an alphabet Σ is either the empty set, the set {ε}, or
the set of strings denoted by some regular expression.

Kleene’s Theorem: Regular sets coincide with regular languages.

Proof: We will show only one implication: For any regular set L there is
an NFA N such that L(N) = L.

NFAs for L = ∅ and L = {ε} are easy to construct: an NFA with no
final states works in the first case and an NFA with one initial and
final state and no transitions works in the second case.

Now suppose E is a regular expression for L. We construct an
NFA N such that L(N) = L based on the length of E . We proceed
by induction.

COMPSCI 220: Automata and Pattern Matching 88 / 123

Pattern matching

Kleene’s Theorem 2

Verification: If E = {c} for some c ∈ Σ, then we can take
N = (Q,Σ, δ, S, F) where Q = {q0, q1}, S = {q0}, F = {q1} and
there is one transition δ(q0, c) = q1.
Induction:

◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,
respectively, then in view of the closure under union the NFA Nunion

accepts the language denoted by E1 + E2:

L(Nunion) = L(N1) ∪ L(N2).

COMPSCI 220: Automata and Pattern Matching 89 / 123

Pattern matching

Kleene’s Theorem 2

Verification: If E = {c} for some c ∈ Σ, then we can take
N = (Q,Σ, δ, S, F) where Q = {q0, q1}, S = {q0}, F = {q1} and
there is one transition δ(q0, c) = q1.
Induction:

◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,
respectively, then in view of the closure under union the NFA Nunion

accepts the language denoted by E1 + E2:

L(Nunion) = L(N1) ∪ L(N2).

COMPSCI 220: Automata and Pattern Matching 89 / 123

Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123

Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123

Pattern matching

Kleene’s Theorem 3

Induction (continued):
◮ If N1, N2 are NFAs accepting the languages denoted by E1 and E2,

respectively, then in view of the closure under concatenation the
NFA Nconcatenation accepts the language denoted by E1E2:

L(Nconcatenation) = L(N1)L(N2).

◮ If N1 is a NFA accepting the language denoted by E1, then in view
of the closure under Kleene closure the NFA N∗ accepts the
language denoted by E∗

1 :

L(N∗) = L(N1)
∗.

COMPSCI 220: Automata and Pattern Matching 90 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: an example 1

Construct an NFA accepting exactly the language denoted by the
regular expression: (01)∗ + 1.
We use the closure properties of regular languages:

construct NFAs N1 and N2 accepting the languages {0} and {1},
respectively

construct an NFA N3 for the concatenation of L(N1) and L(N2)
obtaining the language {01}

construct an NFA N4 for the Kleene closure of L(N3) so obtaining
{01}∗

construct an NFA N5 for the union of L(N4) and L(N2) obtaining
the language {01}∗ ∪ {1}

we may want to transform N5 into an equivalent DFA (also
minimise it)

COMPSCI 220: Automata and Pattern Matching 91 / 123

Pattern matching

Kleene’s Theorem: other examples 2

Construct a regular expression denoting the language:

A = {0n1m | n, m ≥ 0}.

The language L is regular and

A = {0n1m | n, m ≥ 0}

= {0n | n ≥ 0}{1m | m ≥ 0}

so A is denoted by 0∗1∗.

There is no a regular expression denoting the language:

B = {0n1n | n ≥ 0}

because B is not regular.

COMPSCI 220: Automata and Pattern Matching 92 / 123

Pattern matching

Kleene’s Theorem: other examples 2

Construct a regular expression denoting the language:

A = {0n1m | n, m ≥ 0}.

The language L is regular and

A = {0n1m | n, m ≥ 0}

= {0n | n ≥ 0}{1m | m ≥ 0}

so A is denoted by 0∗1∗.

There is no a regular expression denoting the language:

B = {0n1n | n ≥ 0}

because B is not regular.

COMPSCI 220: Automata and Pattern Matching 92 / 123

Pattern matching

Kleene’s Theorem: other examples 3

There is no a regular expression denoting the language:

C = {uuww | u, w ∈ {a, b}∗}

because C is not regular. Prove this fact!

COMPSCI 220: Automata and Pattern Matching 93 / 123

Pattern matching

Kleene’s Theorem: other examples 3

There is no a regular expression denoting the language:

C = {uuww | u, w ∈ {a, b}∗}

because C is not regular. Prove this fact!

COMPSCI 220: Automata and Pattern Matching 93 / 123

Pattern matching

The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T , (over an
alphabet Σ) determine whether P appears somewhere in T .

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.

COMPSCI 220: Automata and Pattern Matching 94 / 123

Pattern matching

The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T , (over an
alphabet Σ) determine whether P appears somewhere in T .

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.

COMPSCI 220: Automata and Pattern Matching 94 / 123

Pattern matching

The pattern matching problem

The pattern matching problem:

Given a (short) pattern P and a (long) text T , (over an
alphabet Σ) determine whether P appears somewhere in T .

Example: If P = aba and T = baabababaaaba, then the first
occurrence of P in T appears at the third character:

T = baabababaaaba

Of course, there are some other occurrences.

COMPSCI 220: Automata and Pattern Matching 94 / 123

Pattern matching

Naive string matching 1

Try each possible position the pattern P[1..m] could appear in the text
T [1..n]:

for (i=0; T[i] != ’\0’; i++)
{

for (j=0; T[i+j] != ’\0’ && P[j] != ’\0’
&& T[i+j]==P[j]; j++) ;

if (P[j] == ’\0’) found a match
}

There are two nested loops; the inner one takes O(m) iterations and
the outer one takes O(n) iterations so the total time is the product,
O(mn). This is slow!

COMPSCI 220: Automata and Pattern Matching 95 / 123

Pattern matching

Naive string matching 2

An example: if T [1..n] is an, and P[1..m] is b, then it takes m
comparisons each time to discover that we don’t have a match, so mn
overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next
position without going through all m steps.

Can we do it better?

COMPSCI 220: Automata and Pattern Matching 96 / 123

Pattern matching

Naive string matching 2

An example: if T [1..n] is an, and P[1..m] is b, then it takes m
comparisons each time to discover that we don’t have a match, so mn
overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next
position without going through all m steps.

Can we do it better?

COMPSCI 220: Automata and Pattern Matching 96 / 123

Pattern matching

Naive string matching 2

An example: if T [1..n] is an, and P[1..m] is b, then it takes m
comparisons each time to discover that we don’t have a match, so mn
overall.

The worst case scenario may not be too frequent because the inner
loop usually finds a mismatch quickly and moves on to the next
position without going through all m steps.

Can we do it better?

COMPSCI 220: Automata and Pattern Matching 96 / 123

Pattern matching

Pattern matching and regular languages 1

Solution: Consider the language

A(P) = {x | x contains the pattern P}.

Assume that A(P) is regular! Let M be a DFA for A(P). When
processing an input M must enter an accepting state when it has just
finished ‘seeing’ the first occurrence of P, and thereafter it must remain
in some accepting state or other.

COMPSCI 220: Automata and Pattern Matching 97 / 123

Pattern matching

Pattern matching and regular languages 2

Is A(P) regular?

Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then

A(P) = {x ∈ {a, b}∗ | x = uPv , for some u, v ∈ {a, b}∗},

or

A(P) = {uabav | u, v ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 98 / 123

Pattern matching

Pattern matching and regular languages 2

Is A(P) regular?

Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then

A(P) = {x ∈ {a, b}∗ | x = uPv , for some u, v ∈ {a, b}∗},

or

A(P) = {uabav | u, v ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 98 / 123

Pattern matching

Pattern matching and regular languages 2

Is A(P) regular?

Answer: yes.

Example: If P = aba and the alphabet is {a, b}, then

A(P) = {x ∈ {a, b}∗ | x = uPv , for some u, v ∈ {a, b}∗},

or

A(P) = {uabav | u, v ∈ {a, b}∗}.

COMPSCI 220: Automata and Pattern Matching 98 / 123

Pattern matching

Pattern matching and regular languages 3

q0

b

q1

a

q2

q3

a, ba

b

b

a

A DFA for AP(aba)

COMPSCI 220: Automata and Pattern Matching 99 / 123

Pattern matching

Pattern matching and regular languages 4

q0

q1

q3

q2

a, b

a, b

a

a

b

An NFA for A(aba)

COMPSCI 220: Automata and Pattern Matching 100 / 123

Pattern matching

Pattern matching and regular languages 5

For every string P, the language

A(P) = {uPv | u, v ∈ {a, b}∗}

is regular.

Proof: Let M be a DFA recognising exactly {P}. An NFA recognising
A(P) can be obtained from a DFA M by adding loops labelled with a
and b to the initial and final states of M.

COMPSCI 220: Automata and Pattern Matching 101 / 123

Pattern matching

Pattern matching and regular languages 5

For every string P, the language

A(P) = {uPv | u, v ∈ {a, b}∗}

is regular.

Proof: Let M be a DFA recognising exactly {P}. An NFA recognising
A(P) can be obtained from a DFA M by adding loops labelled with a
and b to the initial and final states of M.

COMPSCI 220: Automata and Pattern Matching 101 / 123

Pattern matching

Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem for
A(P) which is the same as testing whether P appears in the input text
T .

How complex is this algorithm?

COMPSCI 220: Automata and Pattern Matching 102 / 123

Pattern matching

Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem for
A(P) which is the same as testing whether P appears in the input text
T .

How complex is this algorithm?

COMPSCI 220: Automata and Pattern Matching 102 / 123

Pattern matching

Pattern matching and regular languages 6

Is the fact that A(P) is regular of any use?

Yes, because there is an algorithm testing the membership problem for
A(P) which is the same as testing whether P appears in the input text
T .

How complex is this algorithm?

COMPSCI 220: Automata and Pattern Matching 102 / 123

Pattern matching

An efficient “automata-theoretic” solution

We will present an efficient “automata-theoretic” solution which
consists of:

1 “pre-processing”: building a DFA M for each pattern P[1..m], then
2 running M on the text T [1..n].

The complexity of this solution is the sum of the complexities of the
above two steps.

COMPSCI 220: Automata and Pattern Matching 103 / 123

Pattern matching

An efficient “automata-theoretic” solution

We will present an efficient “automata-theoretic” solution which
consists of:

1 “pre-processing”: building a DFA M for each pattern P[1..m], then
2 running M on the text T [1..n].

The complexity of this solution is the sum of the complexities of the
above two steps.

COMPSCI 220: Automata and Pattern Matching 103 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 1

We introduce the prefix and suffix relations and the suffix function.

A string w is a prefix of the string x , w ≤prefix x if x = wz for some
string z.

Let Pk be P[1..k], the prefix of length k ≤ m of P[1..m].

A string w is a suffix of the string x , w ≤suffix x if x = yw for some
string y .

For example: a ≤prefix ab, ca ≤suffix aabbca, baab ≤suffix baab, but
ca 6≤prefix aaaaba, ab 6≤suffix abb.

For each string x , ε ≤prefix x , ε ≤suffix x .

COMPSCI 220: Automata and Pattern Matching 104 / 123

Pattern matching

Prefix, suffix and the suffix function 2

The suffix function associated to the pattern P[1..m] is the function

σ : Σ∗ → {0, 1, . . . , m}

defined as follows: σ(x) is the length of the longest prefix of P that is a
suffix of x ,

σ(x) = max{k : Pk ≤suffix x}.

COMPSCI 220: Automata and Pattern Matching 105 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Prefix, suffix and the suffix function 3

For example, if P = nano and Σ = {a, b, n, o} then
P0 = ε, P1 = n, P2 = na, P3 = nan, P4 = nano = P (so m = 4).

σ(ε) = 0
σ(annnao) = 0

σ(aonaaanna) = 2
σ(aon) = 1

σ(aonaaannano) = 4
σ(annnaanan) = 3.

COMPSCI 220: Automata and Pattern Matching 106 / 123

Pattern matching

Aho-Corasick automaton 1

The automaton states will record partial matches to the
pattern.

In particular they will tell whether

we have already matched P[1..m] in T [1..n], and, if not,

we could possibly be in the middle of a match.

So we will have m + 1 states: the initial and accept states are clear:
0, m, respectively.

The transition function from (state, character) to state is the longest
string that is simultaneously a prefix of the pattern and a suffix of that
prefix of the pattern plus the character we have just scanned.

COMPSCI 220: Automata and Pattern Matching 107 / 123

Pattern matching

Aho-Corasick automaton 1

The automaton states will record partial matches to the
pattern.

In particular they will tell whether

we have already matched P[1..m] in T [1..n], and, if not,

we could possibly be in the middle of a match.

So we will have m + 1 states: the initial and accept states are clear:
0, m, respectively.

The transition function from (state, character) to state is the longest
string that is simultaneously a prefix of the pattern and a suffix of that
prefix of the pattern plus the character we have just scanned.

COMPSCI 220: Automata and Pattern Matching 107 / 123

Pattern matching

Aho-Corasick automaton 1

The automaton states will record partial matches to the
pattern.

In particular they will tell whether

we have already matched P[1..m] in T [1..n], and, if not,

we could possibly be in the middle of a match.

So we will have m + 1 states: the initial and accept states are clear:
0, m, respectively.

The transition function from (state, character) to state is the longest
string that is simultaneously a prefix of the pattern and a suffix of that
prefix of the pattern plus the character we have just scanned.

COMPSCI 220: Automata and Pattern Matching 107 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 2

Given the pattern P[1..m] over Σ, the Aho-Corasick DFA
M = (Q,Σ, δ, s, F) is constructed as follows:

1 the set of states: Q = {0, 1, . . . , m},
2 the alphabet: Σ,
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where q ∈ Q, x ∈ Σ,
4 0 is the start state,
5 F = {m} is the (unique) accepting state.

COMPSCI 220: Automata and Pattern Matching 108 / 123

Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.

COMPSCI 220: Automata and Pattern Matching 109 / 123

Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.

COMPSCI 220: Automata and Pattern Matching 109 / 123

Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.

COMPSCI 220: Automata and Pattern Matching 109 / 123

Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.

COMPSCI 220: Automata and Pattern Matching 109 / 123

Pattern matching

Aho-Corasick automaton 3

Here is an example for the alphabet Σ = {a, b, n, o} and pattern
P = nano, so m = 4. Aho-Corasick automaton M will have:

1 the set of states: Q = {0, 1, 2, 3, 4},
2 the alphabet: Σ = {a, b, n, o},
3 the transition function δ from Q × Σ to Q is defined by

δ(q, x) = σ(Pqx),

where 0 ≤ q ≤ 4, x ∈ {a, b, n, o},
4 0 is the start state,
5 F = {4} is the accepting state.

COMPSCI 220: Automata and Pattern Matching 109 / 123

Pattern matching

Aho-Corasick automaton 4

The transition function δ is calculated as follows:

δ(0, a) = σ(P0a) = σ(εa) = σ(a) = 0
δ(0, b) = σ(P0b) = σ(εb) = σ(b) = 0
δ(0, n) = σ(P0n) = σ(εn) = σ(n) = 1
δ(0, o) = σ(P0o) = σ(εo) = σ(0) = 0

δ(1, a) = σ(P1a) = σ(na) = 2
δ(1, b) = σ(P1b) = σ(nb) = 0
δ(1, n) = σ(P1n) = σ(nn) = 1
δ(1, o) = σ(P1o) = σ(no) = 0

δ(2, a) = σ(P2a) = σ(naa) = 0
δ(2, b) = σ(P2b) = σ(nab) = 0
δ(2, n) = σ(P2n) = σ(nan) = 3
δ(2, o) = σ(P2o) = σ(nao) = 0

COMPSCI 220: Automata and Pattern Matching 110 / 123

Pattern matching

Aho-Corasick automaton 4

The transition function δ is calculated as follows:

δ(0, a) = σ(P0a) = σ(εa) = σ(a) = 0
δ(0, b) = σ(P0b) = σ(εb) = σ(b) = 0
δ(0, n) = σ(P0n) = σ(εn) = σ(n) = 1
δ(0, o) = σ(P0o) = σ(εo) = σ(0) = 0

δ(1, a) = σ(P1a) = σ(na) = 2
δ(1, b) = σ(P1b) = σ(nb) = 0
δ(1, n) = σ(P1n) = σ(nn) = 1
δ(1, o) = σ(P1o) = σ(no) = 0

δ(2, a) = σ(P2a) = σ(naa) = 0
δ(2, b) = σ(P2b) = σ(nab) = 0
δ(2, n) = σ(P2n) = σ(nan) = 3
δ(2, o) = σ(P2o) = σ(nao) = 0

COMPSCI 220: Automata and Pattern Matching 110 / 123

Pattern matching

Aho-Corasick automaton 5

δ(3, a) = σ(P3a) = σ(nana) = 2
δ(3, b) = σ(P3b) = σ(nanb) = 0
δ(3, n) = σ(P3n) = σ(nann) = 1
δ(3, o) = σ(P3o) = σ(nano) = 4

δ(4, a) = σ(P4a) = σ(nanoa) = 0
δ(4, b) = σ(P4b) = σ(nanob) = 0
δ(4, n) = σ(P4n) = σ(nanon) = 1
δ(4, o) = σ(P4o) = σ(nanoo) = 0

COMPSCI 220: Automata and Pattern Matching 111 / 123

Pattern matching

Aho-Corasick automaton 6

A compact presentation of the transition function:

δ(q, x) a b n o P

0 0 0 1 0 n
1 2 0 1 0 a
2 0 0 3 0 n
3 2 0 1 4 o
4 0 0 1 0

COMPSCI 220: Automata and Pattern Matching 112 / 123

Pattern matching

Aho-Corasick automaton 7

0 1 2 3 4

a, b, o n

n a

b, o

n

a, b, o

a

b

n

o

n

a, b, o

COMPSCI 220: Automata and Pattern Matching 113 / 123

Pattern matching

Aho-Corasick automaton 8

The following procedure computes the transition function:

COMPUTE-TRANSITION-FUNCTION (P,Σ)
1. m = length[P]
2. for q = 0 to m
3. do for each character x ∈ Σ
4. do k = min(m + 1, q + 2)
5. repeat k = k − 1
6. until Pk ≤suffix Pqx
7. δ(q, a) = k
8. return δ

COMPSCI 220: Automata and Pattern Matching 114 / 123

Pattern matching

Aho-Corasick automaton 9

The procedure computes δ(q, x) in a straightforward manner: it starts
with the largest possible value for k , which is min(m, q + 1) and
decreases k until Pk ≤suffix Pqx .

The running time is O(m3 × number of elements in Σ): the outer loops
contribute a factor of m× number of elements in Σ, the inner loops can
run at most m + 1 times and the test Pk ≤suffix Pqx on line 6. can
require to compare up to m characters.

A clever algorithm requiring O(m × number of elements in Σ) exists!

COMPSCI 220: Automata and Pattern Matching 115 / 123

Pattern matching

Aho-Corasick automaton 9

The procedure computes δ(q, x) in a straightforward manner: it starts
with the largest possible value for k , which is min(m, q + 1) and
decreases k until Pk ≤suffix Pqx .

The running time is O(m3 × number of elements in Σ): the outer loops
contribute a factor of m× number of elements in Σ, the inner loops can
run at most m + 1 times and the test Pk ≤suffix Pqx on line 6. can
require to compare up to m characters.

A clever algorithm requiring O(m × number of elements in Σ) exists!

COMPSCI 220: Automata and Pattern Matching 115 / 123

Pattern matching

Aho-Corasick automaton 9

The procedure computes δ(q, x) in a straightforward manner: it starts
with the largest possible value for k , which is min(m, q + 1) and
decreases k until Pk ≤suffix Pqx .

The running time is O(m3 × number of elements in Σ): the outer loops
contribute a factor of m× number of elements in Σ, the inner loops can
run at most m + 1 times and the test Pk ≤suffix Pqx on line 6. can
require to compare up to m characters.

A clever algorithm requiring O(m × number of elements in Σ) exists!

COMPSCI 220: Automata and Pattern Matching 115 / 123

Pattern matching

Aho-Corasick automaton 10

The following algorithm runs Aho-Corasick automaton for the pattern P
on the text T :

FINITE-AUTOMATON-MATCHER (Σ, δ, T)
1. n = length[T]
2. q = 0
3. for i=1 to n
4. do q = δ(q, T [i])
5. if q = m
6. then print ‘Pattern occurs at

position i − m’ and return
7. Print ‘Pattern doesn’t occur’

COMPSCI 220: Automata and Pattern Matching 116 / 123

Pattern matching

Aho-Corasick automaton 11

The simple loop structure of the above algorithm shows that the
running time on T [1..n] is O(n). The overall running time, i.e. which
includes the pre-processing, is now

O(m × number of elements in Σ) + O(n).

COMPSCI 220: Automata and Pattern Matching 117 / 123

Pattern matching

Aho-Corasick automaton 12

Consider the example for the alphabet Σ = {a, b, n, o} and pattern
P = nano. Running the Aho-Corasick automaton M described above
on the text T = annnaananoaa we get:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] a n n n a a n a n o a a
state 0 0 1 1 1 2 0 1 2 3 4 0 0

n a n o

so the match was found at position i − m = 11 − 4 = 7.

COMPSCI 220: Automata and Pattern Matching 118 / 123

Pattern matching

Aho-Corasick automaton 12

Consider the example for the alphabet Σ = {a, b, n, o} and pattern
P = nano. Running the Aho-Corasick automaton M described above
on the text T = annnaananoaa we get:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] a n n n a a n a n o a a
state 0 0 1 1 1 2 0 1 2 3 4 0 0

n a n o

so the match was found at position i − m = 11 − 4 = 7.

COMPSCI 220: Automata and Pattern Matching 118 / 123

Pattern matching

Aho-Corasick automaton 12

Consider the example for the alphabet Σ = {a, b, n, o} and pattern
P = nano. Running the Aho-Corasick automaton M described above
on the text T = annnaananoaa we get:

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] a n n n a a n a n o a a
state 0 0 1 1 1 2 0 1 2 3 4 0 0

n a n o

so the match was found at position i − m = 11 − 4 = 7.

COMPSCI 220: Automata and Pattern Matching 118 / 123

Pattern matching

Knuth-Morris-Pratt algorithm

Knuth-Morris-Pratt algorithm uses the prefix function associated to the
pattern P[1..m]

π : {1, 2, . . . , m} → {0, 1, 2, . . . , m − 1}

defined by

π(q) = max{k : k < q and Pk ≤suffix Pq},

i.e. the length of the shortest prefix of P that is a proper suffix of
Pq.The overall running time is

O(m + n).

COMPSCI 220: Automata and Pattern Matching 119 / 123

Pattern matching

Regexes 1

In the practice of computing regular expressions (abbreviated as regex
or regexp, with plural forms regexes) differ from the Kleene definition
discussed before.

Regexes are written in a formal language that can be interpreted by a
regular expression processor, a program that either serves as a parser
generator or examines text and identifies parts that match the provided
specification.

COMPSCI 220: Automata and Pattern Matching 120 / 123

Pattern matching

Regexes 1

In the practice of computing regular expressions (abbreviated as regex
or regexp, with plural forms regexes) differ from the Kleene definition
discussed before.

Regexes are written in a formal language that can be interpreted by a
regular expression processor, a program that either serves as a parser
generator or examines text and identifies parts that match the provided
specification.

COMPSCI 220: Automata and Pattern Matching 120 / 123

Pattern matching

Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match in
the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(.∗)\1(.∗)\2,

where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.

COMPSCI 220: Automata and Pattern Matching 121 / 123

Pattern matching

Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match in
the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(.∗)\1(.∗)\2,

where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.

COMPSCI 220: Automata and Pattern Matching 121 / 123

Pattern matching

Regexes 2

There are various versions of regexes; they provide an expressive
power that exceeds the regular languages.

Here is an example. Regexes have the ability to group
sub-expressions with parentheses and recall the value they match in
the same expression.

Using this feature one can write a pattern that matches strings of
repeated words like “papatoetoe” (squares). The regex to match
“papatoetoe” is

(.∗)\1(.∗)\2,

where \1 =pa and \2 =toe were the sub-matches. The language
associated to this pattern is not regular.

COMPSCI 220: Automata and Pattern Matching 121 / 123

Pattern matching

Regex and Google search

Although in many cases system administrators can run regex-based
queries internally, most search engines do not offer regex support to
the public.

With one exception of Google Code Search:

http://www.google.com/codesearch

COMPSCI 220: Automata and Pattern Matching 122 / 123

http://www.google.com/codesearch

Pattern matching

Regex and Google search

Although in many cases system administrators can run regex-based
queries internally, most search engines do not offer regex support to
the public.

With one exception of Google Code Search:

http://www.google.com/codesearch

COMPSCI 220: Automata and Pattern Matching 122 / 123

http://www.google.com/codesearch

Pattern matching

Test distribution

Capacity Room UPI first letter Number of students
279 MLT1 A-R 127
122 PLT2 S-Z 57

401 184

COMPSCI 220: Automata and Pattern Matching 123 / 123

	Outline
	Finite machines
	DFA
	NFA
	Minimisation of DFAs
	Pattern matching

