

## 415.320 Algorithmics

## Assignment No 1

## August 2000

## **Due date**: 18 August 2000, time 4.00 pm, 320 box in the Computer Science Department main office.

1. **[10 points]** Prove the correctness of the following algorithm computing the *n*th Fibonacci number:

```
function Fibiter (n)

i \leftarrow 1, j \leftarrow 0

for k = 1 to n do

j \leftarrow i + j

i \leftarrow j - i

return j.
```

2. [30 points] Consider the following algorithm accepting as input two positive integers, m, n:

```
function Manna (m, n)

x_1 \leftarrow m, x_2 \leftarrow n

x_3 \leftarrow x_2, x_4 \leftarrow 0

while x_1 \neq x_2 do

x_1 \leftarrow x_1 - x_2

x_4 \leftarrow x_3 + x_4

while x_1 < x_2, do

x_2 \leftarrow x_2 - x_1

x_3 \leftarrow x_3 + x_4

y \leftarrow x_3 + x_4, z = x_1

return y, z.
```

- What is the result produced by the algorithm for m = 48, n = 56?
- What is the function computed by the algorithm?
- Show that the relation

$$x_1x_3 + x_2x_4 = mn,$$

is an invariant of the algorithm.

• Prove the correctness of the algorithm.

- 3. [10 points] Prove that for every c > 0 there exists a positive integer  $N_c$  (depending upon c) such that  $cn^2 < 2^n$ , for all  $n \ge N_c$ . Find the minimum bound  $N_c$  for c = 10.
- 4. [10 points] Let  $f : \mathbf{N} \to \mathbf{R}^+$  be a function. Which of the following implications is true:
  - $f(n) \in O(n) \Longrightarrow [f(n)]^2 \in O(n^2)$ ?
  - $[f(n)]^2 \in O(n^2) \Longrightarrow f(n) \in O(n)?$
  - $f(n) \in O(n) \Longrightarrow 2^{f(n)} \in O(2^n)$ ?
  - $2^{f(n)} \in O(2^n) \Longrightarrow f(n) \in O(n)$ ?

Justify each answer with a proof or counter-example.

- 5. [10 points] Let k > 0. Prove that  $O(n^k) = O((n+1)^k)$ , but  $O(n!) \neq O((n+1)!)$ .
- 6. [10 points] Find the error in the following "proof" of the equality " $O(n) = O(n^2)$ ":

Use the maximum rule to get

$$O(n^2) = O(\underbrace{n+n+\dots+n}_{n \text{ times}}) = O(\max(\underbrace{n,n,\dots,n}_{n \text{ times}})) = O(n),$$

- 7. [10 points] Define the class  $\Theta(f(n))$  and prove the equality  $\Theta(n-1) + \Theta(n) = \Theta(n)$ .
- 8. [10 points] Define the class  $n^{O(1)}$  and construct a function  $f : \mathbf{N} \to \mathbf{R}^{\geq 0}, f(n) \leq n$ , for all n, that is not in  $n^{O(1)}$ . Justify your construction.