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Chapter 1

Performance Analysis

1.1 Main Equation

Assume that the received signal is the superposition of the messages from N users. Let
the chaotic sequence for the n-th user be

x(n) =
[
x
(n)
1 , x

(n)
2 , . . . , x

(n)
2β

]�
,

where the operator (·)� denotes transposition. Without loss of generality, we assume
that chaotic sequence of the user who received the signal is x(1), and define

an =
(
x(n)
)�

x(1) =
(
x(1)
)�

x(n). (1.1)

Furthermore, we denote A = a1 + a2 + · · ·+ aN .
For writing the equations more compactly, we also introduce

x
(n)
d =

[
x
(n)
0 , x

(n)
1 , . . . , x

(n)
2β−1

]�
, for all n ∈ {1, 2, . . . , N}.

In the equation above, we use the convention that x
(n)
0 = x

(n)
2β . Additionally, we define

bn =
(
x
(n)
d

)�
x(1) =

(
x(1)
)�

x
(n)
d (1.2)

and B = b1 + b2 + · · ·+ bN .
For modeling the additive noise, we consider the zero-mean Gaussian random vector

ξ = [ξ1, ξ2, . . . , ξ2β ]
�, (1.3)
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whose covariance matrix equals N0I, where N0 > 0 and I denotes the identity matrix

of appropriate dimension. Let C = ξ�x(1). The entries of ξ and those of x(n), x
(n)
d are

statistically independent for all n ∈ {1, 2, . . . , N}.
Now we can re-write Eq. (8) from [1] by employing our own notation:

z = [α00s+ α01(s− τ)]A+ α01τB + sC, (1.4)

where α00 and α01 are statistically independent Rayleigh random variables which model
the fading for the first path and the second path, respectively. We assume that the
secondary path is delayed in time by τ . The design parameter s plays a key role as
each chip is extended into s samples in order to analyze the performance of the system
when the secondary path is delayed by only a portion of the chip interval. It is obvious
that 0 ≤ τ ≤ s.

There have been previous attempts at evaluating the performance of the system
by assuming that z is Gaussian [1]. One possible solution for improving the accuracy
of BER is to use Gram-Charlier expansion for the probability density function (PDF)
of z and to truncate it at the fourth moment (see [2, Section 6.17]). Hence, the sup-
plementary terms in comparison with the crude Gaussian approximation will depend
on skewness and kurtosis. If both skewness and kurtosis are close to zero, then we
might expect a marginal improvement in accuracy, in comparison with the case when
the Gaussian approximation is used. To clarify this aspect, we compute the skewness
of each term within (1.4), under the following hypotheses [1]:

• The chaotic sequence for each user is generated by using the logistic map (see
Section 3.1 for more details). The very first entry of each such chaotic sequence is
drawn from the distribution given in (3.3) such that, for any two different users,
the very first entries of their chaotic sequences are statistically independent.

• As already mentioned, the main path and the secondary path (where the delay
τ occurs) are affected by Rayleigh fading. The fading factor remains constant
over a transmitted bit interval. The parameter of the Rayleigh distribution used
to model the fading on the main path is denoted b. For the secondary path,
the parameter is b̃. So, we write α00 ∼ Rayleigh(b) and α01 ∼ Rayleigh(b̃). We
emphasize that α00 and α01 are statistically independent.

• For n ∈ {1, 2, . . . , N}, the random variables α00 and α01 are statistically inde-

pendent in rapport with the entries of the vectors x(n) and x
(n)
d . They are also

statistically independent in rapport with the entries of the vector ξ.

In our calculations, the following results are useful [3, Chapter 35]:

E[α00] = b
(π
2

)1/2
, (1.5)
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E[α2
00] = 2b2, (1.6)

E[α3
00] = 3b3

(π
2

)1/2
, (1.7)

where E(·) denotes the expectation operator. The moments of α01 can be obtained by
replacing b with b̃ in the expressions above.

We introduce the supplementary definitions:

δ0 = α00s+ α01(s − τ), (1.8)

δ1 = α01τ. (1.9)

Moreover, for an arbitrary random variable RV, we use the notation η3(RV) for its
skewness. In particular, when RV ∈ {A,B, (δ1B)} and N is fixed (N > 2), based on
the calculations presented in Section 3.4, we have:

η3(RV) =
1

(2β)1/2
[CN (RV) + o(1)] (2β � 1), (1.10)

where CN (A) = 3(N − 3/4)

(N − 1/2)3/2
, CN (B) =

3(N + 1/2)

N3/2
and CN (δ1B) =

3π1/2

4
CN (B).

For τ ∈ {0, s/2, s}, fixed N and β → ∞, the skewness of the term (δ0A) is given by

η3(δ0A) = Cb,b̃,τ/s[1 + o(1)], (1.11)

where Cb,b̃,τ/s =
2π1/2(π − 3)

(4− π)3/2
b3 + (1− τ/s)3b̃3[
b2 + (1− τ/s)2b̃2

]3/2 . The details for derivation of (1.11)

can be found in Section 3.4. Additionally, one can verify without difficulties that
η3(C) = 0.

We have been able to compute the skewness for each term within (1.4), but the
evaluation of η3(z) requires some more calculations. For applying the Gram-Charlier
expansion, we should also evaluate the kurtosis of z. Because of the tedious calculations
involved, the use of Gram-Charlier expansion does not provide a practical solution for
the problem we want to solve.

There is also another important lesson which we learned from the computation of
skewness for various terms. The result in (1.10) shows that the skewness of A, B, (δ1B)
is almost zero when β is large. According to (1.11), the situation is different for δ0A,
whose skewness does not decrease to zero even if β is very large. This suggests that
a better alternative to the Gaussian assumption for z is to make all the calculations
under the hypothesis that A, B, C are Gaussian distributed. We will pursue this idea
in the next section.
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1.2 Theoretical Bit Error Rate

1.2.1 Main Idea

The analysis above suggests that the Gaussian assumption for z is inappropriate. How-
ever, from the same analysis we know that, for large β, the Gaussian distribution might
be a good approximation for the conditional distribution of z given α00, α01 and τ . This
leads to the natural choice of computing first the conditional BER and then apply the
law of total probability (for continuous distributions). This approach is in line with
what has been already done for similar problems, in the case of narrow-band channels
(see, for example, [4]). The details of the calculations are outlined below.

1.2.2 Conditional Bit Error Rate

We begin by computing

BER(α00, α01, τ) =
1

2
erfc

(
E[z|α00, α01, τ ]√
2Var[z|α00, α01, τ ]

)

=
1

2
erfc

({
2Var[z|α00, α01, τ ]

(E[z|α00, α01, τ ])2

}−1/2
)
, (1.12)

where erfc(·) has the well-known expression [5, p. 48]:

erfc(ψ) =
2√
π

∫ ∞

ψ
exp(−ω2)dω.

We employ results which are proved in Chapter 3 (see Lemma 3.2.2, Lemma 3.2.4 and
Lemma 3.3.1) in order to calculate

E[z|α00, α01, τ ] = δ0E[A] + δ1E[B] + sE[C]

=
δ0
2
(2β),

E[z2|α00, α01, τ ] = δ20E[A2] + δ21E[B2] + s2E[C2] + 2δ0δ1E[AB] (1.13)

= δ20

[
N

4
(2β) +

1

4
(2β)2 − 1

8
(2β)

]

+ δ21
N

4
(2β) + s2

N0

2
(2β) + 2δ0δ1

1

8
(2β − 2), (1.14)

where δ0 and δ1 are given in (1.8) and (1.9), respectively.
The quantity of interest for us is

2Var[z|α00, α01, τ ]

(E[z|α00, α01, τ ])2
=

(
δ1
δ0

)2 2N

2β
+

(
δ1
δ0

)
2(2β − 2)

(2β)2
(1.15)
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+

(
1

δ0

)2

N0
4s2

2β
(1.16)

+
2N − 1

2β
. (1.17)

Under the assumption that α01 	= 0, τ 	= 0 and r = α00/α01, we can rearrange some of
the terms in the equation above:

δ1
δ0

=
1

s
τ (r + 1)− 1

, (1.18)

(
1

δ0

)2

N0
4s2

2β
=

N0

βα2
00

2[
1 + 1

r

(
1− τ

s

)]2 . (1.19)

These identities lead to the following conclusions:

• Remark in (1.19) that the term N0(βα
2
00)

−1 can be written as N0(Ebα
2
00)

−1,
where Eb is the bit energy and equals 2βE[x2i ]. We refer to [4, Eq. (14)] for the
definition of the bit energy. The reader can also see in Chapter 3 (Eq. (3.5)) that
E[x2i ] = 1/2 for the logistic map. Combining the results from (1.12), (1.16) and
(1.19), we can conclude that the BER decreases when the product Ebα

2
00 raises.

It is also interesting to note that the positive factor which multiplies N0(βα
2
00)

−1

in (1.19) is smaller than two for all possible values of r, τ and s.

• The performance is the same for all selections of s and τ for which the ratio s/τ
has a certain value. An increase of s/τ guarantees a lower BER [see again (1.12),
(1.15) and (1.19)].

• The increase of r has mixed effects in the sense that δ1/δ0 decreases, whereas the
value of the expression in (1.19) grows.

1.2.3 Average Bit Error Rate

To gain more insight, we investigate separately the influence of the second propagation
path and that of the additive Gaussian noise. Then we treat the general case.

Case #1: Effect of additive noise is neglected (N0 = 0) If we ignore the term
in (1.16), then Eb/N0 = ∞ and the expression of conditional BER becomes

BER(r, τ)|Eb/N0=∞ =
1

2
erfc
(
ζ−1/2
r,τ

)
,
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where

ζr,τ =
N/β[

s
τ (r + 1) − 1

]2 +
(β − 1)/β2

s
τ (r + 1)− 1

+
2N − 1

2β
.

Furthermore, we can calculate

BER(τ)|Eb/N0=∞ =

∫ ∞

0

[
BER(r, τ)|Eb/N0=∞

]
f(r)dr, (1.20)

where f(r) denotes the PDF of r. Assuming that (i) α00 ∼ Rayleigh(b), (ii) α01 ∼
Rayleigh(b̃) and (iii) α00 and α01 are statistically independent, we have the following

expression for f(r) [6, Corollary 3.4]: f(r) =
2rb2b̃2(

r2b̃2 + b2
)2 , 0 < r < ∞. We note in

passing that the mode of f(r) is given by b/(31/2 b̃).

Case #2: N0 > 0, α00 and α01 are linearly dependent Now we consider that

α00/α01 = r0, (1.21)

where r0 is fixed (r0 ≥ 1). This is a major deviation from the original set of assumptions
listed in Section 1.1, but it will help us to gain more insight on the problem we analyze.
This assumption leads to

BER(α00, τ)|r=r0 =
1

2
erfc

(
ζ−1/2
α00,τ

)
,

where

ζα00,τ =
N

D2
1β

+
β − 1

D1β2
+

2N0

α2
00βD

2
2

+
2N − 1

2β
,

D1 =
δ0
δ1

=
s

τ
(r0 + 1)− 1,

D2 =
δ0
α00s

= 1 +
1

r0

(
1− τ

s

)
. (1.22)

It follows that

BER(τ)|r=r0 =

∫ ∞

0
[BER(α00, τ)|r=r0 ] f(α00)dα00, (1.23)

where

f(α00) = (α00/b
2) exp

[−α2
00/(2b

2)
]
, 0 < α00 <∞, (1.24)
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Figure 1.1: The values of BER(th) obtained when computing numerically the integral
in (1.23) are compared with LB - the lower bound in (1.31). These results are for N = 4
users (left panel) and N = 40 users (right panel). The values of the time delay τ are
given in the legend. Additionally, s = 40, β = 50 and r0 = 1.1.

because α00 ∼ Rayleigh(b). For writing the formula in (1.23) in a more convenient
form, we firstly re-write ζα00,τ as ζγ,τ :

ζγ,τ = v +
w

γ
, (1.25)

γ = α2
00,

v =
N

D2
1β

+
β − 1

D1β2
+

2N − 1

2β
, (1.26)

w =
2N0

βD2
2

. (1.27)

After some algebra, we get that the PDF of γ is f(γ) = exp(−γ/γ̄)/γ̄, where 0 < γ <∞
and γ̄ = 2b2. So,

BER(τ)|r=r0 =

∫ ∞

0
[BER(γ, τ)|r=r0 ] f(γ)dγ
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=
1

2

∫ ∞

0
erfc(ζ−1/2

γ,τ )f(γ)dγ

=

∫ ∞

0
Q(

√
2ζ−1/2
γ,τ )f(γ)dγ (1.28)

=
1

π

∫ ∞

0

[∫ π/2

0
exp

(
− ζ−1

γ,τ

sin2 θ

)
dθ

]
f(γ)dγ. (1.29)

In (1.28), we have used the well-known relationship between erfc(·) and the Gaussian
Q-function. The reader can find more details in [7, p. 85], where is also presented the
identity we employed in (1.29). However, the double integral in (1.29) cannot be easily
computed, but it allows us to obtain a lower bound for BER(τ)|r=r0 . It is enough to
observe in (1.26) that v > 0, which leads to

BER(τ)|r=r0 ≥ 1

2

∫ ∞

0
erfc
(√

γ/w
)
f(γ)dγ

=
1

π

∫ ∞

0

[∫ π/2

0
exp

(
− γ/w

sin2 θ

)
dθ

]
f(γ)dγ

=
1

π

∫ π/2

0

[∫ ∞

0
exp

(
− γ/w

sin2 θ

)
exp(−γ/γ̄)

γ̄
dγ

]
dθ (1.30)

=
1

π

∫ π/2

0

(
1 +

γ̄

w sin2 θ

)−1

dθ

=
1

2

(
1− 1√

1 + w/γ̄

)
. (1.31)

In (1.30), we used the fact that w is positive (see the definition in (1.27)), whilst in
(1.31) we applied the identity from [7, Eq. (5.6)].

From (1.27), we know that w = (Eb/N0)
−1 × (2/D2

2). This shows clearly the
influence of the ratio Eb/N0 on the lower bound we obtained in (1.31). The same
identity shows that the lower bound also depends on r0, τ and s (see again the definition
in (1.22)). However, the lower bound does not depend on the number of users N
because, in the derivation of (1.31), the v-term from (1.25) was ignored. For example,
if we take N = 4 or N = 40, the lower bound in (1.31) is the same (given that all other
settings are the same). For illustration, we plot in Fig. 1.1 the values of the lower bound
when β = 50, r0 = 1.1, s = 40, τ ∈ {1, 20, 39} and Eb/N0 ∈ {1dB, 2dB, . . . , 16dB}.
In the same figure, we show the values of the integral in (1.23), which are numerically
computed for N = 4 and N = 40, respectively. Remark that the lower bound is a good
approximation of the integral when N = 4. It is not surprising that the approximation
becomes much worse when N is large. This suggests that the lower bound might be
used to approximate (1.23) only when N is small.
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Case #3: N0 > 0, α00 and α01 are statistically independent With the conven-
tion that ζα00,α01,τ is given by the expression in (1.15)-(1.17), we get

BER(α00, α01, τ) =
1

2
erfc
(
ζ−1/2
α00,α01,τ

)
, (1.32)

BER(τ) =

∫ ∞

0

∫ ∞

0
BER(α00, α01, τ)f(α00)f(α01)dα00dα01, (1.33)

(1.34)

where f(α00) is the same as in (1.24). For the distribution of α01, we make the assump-

tion that is Rayleigh(b̃) and consequently we have f(α01) = (α01/b̃
2) exp

[
−α2

01/(2b̃
2)
]

for 0 < α01 <∞.

Case #4: N0 > 0, α00 and α01 are statistically independent, τ-delay is random
In most of the practical applications, the value of τ is not known a priori. This is why
we propose to evaluate how the fact that τ is random impacts on the performance.
The model used in [1] assumes that τ is sampled from an Exponential distribution
(with parameter λ), but it was pointed out in the same reference that τ should be
rather modeled as a discrete random variable than as a continuous one. We introduce
a new model for τ , which is discrete. The novel model is described by resorting to the
following algorithm:

1. Let the random variable τc have the Exponential distribution with parameter λ
(λ > 0). Hence, the PDF of τc is given by

f(τc) =

{
λ�τc if τc ≥ 0

0 otherwise,

where � = exp(−λ).
2. Quantize τc as follows: τq = �τc�, where �·� denotes the largest integer not greater

than the real number in the argument. It is clear that

Pr(τq = i) = (1− �)�i for all i ∈ {0, 1, 2, . . .}.

3. Take τ = τq (mod s). Simple calculations lead to

Pr(τ = j) =
1− �

1− �s
�j for all j ∈ {0, 1, . . . , s− 1}. (1.35)
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We note that

E[τ ] =
1− �

1− �s

s−1∑
j=0

j�j

=
(1− �)�

1− �s

s−1∑
j=1

j�j−1

=
�

1− �s
(s− 1)�s − s�s−1 + 1

1− �
, (1.36)

E[τ2] =
1− �

1− �s

s−1∑
j=0

j2�j

=
1− �

1− �s

s−1∑
j=1

j2�j

=
1− �

1− �s

⎡
⎣s−1∑
j=1

j(j − 1)�j +
s−1∑
j=1

j�j

⎤
⎦

= E[τ ] +
(1− �)�2

1− �s

s−1∑
j=2

j(j − 1)�j−2

= E[τ ] +
�2

1− �s

[
2(1− �s)

(1− �)2
− 2�s−1s

1− �
− �s−2s(s− 1)

]
. (1.37)

At the same time, it is well-known that the moments of τc are [3, Chapter 14]:

E[τc] =
1

λ
, (1.38)

E[τ2c ] =
2

λ2
. (1.39)

In Fig. 1.2, we compare the moments computed with (1.36)-(1.37) with those given by
(1.38)-(1.39) for the case when s = 40 and 1/λ ∈ {1, 2, . . . , 20}. Remark in figure that
the moments of τ and τc are almost the same when the mean of τc is small, but they
tend to be different when the mean of τc increases.

The formulae above will be employed in our future calculations. Most importantly,
the model we introduce for τ leads to the following expression for BER:

BER =
s−1∑
j=0

Pr(τ = j)BER(j), (1.40)

where Pr(τ = j) is given in (1.35) and BER(j) is evaluated by using (1.32)-(1.33).
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Figure 1.2: First- and second-order moments of τ and τc computed with formulae
(1.36)-(1.37) and (1.38)-(1.39), respectively. In calculations, we use s = 40 and the
value of 1/λ ranges from 1 to s/2.

1.2.4 Relationship Between the Values of the Transmitted Bits and
the Conditional BER

All formulae for BER which we have derived so far are based on the expression of the
conditional BER in (1.12). However, for obtaining (1.12), we assumed that the bits
transmitted by all users have value “+ 1”. This might give the impression that all our
results are valid only for a particular case. Next we prove their generality.

Let γ
(n)
i be the i-th bit transmitted by the n-th user. Obviously, γ

(n)
i ∈ {−1,+1}

for all i and n. With the convention that i > 1, we denote zi the random variable used
by the first user in order to decide if the value of the i-th received bit is either “+1” or
“-1”. Hence, we have:

zi = δ0

N∑
n=1

γ
(n)
i an + δ1

N∑
n=1

γ
(n)
i bn + δ1x

(1)
1

N∑
n=1

[
γ
(n)
i−1 − γ

(n)
i

]
x
(n)
2β + sC, (1.41)

where all symbols have the same significance as before, except γ
(n)
i and γ

(n)
i−1 which are
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newly introduced. The key results are given in the following lemma.

Lemma 1.2.1. For all γ
(1)
i−1, . . . , γ

(N)
i−1 , γ

(1)
i , . . . , γ

(N)
i ∈ {−1,+1}, the following identi-

ties hold true:

E [zi|α00, α01, τ ] = γ
(1)
i E [z|α00, α01, τ ] , (1.42)

E
[
z2i |α00, α01, τ

]
= E

[
z2|α00, α01, τ

]
, (1.43)

where z is defined in (1.4) and the expressions of its first- and second-order moments
are given in (1.13)-(1.14).

Proof is deferred to Section 3.5.
We can see from Lemma 1.2.1 that the conditional mean of zi does not depend on

the sign of the previous bit transmitted for the first user nor on the bits transmitted for
other users. Additionally, the values of the bits have no influence on E

[
z2i |α00, α01, τ

]
.

All that remains is to assume that is equally likely for γ
(1)
i to be either “+1” or “-1”,

and to perform the usual calculations [4, 5]:

BER(α00, α01, τ) =
1

2
Pr
(
zi < 0|α00, α01, τ, γ

(1)
i = +1

)
+

1

2
Pr
(
zi > 0|α00, α01, τ, γ

(1)
i = −1

)

=
1

2
erfc

⎛
⎝ E[zi|α00, α01, τ, γ

(1)
i = +1]√

2Var[z|α00, α01, τ, γ
(1)
i = +1]

⎞
⎠

=
1

2
erfc

(
E[z|α00, α01, τ ]√
2Var[z|α00, α01, τ ]

)
. (1.44)

The equality in (1.44) is based on Lemma 1.2.1 and shows clearly that all the formulae
we derived for BER are valid for all possible values of the transmitted bits.

Next we focus on the computation of BER when z in (1.4) is assumed to be Gaussian
distributed.

1.3 Computation of Bit Error Rate by Using the Gaussian
Approximation for z

For sake of comparison, we compute approximate BER’s by applying the method from
[1], which assumes the distribution of z to be Gaussian. We write down the calculations
for the four cases considered in the previous section.
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Case #1 : The approximate BER, which we denote ˇBER(τ)|Eb/N0=∞, is given by

ˇBER(τ)|Eb/N0=∞ =
1

2
erfc

(
ζ̌−1/2
τ

)
, (1.45)

where

ζ̌τ =
2Var[z]

(E[z])2
=

2E[z2]

(E[z])2
− 2. (1.46)

As C = 0, we employ Lemma 3.2.2, Lemma 3.2.4 and equations (1.4), (1.5), (1.6) for
the following calculations:

E[z] = {E[α00]s+ E[α01](s− τ)}E[A] + E[α01]τE[B]

= (π/2)1/2 [bs+ b̃(s− τ)]β, (1.47)

E[z2] =
{
s2E[α2

00] + (s− τ)2E[α2
01] + 2s(s− τ)E[α00]E[α01]

}
E[A2]

+ τ2E[α2
01]E[B2] + 2τ

{
sE[α00]E[α01] + (s− τ)E[α2

01]
}
E[AB]

=
[
2b̃2(s− τ)2 + 2b2s2 + πbb̃s(s− τ)

]
× [(Nβ)/2 − β/4 + β2

]
(1.48)

+ 2τ(β/4 − 1/4) ×
[
2b̃2(s− τ) + (bb̃sπ)/2

]
+Nβb̃2τ2. (1.49)

Case #2 : Using the notation from Section 1.2.3, we re-write the expression of z as

z = α00 [s+ (s− τ)/r0]A+ α00(τ/r0)B + sC.

This leads to the following results:

E[z] = E[α00] [s+ (s− τ)/r0]E[A]

= (π/2)1/2 b [s+ (s− τ)/r0]β,

E[z2] = E[α2
00] [s+ (s− τ)/r0]

2E[A2] + E[α2
00](τ/r0)

2E[B2] + s2E[C2]

+ 2E[α2
00] [s+ (s− τ)/r0] (τ/r0)E[AB].

(1.50)

All that remains is to plug-in the expressions for the moments of the random variables
involved, to calculate ζ̌τ like in (1.46) and then to use the erfc(·) function for computing
ˇBER(τ)|r=r0 .

Case #3 : It is easy to see that, in this case, the expression of E[z] coincides with
the one in (1.47). Similarly, E[z2] can be calculated as the summation of (1.48)-(1.49)
with s2E[C2]. Note that s2E[C2] = s2N0β (see Lemma 3.3.1).
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Case #4 : It is straightforward to write down the following identities:

E[z] = E[δ0]E[A],

E[δ0] = −E[τ ]E[α01] + s{E[α00] + E[α01]},
E[z2] = E[δ20 ]E[A2] + E[δ21 ]E[B2] + s2E[C2] + 2E[δ0δ1]E[AB],

E[δ20 ] = E[τ2]E[α2
01]− 2sE[τ ]{E[α2

01] +E[α00]E[α01]}
+ s2{E[α2

00] + E[α2
01] + 2E[α00]E[α01]},

E[δ21 ] = E[τ2]E[α2
01],

E[δ0δ1] = −E[τ2]E[α2
01] + E[τ ]s{E[α00]E[α01] +E[α2

01]}.

The moments of z can be then evaluated with the help of results from Lemma 3.2.2,
Lemma 3.2.4, Lemma 3.3.1 and equations (1.5), (1.6). For the first- and second-order
moments of τ we apply (1.36) and (1.37).

In the next chapter, we resort to numerical examples for a better understanding of
the results obtained so far.
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Chapter 2

Numerical Examples

2.1 Experimental Settings

In this chapter, we compare the theoretical results from the previous chapter with those
obtained from simulations. We mention from the very beginning that each experimental
result shown in Figs. 2.1-2.8 is produced by simulating the transmission of 106 bits. In
all cases, the spread factor is 2β = 100 and each chip is extended into s = 40 samples.
The parameter b of the Rayleigh distribution from which we sample α00 is taken to be√
2/2. This choice guarantees that the expected power of fading on the main channel

is one: E[α2
00] = 1 (see (1.6)). Selection of other parameters is explained below, for

each considered case. The nomenclature for the four cases we analyze is the same as in
Section 1.2.3 and Section 1.3.

2.2 Experimental Results

Case #1 : In addition to b =
√
2/2, we have also to set, in this case, the parameter

b̃ for the Rayleigh distribution of α01. So, we take b̃ = 0.9b. As the additive Gaussian
noise is not considered (Eb/N0 → ∞), we are mainly concerned with the degradation
of performance when the number of users increases. This is why we plot BER versus N
in Fig. 2.1. The values of BER are computed as follows (in parentheses we indicate the
acronyms used in the legend of the figure): (th) numerical integration of (1.20); (app)
Gaussian approximation in (1.45); (exp) simulation of 106 bits. Remark in the same
figure that τ ∈ {1, s/2, s−1}, where s = 40. Disregarding how BER is computed, BER
increases when the ratio τ/s raises and N is kept fixed. We also remark that, for a given
value of τ/s, BER grows when N becomes larger. These results are not surprising and
they are in line with the analysis from Section 1.2. Remark the agreement between the
values of BER(th) and BER(exp). However, for a given set of experimental parameters,
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BER(app) is much larger than both BER(th) and BER(exp), which shows clearly that
in the absence of additive Gaussian noise, the Gaussian assumption for z leads to a
poor approximation of BER.

Case #2 : In contrast to Case #1, we now take Eb/N0 to be relatively small, namely
Eb/N0 = 2dB. Then we choose r0 = 1.1 (see (1.21)) and keep all other settings as in
Fig. 2.1. The theoretical and empirical values of BER are shown in Fig. 2.2. Observe
the nearly linear dependence between BER and the number of users.

In the second experiment conducted for Case #2, we maintain all the settings as
in the first one, except that N = 4 and Eb/N0 is varied between 1dB and 8dB. The
results are plotted in Fig. 2.3, where we can see the improvement in performance when
Eb/N0 grows. In figure can be observed how inaccurate the Gaussian approximation
is when Eb/N0 is relatively large. For instance, the BER computed with Gaussian
approximation when τ = 1 and Eb/N0 = 8db is not only larger than the empirical
BER obtained for the same experimental settings, but is also larger than the empirical
BER corresponding to τ = 20 and Eb/N0 = 8db.

In the last experiment for Case #2, the focus is on r0. We fix N = 4, Eb/N0 = 2dB
and let r0 to take values from {1, 1.2, . . . , 2}. According to Fig. 2.4, the increase of r0
slightly lowers the BER if τ = s−1. On the contrary, BER is monotonically increasing
with r0 when τ ∈ {1, s/2}. For understanding this behavior, we use the definitions in
Section 1.2.3 in order to compute ζα00,τ . For example, when τ = 39, we have s/τ ≈ 1,
which implies D1 ≈ r0 and D2 ≈ 1. It follows that

ζα00,39 ≈
N

r20β
+
β − 1

r0β2
+ ct(r0)

≈ 0.08

r20
+

0.02

r0
+ ct(r0),

where N = 4, β = 50 and ct(r0) represents those terms which do not depend on
r0. Hence, if r0 grows, then ζα00,39 becomes smaller and BER(39)|r=r0 decreases (see
(1.23)). For τ = 1, we have D1 ≈ s(r0 + 1) and D2 ≈ 1 + 1/r0. So,

ζα00,1 ≈
N

s2(r0 + 1)2β
+

β − 1

s(r0 + 1)β2
+

1

(1 + 1/r0)2
1

α2
00

2N0

β
+ ct(r0)

≈ 5× 10−5

(r0 + 1)2
+

5× 10−4

r0 + 1
+

1

α2
00

1.26

(1 + 1/r0)2
+ ct(r0).

As we know that E[α2
00] = 1, it means that the dominant term in the equation above

is the one that contains the factor 1/α2
00. This leads to the conclusion that ζα00,1 is

monotonically increasing with r0 and explains the behavior observed in Fig. 2.4.
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Case #3 : Similarly to Case #1, we take b̃ = 0.9b for the plots in Figs. 2.5-2.6. In Fig.
2.5, Eb/N0 = 2dB and the number of users ranges from 4 to 24. It is interesting that
the difference between BER(th) and BER(exp) increases when N raises, but at least for
τ = 1 and τ = 20, BER(th)− BER(exp) is clearly smaller than BER(app)− BER(exp).

In the particular case of Fig. 2.6, the number of users is small (N = 4) and we
remark the decrease of BER when Eb is kept fixed and N0 is lowered. As already ob-
served in other graphs within this section, BER(th) and BER(exp) are almost the same.
Additionally, the Gaussian approximation BER(app) almost coincides with BER(th)
when Eb/N0 is small. The smaller N0 is, the worse the Gaussian approximation is, and
this trend confirms what we have already noticed for Case #1 and Case #2.

Another interesting aspect is that in Case #2, the ratio α00/α01 is fixed to 1.1,
whilst in Case #3 the ratio of the means of distributions from which α00 and α01 are
drawn is about 1.1. This explains the similarities between Fig. 2.2 & Fig. 2.5 and Fig.
2.3 & Fig. 2.6.

Case #4 : The key point is the randomness of the delay τ . As we already know
from Section 1.2.3, τ is a random variable obtained by quantizing τc. Bearing in mind
that, in our settings, the maximum possible value of τ is s − 1 = 39, we conduct
experiments for the situation when τ is sampled from an Exponential distribution with
mean 5, as well as for the case when the mean of the Exponential distribution is 20.
All other experimental settings are described in the caption of Fig. 2.7, where we
show how the BER depends on the number of users (N). We are mainly interested in
comparing the theoretical BER given in (1.40) with the empirical results obtained from
simulations. Under the assumption that z is Gaussian distributed, the approximate
BER is calculated by using the expressions of E[τ ] and E[τ2] from (1.36)-(1.37) in
the formulae outlined in Section 1.3. For comparison with results reported previously
(see [1]), we also compute another approximate BER which is obtained by employing
the formulae in (1.38) and (1.39) for E[τ ] and E[τ2], respectively. As we can see in
Fig. 2.7, the two Gaussian approximations can differ significantly if 1/λ (the mean of
the Exponential distribution from which τc is sampled) is large. In the same figure,
one can observe the difference between BER computed with (1.40) and the Gaussian
approximations. The fact that the two Gaussian approximations are over-pessimistic
can be also observed in Fig. 2.7, where the number of users is fixed and the ratio Eb/N0

is increased from 1dB to 8dB.
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Figure 2.1: Case #1 : BER(exp) [computed empirically from 106 simulated bits] is com-
pared with BER(th) [calculated by numerical integration with formulae from Section
1.2.3] and BER(app) [calculated with the Gaussian approximation from Section 1.3]
when the number of users N increases from 8 to 24. Other settings: β = 50, s = 40,
b =

√
2/2, b̃ = 0.9b and the values of τ are listed in the legend of the figure.
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Figure 2.2: Case #2 : Here there are two major differences in rapport with the exper-
iment whose results are shown in Fig. 2.1: (i) α01 = α00/r0, where r0 = 1.1 and (ii)
Eb/N0 = 2dB.
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Figure 2.3: Case #2 : Same settings as in Fig. 2.2, apart from the fact that N is fixed
to value 4 and Eb/N0 is increased from 1dB to 8dB.
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Figure 2.4: Case #2 : In order to investigate the impact of r0 on the performance of
the CDMA-system, we alter the settings from Fig. 2.2 such that N = 4, Eb/N0 = 2dB
and r0 ∈ {1, 1.2, . . . , 2}.
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Figure 2.5: Case #3: The only difference between this experiment and the one in Fig.
2.1 is that N0 is not zero, but is chosen such that Eb/N0 = 2dB.
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Figure 2.6: Case #3: The number of users is N = 4 and the variance of the additive
Gaussian noise (N0) is varied in order to see the effect of Eb/N0 on BER(th) [see
Section 1.2.3], BER(app) [see Section 1.3] and BER(exp) [computed empirically]. All
other settings are the same as in Fig. 2.1.
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Figure 2.7: Case #4 : Comparison of BER(Th), which represents the BER given in
(1.40), with two Gaussian approximations. The first approximation [Gauss app(c)]
employs the formulae in (1.38) and (1.39), whereas the second one [Gauss app] uses
(1.36) and (1.37). Additionally, b =

√
2/2, b̃ = 0.9b, 2β = 100, s = 40 and Eb/N0 =

2dB. The parameter of the Exponential distribution from which τc is drawn is either
1/5 (left panel) or 1/20 (right panel). For each value of N (number of users) shown in
the plots, BER(exp) is computed by simulating the transmission of 106 bits.
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Figure 2.8: Case #4 : For this figure, all settings are the same as in Fig. 2.7, except
that the number of users is fixed to N = 4 and the variance of the additive Gaussian
noise N0 is selected such that Eb/N0 takes the values shown on the abscissas of the
plots.
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Chapter 3

Statistical Properties

3.1 Statistics for Sequences of Random Variables Gener-
ated by Logistic Map

In this section, we investigate the statistical properties of sequences of random variables
{xi}, which are generated as follows:

xi+1 = g(xi), (3.1)

g(xi) = 1− 2x2i . (3.2)

We reproduce below some of the properties of {xi} which can be found in [5]. For
instance, it is well-known the expression of the PDF for a random variable x generated
as described in (3.1)-(3.2):

ρ(x) =

{
1

π
√
1−x2 if |x| < 1

0 otherwise.
(3.3)

Moreover, the following identities hold true (see Appendix 3B and Appendix 7B in
[5]):

E[xqi ] = 0, 0 < q (q odd), (3.4)

E[x2i ] = 1/2, (3.5)

E[x2ix
2
i+m] = 1/4, 0 < m, (3.6)

E[xixi+m] = 0, 0 < m, (3.7)

E[xixi+mxi+pxi+r] = 0, 0 < m < p < r, (3.8)

E[x2ixi+m] = −1/4, m = 1, (3.9)
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E[x2ixi+m] = 0, m 	= 1, (3.10)

where E[·] denotes the expectation operator. As our aim is to extend these results, we
firstly prove the next lemma.

Lemma 3.1.1. (a) If q > 0 is even, then we have∫ π

0
cosq(ϕ)dϕ =

q − 1

q

q − 3

q − 2
· · · 3

4

π

2
. (3.11)

(b) For γ, δ > 0 even, we have∫ π

0
cos(γϕ) cos(δϕ)dϕ =

{
π/2 if γ = δ

0 otherwise.
(3.12)

Proof. (a) It is easy to observe that∫ π

0
cos2(ϕ)dϕ =

∫ π

0

1 + cos(2ϕ)

2
dϕ =

π

2
. (3.13)

For q ≥ 2, we have the following identities∫ π

0
cosq(ϕ)dϕ =

∫ π

0
cosq−1(ϕ) cos(ϕ)dϕ

=
[
cosq−1(ϕ) sin(ϕ)

]π
0
−
∫ π

0
cosq−2(ϕ)(q − 1)[− sin2(ϕ)]dϕ

= (q − 1)

∫ π

0
cosq−2(ϕ)[1 − cos2(ϕ)]dϕ

= (q − 1)

∫ π

0
cosq−2(ϕ)− (q − 1)

∫ π

0
cosq(ϕ)dϕ,

which lead to ∫ π

0
cosq(ϕ)dϕ =

q − 1

q

∫ π

0
cosq−2(ϕ)dϕ. (3.14)

The result in (3.11) is a straightforward consequence of (3.13) and (3.14).
(b) If γ = δ, then the evaluation of the integral can be done like in (3.13). However,

for γ 	= δ, we get:∫ π

0
cos(γϕ) cos(δϕ)dϕ =

1

2

∫ π

0
{cos[(γ + δ)ϕ] + cos[(γ − δ)ϕ]}dϕ

=
1

2

[
sin[(γ + δ)ϕ]

γ + δ

]π
0

+
1

2

[
sin[(γ − δ)]ϕ

γ − δ

]π
0

= 0.
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Proposition 3.1.1. If xi is a random variable from a sequence generated by the logistic
map, then the following identities hold true:

E[x4i ] = 3/8, (3.15)

E[x6i ] = 5/16, (3.16)

E[x4i x
2
i+1] = 7/32, (3.17)

E[x4i x
2
i+m] = 3/16, 1 < m, (3.18)

E[x2i x
4
i+m] = 3/16, 1 < m, (3.19)

E[x2i x
2
i+mx

2
i+p] = 1/8, 0 < m < p, (3.20)

E[xixi+mxi+p] = 0, 0 < m < p, (3.21)

E[xix
2
i+1xi+2] = 0, (3.22)

E[x2i xi+1xi+m] = 0, 2 < m, (3.23)

E[x2i xi+1xi+2] = 1/8, (3.24)

E[xixi+mx
2
i+m+1] = 0, 0 < m, (3.25)

E[xixi+1x
2
i+m] = 0, 0 < m, (3.26)

E[x2i xi+m−1xi+m] = 0, 2 < m, (3.27)

E[x3i x
3
i+1] = 0, (3.28)

E[x2i x
3
i+1xi+2] = 1/8, (3.29)

E[xi−1x
3
i x

2
i+1] = 0, (3.30)

E[xixi+1xjxj+1xkxk+1] = 0, i < j < k, (3.31)

E[x2i x
2
i+1xi+2xi+3] = 1/16, (3.32)

E[x2i x
2
i+1xi+mxi+m+1] = 0, 2 < m (3.33)

E[x3i xi+1] = 0. (3.34)

Proof. Let q > 0 be an even integer. Then,

E[xqi ] =

∫ 1

−1

xq

π
√
1− x2

dx.

With the change of variable x = cos(ϕ), dx = − sin(ϕ)dϕ, we get

E[xqi ] =
1

π

∫ 0

π
cosq(ϕ)

1

sin(ϕ)
[− sin(ϕ)]dϕ

=
1

π

∫ π

0
cosq(ϕ)dϕ,
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and the identities in (3.15)-(3.16) are immediately obtained from (3.11).
For the calculation of E[x4i x

2
i+m], we employ the definition of g(·) from (3.2) and

apply the same change of variable as before. We adopt the notational convention from
[5] that, for any m > 0, g(m)(x) = g(g(m−1)(x)) and g(1)(x) = g(x). So,

E[x4i x
2
i+m] =

∫ 1

−1

1

π
√
1− x2

x4
[
g(m)(x)

]2
dx

=
1

π

∫ 0

π

1

sin(ϕ)
cos4(ϕ) [− cos(2mϕ)]2 [− sin(ϕ)]dϕ [see Eq. (3.61) in [5]]

=
1

π

∫ π

0
cos4(ϕ) cos2(2mϕ)dϕ. (3.35)

After some elementary calculations, we get

cos4(ϕ) =
[
cos2(ϕ)

]2
=

[
1 + cos(2ϕ)

2

]2

=
1

4

[
1 + 2 cos(2ϕ) + cos2(2ϕ)

]
=

1

4

[
1 + 2 cos(2ϕ) +

1 + cos(4ϕ)

2

]

=
1

4
+

1

2
cos(2ϕ) +

1

8
+

1

8
cos(4ϕ)

=
3

8
+

1

2
cos(2ϕ) +

1

8
cos(4ϕ), (3.36)

cos2(2mϕ) =
1

2
+

1

2
cos(2m+1ϕ). (3.37)

Combining (3.12) with (3.35)-(3.37), we obtain (3.17) and (3.18).
Applying the same techniques as above, we have for m > 1 that

E[x2i x
4
i+m] =

1

π

∫ π

0
cos2(ϕ) cos4(2mϕ)dϕ =

3

16
,

which proves the identity in (3.19).
In order to prove (3.20), we note that

E[x2i x
2
i+mx

2
i+p] =

∫ 1

−1

1

π
√
1− x2

x2
[
g(m)(x)

]2 [
g(p)(x)

]2
dx

=
1

π

∫ 0

π

1

sinϕ
cos2(ϕ) cos2 (2mϕ) cos2 (2pϕ)(− sinϕ)dϕ
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=
1

π

∫ π

0
cos2(ϕ) cos2 (2mϕ) cos2 (2pϕ)dϕ

=
1

π

∫ π

0

1 + cos 2ϕ

2
· 1 + cos(2m+1ϕ)

2
· 1 + cos(2p+1ϕ)

2
dϕ

=
1

8
[see (3.12)].

For proving (3.21), it is enough to apply the definition of the expectation and to
use the fact that ψ(x) = ρ(x)xg(m)(x)g(p)(x) is an odd function. The function ψ(x)
has this property because both ρ(x) and g(x) are even functions. The proof for (3.22),
(3.25), (3.26), (3.28), (3.30), (3.31) and (3.34) is similar to that for (3.21).

For (3.23) and (3.24), we note that

E[x2i xi+1xi+m] =
1

π

∫ π

0
cos2(ϕ)[− cos(2ϕ)][− cos(2mϕ)]dϕ

=
1

2π

∫ π

0
[1 + cos(2ϕ)] cos(2ϕ) cos(2mϕ)dϕ

=
1

2π

∫ π

0
cos2(2ϕ) cos(2mϕ)dϕ [see (3.12)]

=
1

4π

∫ π

0
[1 + cos(4ϕ)] cos(2mϕ)dϕ.

Using the result in (3.12), we get

E[x2i xi+1xi+m] =

{
1/8 if m = 2

0 if m > 2.

Similarly, for (3.27), we have:

E[x2i xi+m−1xi+m] =
1

π

∫ π

0
cos2(ϕ)[− cos(2m−1ϕ)][− cos(2mϕ)]dϕ

=
1

2π

∫ π

0
[1 + cos(2ϕ)] cos(2m−1ϕ) cos(2mϕ)dϕ

=
1

2π

∫ π

0
cos(2ϕ) cos(2m−1ϕ) cos(2mϕ)dϕ [see (3.12)]

=
1

4π

∫ π

0
cos(2ϕ)[cos(3× 2m−1ϕ) + cos(2m−1ϕ)]dϕ.

It follows from (3.12) that

E[x2i xi+m−1xi+m] =

{
1/8 if m = 2

0 if m > 2.
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Remark that proving the equality in (3.29) reduces to calculate E[x2i x
2
i+1xi+mxi+m+1]

for the particular case when m = 1. However, E[x2i x
2
i+1xi+mxi+m+1] appears also in

(3.32) and (3.33). In order to check all these identities, we assume that m ≥ 1 in the
following calculations:

E[x2i x
2
i+1xi+mxi+m+1]

=
1

π

∫ π

0
cos2(ϕ)[− cos(2ϕ)]2[− cos(2mϕ)][− cos(2m+1ϕ)]dϕ

=
1

8π

∫ π

0
[1 + cos(2ϕ)][1 + cos(4ϕ)][cos(3× 2mϕ) + cos(2mϕ)]dϕ

=
1

16π

∫ π

0
[2 + 3 cos(2ϕ) + 2 cos(4ϕ) + cos(6ϕ)][cos(3× 2mϕ) + cos(2mϕ)]dϕ

=
1

16π

∫ π

0
cos(6ϕ) cos(3× 2mϕ)dϕ+

1

16π

∫ π

0
[3 cos(2ϕ) + 2 cos(4ϕ)] cos(2mϕ)dϕ.

Now we only need to apply (3.12) in order to get (3.29), (3.32) and (3.33).

3.2 Chaos-Based CDMA System: Statistical Properties

of the Received Signal

3.2.1 Calculations for the A-Term

Lemma 3.2.1. When N > 2, with the definition from (1.1), we have:

E[a1] =
1

2
(2β), (3.38)

E[a21] =
1

4
(2β)2 +

1

8
(2β), (3.39)

E[a31] =
1

8
(2β)3 +

3

16
(2β)2 +

3

32
(2β) − 3

32
, (3.40)

E[a22] =
1

4
(2β), (3.41)

E[a1a
2
2] =

1

8
(2β)2 +

1

16
(2β), (3.42)

E[a32] =
3

16
(2β) − 3

16
. (3.43)

Proof. For simplicity, we drop the superscript for the entries of the vector x(1) and
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write x(1) = [x1, x2, . . . , x2β]
�. It follows that

E[a1] =

2β∑
i=1

E[x2i ] =
1

2
(2β) [see (3.5)],

E[a21] = E

⎡
⎣
(

2β∑
i=1

x2i

)2
⎤
⎦

= (2β)E[x41] + (2β)(2β − 1)E[x21x
2
2]

=
3

8
(2β) +

1

4
(2β)(2β − 1) [see (3.6), (3.15)],

=
1

4
(2β)2 +

1

8
(2β),

E[a31] = E

⎡
⎣
(

2β∑
i=1

x2i

)3
⎤
⎦

=

2β∑
i=1

E[x6i ] + 3

2β−1∑
i=1

E[x4i x
2
i+1]

+ 3
∑

1≤i,j≤2β
j �=i,j �=i+1

E[x4ix
2
j ] + 6

∑
1≤i,j,k≤2β
i �=j,j �=k,k �=i

E[x2i x
2
jx

2
k]

= 2βE[x61] + 3(2β − 1)E[x41x
2
2] + 3(2β − 1)2E[x41x

2
3]

+ 2β(2β − 1)(2β − 2)E[x21x
2
2x

2
3]

= (2β)
5

16
+ 3(2β − 1)

7

32
+ 3(2β − 1)2

3

16
[see (3.16) − (3.18)]

+ (2β)(2β − 1)(2β − 2)
1

8
[see (3.20)]

=
1

8
(2β)3 +

3

16
(2β)2 +

3

32
(2β) − 3

32
.

In this proof, for the calculations which involve a2, we adopt the convention that
x(2) = [y1, y2, . . . , y2β ]

�. So,

E[a22] = E

⎡
⎣( 2β∑

i=1

xiyi

)2
⎤
⎦

= 2βE[x21y
2
1 ] + 2β(2β − 1)E[x1y1x2y2]

= 2βE[x21]E[y21 ] + 2β(2β − 1)E[x1x2]E[y1y2]
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=
1

4
(2β). [see (3.5), (3.7)]

Similarly, we get

E[a1a
2
2] = E

⎡
⎣( 2β∑

k=1

x2k

)(
2β∑
i=1

xiyi

)2
⎤
⎦

= E

⎡
⎢⎢⎣
(

2β∑
k=1

x2k

)⎛⎜⎜⎝
2β∑
i=1

x2i y
2
i +

∑
1≤i,j≤2β

i �=j

xixjyiyj

⎞
⎟⎟⎠
⎤
⎥⎥⎦

=
∑

1≤i,k≤2β
i �=k

E[x2kx
2
i y

2
i ] +

2β∑
i=1

E[x4i y
2
i ]

+
∑

1≤i,j,k≤2β
i �=j,k �=i,k �=j

E[x2kxixjyiyj] +
∑

1≤i,j≤2β
i �=j

E[x3i xjyiyj]

= 2β(2β − 1)E[x21x
2
2]E[y22 ] + 2βE[x41]E[y21 ]

+ 2β(2β − 1)(2β − 2)E[x21x2x3]E[y2y3] + 2β(2β − 1)E[x31x2]E[y1y2]

= 2β(2β − 1)
1

4

1

2
+ 2β

1

2

3

8
[see (3.5) − (3.7), (3.15)]

=
1

8
(2β)2 +

1

16
(2β).

E[a32] = E

⎡
⎣( 2β∑

i=1

xiyi

)3
⎤
⎦

=

2β∑
i=1

E[x3i y
3
i ] + 3

2β−1∑
i=1

E[x2i y
2
i xi+1yi+1] + 3

∑
1≤i,j≤2β
j �=i,j �=i+1

E[x2i y
2
i xjyj]

+ 6
∑

1≤i,j,k≤2β
i �=j,j �=k,k �=i

E[xiyixjyjxkyk]

=

2β∑
i=1

E[x3i ]E[y3i ] + 3

2β−1∑
i=1

E[x2i xi+1]E[y2i yi+1]
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+ 3
∑

1≤i,j≤2β
j �=i,j �=i+1

E[x2i xj]E[y2i yj] + 6

2β∑
1≤i,j,k≤2β
i �=j,j �=k,k �=i

E[xixjxk]E[yiyjyk]

= 2βE[x31]E[y31 ] + 3(2β − 1)E[x21x2]E[y21y2] + 3(2β − 1)2E[x21x3]E[y21y3]

+ 2β(2β − 1)(2β − 2)E[x1x2x3]E[y1y2y3]

= 3(2β − 1)

(
−1

4

)(
−1

4

)
[see (3.4), (3.9), (3.10), (3.21)]

=
3

16
(2β)− 3

16
.

After these preparations, we prove the following lemma.

Lemma 3.2.2. For N > 2, we have:

E[A] =
1

2
(2β),

E[A2] =
1

4
N(2β) +

1

4
(2β)2 − 1

8
(2β),

E[A3] =
3

8
(2β)2N +

3

8
(2β)N − 3

16
N +

1

8
(2β)3 − 3

16
(2β)2 − 9

32
(2β) +

3

32
.

Proof. Most of the calculations are straightforward. We use the fact that the chaotic
sequences assigned to two different users are statistically independent and E[x(1)] =
E[x(2)] = · · · = E[x(N)] = 0:

E[A] = E[a1] + (N − 1)E[a2]

=
1

2
(2β) + (N − 1)E

[(
x(1)
)�

x(2)

]
[see (3.38)]

=
1

2
(2β) + (N − 1)E

[(
x(1)
)�]

E
[
x(2)
]

=
1

2
(2β),

E[A2] = E[a21] + (N − 1)E[a22] + 2(N − 1)E[a1a2]

+ (N − 1)(N − 2)E[a2a3]

=
1

4
(2β)2 +

1

8
(2β) +

N − 1

4
(2β) [see (3.39), (3.41)]

+ 2(N − 1)E

[(
x(1)
)�

x(1)
(
x(1)
)�]

E
[
x(2)
]
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+ (N − 1)(N − 2)E

[(
x(1)
)�

x(2)
(
x(1)
)�]

E
[
x(3)
]

=
1

4
N(2β) +

1

4
(2β)2 − 1

8
(2β).

The calculations for E[A3] are slightly more complicated. Applying the well-known
multinomial theorem, we get

A3 = a31 + 3

N∑
n=2

a21an + 3

N∑
n=2

a1a
2
n

+

N∑
n=2

a3n + 3
∑

2≤m,n≤N
m�=n

a2man + 6
∑

1≤m,n,p≤N
m�=n,n �=p,p �=m

amanap,

which leads to

E[A3] = E[a31] + 3(N − 1)E[a21a2] + 3(N − 1)E[a1a
2
2]

+ (N − 1)E[a32] + 3(N − 1)(N − 2)E[a22a3]

+N(N − 1)(N − 2)E[a1a2a3].

The expression above can be further simplified by using the fact that the chaotic se-
quences assigned to two different users are statistically idependent:

E[a21a2] = E

[(
x(1)
)�

x(1)
(
x(1)
)�

x(1)
(
x(1)
)�]

E
[
x(2)
]
= 0,

E[a22a3] = E

[(
x(1)
)�

x(2)
(
x(1)
)�

x(2)
(
x(1)
)�]

E
[
x(3)
]
= 0,

E[a1a2a3] = E

[(
x(1)
)�

x(1)
(
x(1)
)�

x(2)
(
x(1)
)�]

E
[
x(3)
]
= 0.

It follows that

E[A3] = E[a31] + 3(N − 1)E[a1a
2
2] + (N − 1)E[a32]

=
1

8
(2β)3 +

3

16
(2β)2 +

3

32
(2β) − 3

32
[see (3.40)]

+ 3(N − 1)

[
1

8
(2β)2 +

1

16
(2β)

]
[see (3.42)]

+ (N − 1)

[
3

16
(2β)− 3

16

]
[see (3.43)]

=
3

8
(2β)2N +

3

8
(2β)N − 3

16
N +

1

8
(2β)3 − 3

16
(2β)2 − 9

32
(2β) +

3

32
.
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3.2.2 Calculations for the B-Term

Lemma 3.2.3. Applying the definition from (1.2) to the case when N > 2, we get:

E[bi] = 0, 1 ≤ i ≤ N, (3.44)

E[b2i ] =
1

4
(2β), 1 ≤ i ≤ N, (3.45)

E[bibj] = 0, 1 ≤ i < j ≤ N. (3.46)

E[b1b
2
2] =

1

16
(2β − 2), (3.47)

E[b31] =
9

16
(2β) − 3

4
, (3.48)

E[b32] =
3

16
(2β) − 3

8
. (3.49)

Proof. For simplicity, we write x(1) = [x1, x2, . . . , x2β ]
� and x

(2)
d = [y0, y1, . . . , y2β−1]

�.
Hence, we have:

E[b1] =

2β−1∑
i=0

E[xixi+1] = 0 [see (3.7)],

E[b2] =

2β−1∑
i=0

E[yi]E[xi+1] = 0 [see (3.4)],

E[b21] = E

⎡
⎣
(

2β−1∑
i=0

xixi+1

)2
⎤
⎦

=

2β−1∑
i=0

E[x2i x
2
i+1] +

∑
0≤i,j≤2β−1

i �=j

E[xixi+1xjxj+1]

=
1

4
(2β) +

∑
0≤i,j≤2β−1

i �=j

E[xixi+1xjxj+1] [see (3.6)]

=
1

4
(2β). (3.50)

The identity in (3.50) can be verified by assuming that i < j and applying the previous
results to the following cases:

0 ≤ i < 2β − 2 i+ 1 < j Eq. (3.8)

0 < i ≤ 2β − 2 i+ 1 = j Eq. (3.22)
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i = 0 j = 1 Eq. (3.23)

i = 0 j = 2β − 1 Eq. (3.25)

Moreover, we have

E[b22] = E

⎡
⎣(2β−1∑

i=0

yixi+1

)2
⎤
⎦

=

2β−1∑
i=0

E[y2i ]E[x2i+1] +
∑

0≤i,j≤2β−1
i �=j

E[yiyj]E[xi+1xj+1]

=
1

4
(2β) [see (3.5) and (3.7)].

Since the proof of (3.46) is straightforward, we do not present it here. However, the
proof of (3.47) is slightly more complicated:

E[b1b
2
2] = E

⎡
⎣(2β−1∑

i=0

xixi+1

)(
2β−1∑
k=0

ykxk+1

)2
⎤
⎦

= E

⎡
⎢⎢⎣
(

2β−1∑
i=0

xixi+1

)⎛⎜⎜⎝
2β−1∑
k=0

y2kx
2
k+1 +

∑
0≤k,p≤2β−1

k �=p

xk+1xp+1ykyp

⎞
⎟⎟⎠
⎤
⎥⎥⎦

=
∑

0≤i,k≤2β−1

E[xixi+1x
2
k+1]E[y2k] +

∑
0≤i,k,p≤2β−1

k �=p

E[xixi+1xk+1xp+1]E[ykyp]

=
1

2

∑
0≤i,k≤2β−1

E[xixi+1x
2
k+1] [see (3.5) and (3.7)]

=
1

16
(2β − 2). (3.51)

The identity above is obtained by computing E[xixi+1x
2
k+1] for the cases outlined in

Table 3.1.
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For (3.48), we have:

E[b31] = E

⎡
⎣(2β−1∑

i=0

xixi+1

)3
⎤
⎦

=

2β−1∑
i=0

E[x3i x
3
i+1] + 3

2β−2∑
i=0

E[x2i x
2
i+1xi+1xi+2]

+ 3

2β−1∑
i=1

E[x2i x
2
i+1xi−1xi]

+ 3
∑

0≤i,j≤2β−1
i �=j−1,i �=j,i �=j+1

E[x2i x
2
i+1xjxj+1]

+ 6
∑

0≤i,j,k≤2β−1
i �=j,j �=k,k �=i

E[xixi+1xjxj+1xkxk+1]

=

2β−1∑
i=0

E[x3i x
3
i+1] + 3

2β−2∑
i=0

E[x2i x
3
i+1xi+2]

+ 3

2β−1∑
i=1

E[xi−1x
3
i x

2
i+1]

+ 3
∑

0≤i,j≤2β−1
i �=j−1,i �=j,i �=j+1

E[x2i x
2
i+1xjxj+1]

+ 6
∑

0≤i,j,k≤2β−1
i �=j,j �=k,k �=i

E[xixi+1xjxj+1xkxk+1]

= 3

2β−2∑
i=0

E[x2i x
3
i+1xi+2]

+ 3
∑

0≤i,j≤2β−1
i �=j−1,i �=j,i �=j+1

E[x2i x
2
i+1xjxj+1] [see (3.28),(3.30) and (3.31)]

=
3

8
(2β − 1) + 3

∑
0≤i≤2β−3

E[x2i x
2
i+1xi+2xi+3] [see (3.29) and (3.33)]

=
3

8
(2β − 1) +

3

16
(2β − 2) [see (3.32)]

=
9

16
(2β) − 3

4
.
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Conditions Identity Justification

0 ≤ i ≤ 2β − 1 k > i− 1 E[xixi+1x
2
k+1] = 0 Eq. (3.26)

1 ≤ i ≤ 2β − 1 k = i− 1 E[x3i xi+1] = 0 Eq. (3.34)

i = k + 2 0 ≤ k ≤ 2β − 3 E[x2k+1xk+2xk+3] = 1/8 Eq. (3.24)

i = k +m 0 ≤ k ≤ 2β−m−1 E[x2k+1xk+mxk+m+1] = 0 Eq. (3.27)
(2 < m)

Table 3.1: Results needed for the proof of the identity in (3.47).

In the equations above, we employed the identity E[xixi+1xjxj+1xkxk+1] = 0 from
(3.31). However, the argument we used for proving (3.31) is not true in the particular
case when i = 0, j = 1, k = 2β − 1 and E[xixi+1xjxj+1xkxk+1] = E[x21x2x2β−1x

2
2β].

Even in this case, it can be shown that E[xixi+1xjxj+1xkxk+1] = 0 when β is large
enough, but we do not outline here the calculations.

Next we calculate E[b32]:

E[b32] = E

⎡
⎣(2β−1∑

i=0

yixi+1

)3
⎤
⎦

=

2β−1∑
i=0

E[y3i x
3
i+1] + 3

2β−1∑
i=1

E[y2i x
2
i+1yi−1xi] + 3

2β−2∑
i=0

E[y2i x
2
i+1yi+1xi+2]

+ 3
∑

0≤i,j≤2β−1
j �=i−1,j �=i,j �=i+1

E[y2i x
2
i+1yjxj+1] + 6

∑
0≤i,j,k≤2β−1
i �=j,j �=k,k �=i

E[yixi+1yjxj+1ykxk+1]

=

2β−1∑
i=0

E[x3i+1]E[y3i ] + 3

2β−1∑
i=1

E[xix
2
i+1]E[yi−1y

2
i ] + 3

2β−2∑
i=0

E[x2i+1xi+2]E[y2i yi+1]

+ 3
∑

0≤i,j≤2β−1
j �=i−1,j �=i,j �=i+1

E[x2i+1xj+1]E[y2i yj ] + 6
∑

0≤i,j,k≤2β−1
i �=j,j �=k,k �=i

E[xi+1xj+1xk+1]E[yiyjyk]

= 3

2β−2∑
i=0

E[x2i+1xi+2]E[y2i yi+1] (3.52)

= 3(2β − 2)

(
−1

4

)(
−1

4

)
(3.53)
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=
3

16
(2β)− 3

8
.

In (3.52), we have used the fact that E[x3i+1] = 0 (see (3.4)) and E[x2i+1xj+1] = 0 when
{i}∩{j−1, j, j+1} = ∅ (see (3.10)). We have also employed the identities E[xix

2
i+1] = 0

(see again (3.10)) and E[xi+1xj+1xk+1] = 0 when i 	= j, j 	= k, k 	= i (see (3.21)). The

result in (3.53) follows from (3.9) and the fact that E[y20y1] = E

[(
x
(2)
0

)2
x
(2)
1

]
=

E

[
x
(2)
1

(
x
(2)
2β

)2]
= 0.

The moments of B are given in the next lemma.

Lemma 3.2.4. For N > 2, we have:

E[B] = 0, (3.54)

E[B2] =
1

4
N(2β), (3.55)

E[B3] =
3

8
N(2β) +

3

16
(2β)− 3

4
N. (3.56)

Proof. The identity in (3.54) follows from (3.44), whilst (3.55) is an immediate conse-
quence of (3.45) and (3.46). For proving (3.56), we apply a formula which is similar to
the one employed in Section 3.2.1 for computing E[A3]:

E[B3] = E[b31] + 3(N − 1)E[b21b2] + 3(N − 1)E[b1b
2
2]

+ (N − 1)E[b32] + 3(N − 1)(N − 2)E[b22b3]

+N(N − 1)(N − 2)E[b1b2b3].

It is easy to verify that E[b21b2] = E[b22b3] = E[b1b2b3] = 0. All that remains is to use,
in the expression above, the results from (3.47)-(3.49) :

E[B3] =

[
9

16
(2β)− 3

4

]
+ 3(N − 1)

[
1

16
(2β − 2)

]
+ (N − 1)

[
3

16
(2β) − 3

8

]

=
3

8
N(2β) +

3

16
(2β) − 3

4
N.
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3.3 Some More Calculations

In this section, we prove one more lemma concerning moments of random variables A,
B and C:

Lemma 3.3.1. Employing the definitions from Section 1.1, we have:

E[C] = 0, (3.57)

E[C2] =
N0

2
(2β), (3.58)

E[AB] =
1

8
(2β − 2), (3.59)

E[AC] = 0, (3.60)

E[BC] = 0. (3.61)

Proof. The identity in (3.57) can be obtained without difficulties. For proving (3.58),
we use the notation x(1) = [x1, x2, . . . , x2β ]

�, as we have already done previously:

E[C2] =

2β∑
i=1

E[x2i ]E[ξ2i ] +
∑

1≤i,j≤2β
i �=j

E[xixj]E[ξi]E[ξj ]

=
N0

2
(2β) [see (3.5)].

The proof for (3.59) is given below.

E[AB] =
∑

1≤m,n≤N
E[ambn] = E[a1b1]. (3.62)

Proving the identity above reduces to:

E[ambn] = 0 if m 	= n, (3.63)

E[ambm] = 0 if m 	= 1. (3.64)

We show that (3.63) is true when m = 1 and n = 2 because all other cases can be
treated similarly:

E[a1b2] = E

[(
x(1)
)�

x(1)
(
x(1)
)�]

E
[
x
(2)
d

]
= 0.

For (3.64), we take m = 2 and introduce the notation: x
(1)
d = [x0, x2, . . . , x2β ]

�, x(2) =

[y1, y2, . . . , y2β]
� and x

(2)
d = [y0, y1, . . . , y2β−1]

�. Note that x0 = x2β and y0 = y2β. As
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x(1) = [x1, x2, . . . , x2β ]
�, we have:

E[a2b2] =
∑

1≤i,j≤2β

E[xixj]E[yiyj−1] = 0.

For computing E[a1b1], we observe that

E[a1b1] =
∑

1≤i,j≤2β

E[x2i xjxj−1] (3.65)

=

2β−2∑
i=1

E[x2i xi+1xi+2]

=
1

8
(2β − 2). (3.66)

Bearing in mind that x0 = x2β, we let k be min{i, j, j − 1} for any term x2ixjxj−1

within (3.65). If the power of xk in x2i xjxj−1 is odd, then E[x2i xjxj−1] = 0 due to the
arguments of the same type as those used when proving (3.21), (3.22) and (3.25). It
follows that the only terms within (3.65) which can potentially have values different
from zero are of the form E[x2i xi+mxi+m+1] (m > 0). However, these terms equal 1/8
when m = 1 [see (3.24)], and otherwise are zero. This observation completes the proof
for (3.66). From (3.62) and (3.66), we get (3.59).

For the last two identities, it is easy to observe that

E[AC] =

N∑
n=1

E

[(
x(n)
)�

x(1)
(
x(1)
)�]

E [ξ] = 0,

E[BC] =

N∑
n=1

E

[(
x
(n)
d

)�
x(1)

(
x(1)
)�]

E [ξ] = 0.

3.4 Computation of Skewness for the Terms Within (1.4)

Skewness of A: We apply the definition from [2, Eq. (3.89)]:

η3(A) =
κ3(A)

[κ2(A)]3/2
(3.67)

=
E[A3]− 3E[A2]E[A] + 2(E[A])3

{E[A2]− (E[A])2}3/2
(3.68)

=
3
8N(2β) − 3

16N − 9
32 (2β) +

3
32{

1
4N(2β) − 1

8 (2β)
}3/2
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=
1

(2β)1/2

[
3(N − 3/4)

(N − 1/2)3/2
+ o(1)

]
(2β � 1).

In (3.67) we denoted κ3(A) and κ2(A) the cumulants of order 3 and 2, respectively.
It is known that κ3(A) coincides with the central moment of order 3 of A, and we
computed it in (3.68) with formula from [2, Eq. (3.41)]. In the same equation, for
evaluating κ2(A) we used the identity κ2(A) = Var[A]. For the calculation of E[Aq]
when q ∈ {1, 2, 3}, we applied Lemma 3.2.2.

Skewness of B: Using Lemma 3.2.4, we get:

η3(B) =
κ3(B)

[κ2(B)]3/2

=
E[B3]

{E[B2]}3/2

=
3
8N(2β) + 3

16(2β) − 3
4N{

1
4N(2β)

}3/2
=

1

(2β)1/2

[
3(N + 1/2)

N3/2
+ o(1)

]
(2β � 1).

Skewness of (δ1B): Since δ1 and B are statistically independent, it is straightforward
to write down the following chain of identities:

η3(δ1B) =
κ3(δ1B)

[κ2(δ1B)]3/2

=
E[(δ1B)3]

{E[(δ1B)2]}3/2

=
E[δ31 ]{
E[δ21 ]

}3/2 E[B3]

{E[B2]}3/2

=
τ33b̃3(π/2)1/2(
τ22b̃2

)3/2 κ3(B)

=
3π1/2

4
κ3(B).

In the calculations above, we used (1.6) and (1.7) (after replacing b with b̃).
All results obtained so far in this section are shown more compactly in (1.10).
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τ = 0

(2β)3 ((2π)1/2s3(π − 3)(b3 + b̃3))/16

(2β)2 (3(2π)1/2s3(2N − 1)(b+ b̃)(3bb̃+ b2 + b̃2 − πbb̃))/32

(2β)1 (9(2π)1/2s3(4N − 3)(b+ b̃)(b2 + bb̃+ b̃2))/64

(2β)0 −(9(2π)1/2s3(2N − 1)(b+ b̃)(b2 + bb̃+ b̃2))/64

(2β)2 −(s2(π − 4)(b2 + b̃2))/8

(2β)1 s2(N/4− 1/8)(2b2 + πbb̃+ 2b̃2)

τ = s/2

(2β)3 ((2π)1/2s3(8b3 + b̃3)(π − 3))/128

(2β)2 (3(2π)1/2s3(2N − 1)(2b+ b̃)(6bb̃+4b2+ b̃2− 2πbb̃))/256

(2β)1 (9(2π)1/2s3(4N − 3)(2b+ b̃)(4b2 + 2bb̃+ b̃2))/512

(2β)0 −(9(2π)1/2s3(2N − 1)(2b+ b̃)(4b2 + 2bb̃+ b̃2))/512

(2β)2 −(s2(4b2 + b̃2)(π − 4))/32

(2β)1 (s2(2N − 1)(4b2 + πbb̃+ b̃2))/16

τ = s

(2β)3 ((2π)1/2b3s3(π − 3))/16

(2β)2 (3(2π)1/2b3s3(2N − 1))/32
(2β)1 (9(2π)1/2b3s3(4N − 3))/64

(2β)0 −(9(2π)1/2b3s3(2N − 1))/64
(2β)2 −(b2s2(π − 4))/8
(2β)1 2b2s2(N/4− 1/8)

Table 3.2: Expressions of κ3(δ0A) and κ2(δ0A) when τ ∈ {0, s/2, s}. The results are
presented as polynomials of variable (2β). For each value of τ , in the second column,
we outline the coefficients of the polynomial corresponding to κ3(δ0A) followed by
the coefficients of the polynomial corresponding to κ2(δ0A). The expression of each
polynomial can be obtained by multiplying each coefficient with the power of (2β)
shown on the same row and then summing the resulting terms. Remark that the
degree of the polynomial for κ3(δ0A) is three, whilst κ2(δ0A) is a polynomial of degree
two. In the expression of κ2(δ0A), the term of degree zero is zero.

Skewness of (δ0A): For this term, the calculations are much more difficult than for
the previous ones. This is why we restrict our attention to the case when τ ∈ {0, s/2, s}
and use Symbolic Math Toolbox in Matlab. The expressions obtained for κ3(δ0A) and
κ2(δ0A) are outlined in Table 3.2. Note that both κ3(δ0A) and κ2(δ0A) are regarded
as polynomials of variable (2β). For all three values of τ , the results from Table 3.2 are
further used to find η3(δ0A) when N is fixed and β → ∞ (see 1.11).
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3.5 Proof of Lemma 1.2.1

The identity in (1.42) can be easily obtained by using (1.41) and the results presented
in Table 3.3. For (1.43), we use the results in Table 3.4 along with those which are
outlined below:

Under the hypothesis that m 	= n, we have:

E[anx
(1)
1 x

(m)
2β ] = E[anx

(1)
1 ]E[x

(m)
2β ]

= 0 [see (3.4)].

For m = n (n 	= 1), we get:

E[anx
(1)
1 x

(m)
2β ] = E[anx

(1)
1 x

(n)
2β ]

= E

⎡
⎣
⎛
⎝ 2β∑
j=1

x
(n)
j x

(1)
j

⎞
⎠x

(n)
2β x

(1)
1

⎤
⎦

=

2β∑
j=1

E
[
x
(n)
j x

(n)
2β

]
E
[
x
(1)
j x

(1)
1

]

= 0,

because we cannot have simultaneously j = 2β and j = 1 [see also (3.7)]. Then we take
m = n = 1:

E[anx
(1)
1 x

(m)
2β ] = E[a1x

(1)
1 x

(1)
2β ]

= E

⎡
⎣x(1)1 x

(1)
2β

2β∑
j=1

(
x
(1)
j

)2⎤⎦

= E

[(
x
(1)
1

)3
x
(1)
2β

]
+ E

[
x
(1)
1

(
x
(1)
2β

)3]
+

2β−1∑
j=1

E

[
x
(1)
1

(
x
(1)
j

)2
x
(1)
2β

]

= 0.

It can be easily shown that each term within equation above is zero by using the same
approach as in the proof of (3.21).

We continue our analysis by computing E[bmx
(1)
1 x

(n)
2β ]. It is clear that

E[bmx
(1)
1 x

(n)
2β ] = 0 if m 	= n.
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When m = n and n 	= 1, we have:

E[bmx
(1)
1 x

(m)
2β ] = E

⎡
⎣x(1)1 x

(n)
2β

2β∑
j=1

x
(1)
j x

(n)
j−1

⎤
⎦

= E

[(
x
(1)
1

)2]
E

[(
x
(n)
2β

)2]
+

2β∑
j=2

E
[
x
(n)
j−1x

(n)
2β

]
E
[
x
(1)
j x

(1)
1

]

=
1

4
[see (3.5) and (3.7)].

The last case which we should consider is m = n = 1:

E[bmx
(1)
1 x

(m)
2β ] = E

⎡
⎣x(1)1 x

(1)
2β

2β∑
j=1

x
(1)
j x

(1)
j−1

⎤
⎦

= E

[(
x
(1)
1

)2 (
x
(n)
2β

)2]
+ E

[(
x
(1)
1

)2
x
(1)
2 x

(n)
2β

]
+

2β∑
j=3

E
[
x
(1)
1 x

(1)
j−1x

(1)
j x

(1)
2β

]

=
1

4
[see (3.6) and (3.23)].

Using the definition in (1.41), we obtain:

E
[
z2i |α00, α01, τ, γ

(n)
i , γ

(n)
i−1

]

= δ20

{(
γ
(1)
i

)2 [1
4
(2β)2 +

1

8
(2β)

]
+

1

4
(2β)

N∑
n=2

(
γ
(n)
i

)2}

+
δ21
4
(2β)

N∑
n=1

(
γ
(n)
i

)2
+
δ21
4

N∑
n=1

(
γ
(n)
i−1 − γ

(n)
i

)2
+ s2

N0

2
(2β)

+ 2δ0δ1

(
γ
(1)
i

)2 1
8
(2β − 2) + 2δ21

N∑
n=1

[
γ
(n)
i

(
γ
(n)
i−1 − γ

(n)
i

) 1

4

]

= δ20

[
N

4
(2β) +

1

4
(2β)2 − 1

8
(2β)

]
+ δ21

N

4
(2β) + s2

N0

2
(2β) + 2δ0δ1

1

8
(2β − 2)

+
δ21
4

N∑
n=1

[(
γ
(n)
i−1

)2 − (γ(n)i

)2]
.

Note that
(
γ
(n)
i

)2
= 1 for all i and n. A simple comparison of the expression above

with the one in (1.14) leads to the conclusion that (1.43) is true.
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Identity Justification

E[a1] = β Eq. (3.38)
E[an] = 0, n 	= 1 Lemma 3.2.2
E[bn] = 0 Eq. (3.44)

E
[
x
(1)
1 x

(1)
2β

]
= 0 Eq. (3.7)

E
[
x
(1)
1 x

(n)
2β

]
= 0, n 	= 1 Eq. (3.4)

E[C] = 0 Eq. (3.57)

Table 3.3: Auxiliary results for proving the identity in (1.42).

Identity Justification

E[a21] =
1
4(2β)

2 + 1
8(2β) Eq. (3.39)

E[a2n] =
1
4(2β), n 	= 1 Eq. (3.41)

E[aman] = 0, m 	= n Lemma 3.2.2
E[b2n] =

1
4(2β) Eq. (3.45)

E[bmbn] = 0, m 	= n Lemma 3.2.4

E

[(
x
(1)
1 x

(n)
2β

)2]
= 1

4 Eqs. (3.5),(3.6)

E

[(
x
(1)
1

)2
x
(m)
2β x

(n)
2β

]
= 0, m 	= n,m 	= 1, n 	= 1 Eq. (3.4)

E

[(
x
(1)
1

)2
x
(1)
2β x

(n)
2β

]
= 0, n 	= 1 Eq. (3.4)

E[C2] = N0
2 (2β) Eq. (3.58)

E[ambn] = 0, m 	= n Eq. (3.63)
E[ambm] = 0, m 	= 1 Eq. (3.64)
E[a1b1] =

1
8(2β − 2) Eq. (3.66)

E[anC] = 0 Lemma 3.3.1
E[bnC] = 0 Lemma 3.3.1

Table 3.4: Auxiliary results for proving the identity in (1.43).
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