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Abstract—Epilepsy is one of the most common brain disorders
and may result in brain dysfunction and cognitive disturbances.
Epileptic seizures usually begin in childhood without being ac-
commodated by brain damage and are tolerated by drugs that
produce no brain dysfunction. In this study, cognitive function is
evaluated in children with mild epileptic seizures controlled with
common antiepileptic drugs. Under this prism, we propose a con-
cise technical framework of combining and validating both linear
and nonlinear methods to efficiently evaluate (in terms of syn-
chronization) neurophysiological activity during a visual cognitive
task consisting of fractal pattern observation. We investigate six
measures of quantifying synchronous oscillatory activity based on
different underlying assumptions. These measures include the co-
herence computed with the traditional formula and an alternative
evaluation of it that relies on autoregressive models, an information
theoretic measure known as minimum description length, a robust
phase coupling measure known as phase-locking value, a reliable
way of assessing generalized synchronization in state–space and an
unbiased alternative called synchronization likelihood. Assessment
is performed in three stages; initially, the nonlinear methods are
validated on coupled nonlinear oscillators under increasing noise
interference; second, surrogate data testing is performed to assess
the possible nonlinear channel interdependencies of the acquired
EEGs by comparing the synchronization indexes under the null
hypothesis of stationary, linear dynamics; and finally, synchro-
nization on the actual data is measured. The results on the actual
data suggest that there is a significant difference between normal
controls and epileptics, mostly apparent in occipital–parietal lobes
during fractal observation tests.
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I. INTRODUCTION

N EURONAL dynamics and synchronization phenomena
have been increasingly recognized to be important mech-

anisms by which specialized cortical and subcortical regions
integrate their activity to form distributed neuronal assemblies
that function in a cooperative manner [1]. Synchronous oscilla-
tions of certain types of such assemblies in different frequency
bands relate to different perceptual, motor, or cognitive states
and may be indicative of a wider range of cognitive functions
or brain pathologies [2], [3]. In general, low frequencies, like
the theta band (4–8 Hz), are believed to reveal the coupling be-
tween distant brain regions, whereas high frequencies, like the
gamma band (>40 Hz), are thought to be more important for
short-range interactions [4].

The traditionally formulated but still the most common way
of analyzing the functional coupling of cortical assemblies has
been the magnitude squared coherence (MSC) or simply co-
herence. MSC is a normalized measure of linear dependence
between two signals and is capable of identifying linear syn-
chrony on certain frequency bands [5], [6], but it is not able
to provide indications on the feedback that exists between the
analyzed systems. To evaluate the causality between EEG chan-
nels, we resort to the measures derived in [7] from the min-
imum description length (MDL) principle. Since all the mea-
sures mentioned earlier are linear, we extend our investigations
by also considering nonlinear measures. Phase synchronization
(PS) presents a different approach in analyzing the possible
nonlinear interdependencies of the EEG signal and focuses on
the phases of the signals. The idea of studying the phase re-
lationships of two neurophysiological signals is not new [8],
but later studies have shown that even if the amplitudes of two
coupled chaotic oscillators remain uncorrelated, their phases
may synchronize [9]. A robust phase coupling measure is the
phase-locking value (PLV) [10]. Finally, another group of syn-
chronization measures is based on the assumption that neu-
rons are highly nonlinear devices, which in some cases show
chaotic behavior [11]. Hence, the use of nonlinear measures
derived from studying chaotic dynamical systems may be of in-
terest in neurophysiology applications. Such measures belong to
the generalized synchronization (GS) concept and are based on
analyzing the interdependence between the amplitudes of the
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signals in a state–space reconstructed domain. In this study, we
use two variants of this idea, a robust synchronization (RS) mea-
sure proposed by [12], [13] and the synchronization likelihood
(SL) method [14].

In this paper, we employ the aforementioned concepts toward
investigating the capabilities of both linear and nonlinear mea-
sures in revealing the coupling between EEG channels in real
band-limited signals. We decided to study a real case scenario in
a group of children with mild types of seizures, either new onset
or controlled, since they do not show any differences through
clinical/psychological consideration, visual EEG inspection or
traditional spectral analysis. Hence, we address the question
of whether controlled-epileptic children exhibit synchroniza-
tion differences in their EEGs in comparison to an age-matched
control group during the performance of a control and a mental
task. Most discrepancies between the EEGs of epileptic subjects
as compared to controls have been studied in adults, and liter-
ature work that applies the traditional techniques for detecting
epilepsy in children is rather conflicting [15]–[17]. Neverthe-
less, it is quite important to develop methods for evaluating
the EEGs of children with some epileptic seizures in the past,
but without neuropsychological or school disturbances, so as to
assign an early course of treatment and reevaluation.

II. METHODS

A. Artificial Signals and Real Data Acquisition

To study the robustness of each of the proposed nonlinear
methods, we consider two artificially generated test signals by
classical coupled chaotic dynamical systems. The first model
uses two coupled Rössler oscillators, whereas the second uses
a Lorenz system nonlinearly driven by a Rössler oscillator with
such coupling coefficient that ensures GS [18], [19].

To study the real case clinical scenario, we analyzed a popula-
tion that initially consisted of 21 children with epileptic seizures
(common childhood epileptic seizures mainly “Rolandic type,”
idiopathic generalized seizures, focal secondary generalized
seizures without detectable brain damage and absence seizures).
These subjects were retrospectively selected from the pool
of Pediatric Neurology outpatient Clinics of two hospitals in
Heraklion, Crete, where they were diagnosed and regularly fol-
lowed. Their diagnosis was based on clinical and EEG criteria
of International League Against Epilepsy (ILAE). Six children
had their first seizure episode 1–30 days (mean: 12.5 days),
prior to their recruitment in the study. Sixteen children, previ-
ously diagnosed, entered the study, within 1–9 years (mean 4.2
years) after their seizure onset. All children were treated with
the appropriate antiepileptic medication (in small doses with-
out clinical side effects) and were well controlled. The control
group included 21 volunteers, matched with the patient group
for age, sex, area of residence, and parents’ education. Inclu-
sion criteria for patients and controls consisted of: 1) age of
9–13 years old, 2) normal intellectual potential [assessed with
Wechsler Intelligence Scale for Children (WISC-III)], 3) ab-
sence of neurological damage documented by neurological
evaluation for patients and controls and additionally by brain
computed tomography (CT) and/or MRI scan for patients and

parental interview for controls, and 4) absence of psychiatric
problems (based on parent’s interview). Two children were ex-
cluded from the final sample: one control and one epileptic child,
for noncooperativeness and suspicion of psychiatric problems
with brain damage, respectively. The final sample consisted of
20 children with seizures (11 girls, 9 boys) and 20 controls (11
girls, 9 boys). Patients and controls, all right handed, were indi-
vidually evaluated in the Clinical Neurophysiology Laboratory,
at the Medical School of the University of Crete. The parents
of children participating in this study signed a written consent
form, after having been informed about the study’s purpose and
the required procedures. The study was approved by the Local
Ethics Committee.

The EEG signals in both groups (controls and epileptics)
were recorded from 30 cap electrodes (FP1, FP2, F7, F3, FZ,
F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, CZ, C4, T4, TP7,
CP3, CPZ, CP4, TP8, P3, PZ, P4, P7, P8, O1, OZ, and O2),
according to the 10/20 international system, referred to linked
A1+A2 electrodes. The signals were amplified using a set of
Contact Precision Instrument amplifiers, filtered online with a
bandpass between 0.1 and 200 Hz, and digitized at 400 Hz. Off-
line, the recorded data were carefully reviewed for technical
and biogenic artifacts by our clinical neurophysiology expert,
so that only a single epoch of 10.24 s duration (4096 samples)
as a representative for each subject was investigated.

B. Test Description

Continuous EEGs were recorded in an electrically shielded
room, sound and light attenuated, while participants sat in a
reclined chair. We analyzed epochs at rest, i.e., while each in-
dividual had the eyes fixed on a small point on the computer
screen and during a visual cognitive task. The visual task in-
volves fractal observation, which is typically used for the study
of the psychology of perception [20]. This is because fractals
are abstract visual targets that permit elimination of the effect
of recognition and related side effects (like hidden associations
and confounded conditions), which are difficult to control in
the course of an experiment. Stimuli were presented on a liquid
crystal display (LCD) screen located in front of the participants.
Vertical and horizontal eye movements and blinks were moni-
tored through a bipolar montage from the supraorbital ridge and
the lateral canthus.

C. Magnitude Squared and Autoregressive (AR) Coherence
(AR-COH)

Consider two simultaneously measured discrete-time series
xn and yn , n = 1,. . .,N . The most commonly used linear syn-
chronization method is the cross-correlation function (Cxy ) de-
fined as

Cxy (τ) =
1

N − τ

N −τ∑
i=1

(
xi − x̄

σx

) (
yi+τ − ȳ

σy

)
(1)

where x̄ and σx denote mean and variance, while τ is the
time lag. MSC or simply coherence is the cross-spectral density
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function Sxy , which is simply derived via the fast Fourier trans-
form (FFT) of (1), normalized by their individual autospectral
density functions. However, due to finite size of neural data, one
is forced to estimate the true spectrum, known as periodogram,
using smoothing techniques (i.e., Welch’s method). Thus, MSC
is calculated as

γxy (f) =
|〈Sxy (f)〉|2

|〈Sxx(f)〉| |〈Syy (f)〉| (2)

where 〈·〉 indicates window averaging (a nonoverlapping
Hamming window of 1024 samples length is used). The es-
timated MSC for a given frequency f ranges between 0 (no
coupling) and 1 (maximum linear interdependence).

An alternative evaluation of the MSC, conventionally named
autoregressive (AR) coherence (AR-COH), involves a bivari-
ate AR process to model the analyzed times series [21]. For
n ∈ {1, . . . , N}, let zn = [xn yn ]T , with the convention that
T denotes transposition. We consider the p-order AR process
given by

∑p
r=0 Arzn−r = en , where A0 is the identity ma-

trix and the entries of all other Ar matrices are real valued. As
usual, we assume null initial conditions. The Gaussian noise en

is zero mean and for all integers k, E[eteT
t−k ] = δk,0Σ, where

E[·] denotes the expectation operator and δ·,· is the Kronecker
operator. Furthermore, the spectral matrix can be factored as[

Sxx(f) Sxy (f)
Syx(f) Syy (f)

]
= H(f)ΣH∗(f),

where H(f) = (
∑p

r=0 Arexp(−2πjrf))−1 with j =
√
−1,

and H∗(f) is the conjugate transpose of H(f) [21]. AR-COH
is computed with formula |Sxy (f)|2 / (Sxx(f)Syy (f)).

Given the measurements xN
1 = x1 , . . . , xN and yN

1 =
y1 , . . . , yN , we can resort to well-known algorithms for fit-
ting a bivariate AR model. The algorithm of Whittle–Wiggins–
Robinson (W2R) [22], [23] has the advantage that the sta-
bility of the estimated AR model is guaranteed. In our ex-
periments, we utilized the algorithms W2R and ARFIT [24],
[25]. As the AR-COH computed values were similar for the
two estimation methods, we report here only the results ob-
tained with W2R. The optimal model order was chosen from
the predefined set {1, . . . , 50} by applying the MDL criterion
p̂ = argmin [ln|Σp | + 4p(lnN/N)], where |Σp | is the deter-
minant of the covariance matrix for the vector of residuals.

Once the AR coefficients are estimated, not only AR-COH
can be easily computed, but also the feedback measures intro-
duced by Granger [26] and Geweke [27] can be evaluated with-
out difficulties [21]. The modest results obtained in [28] when
employing the Geweke approach discourage us to consider it
here.

D. An MDL Measure for Interchannel Coupling

The dependence between time series is recast to reflect the
predictability of each of the two time series from the other, and
the method can be applied for measuring the coupling between
band-limited signals [7]. We are interested in evaluating the
coupling between x̃N

1 and ỹN
1 , where x̃N

1 and ỹN
1 are obtained

after filtering xN
1 and yN

1 with a bandpass filter whose frequency

range is [ωinf , ωsup ]. The MDL principle claims the best model
to be the one that leads to the shortest possible code length for
the available measurements. Let the coded sample at instant t
be ỹt , 1 ≤ t ≤ N . Using the hypothesis that ỹN

1 = ỹ1 , . . . ỹN

must be transmitted from an encoder to a decoder, we apply the
following methodology based on the results from [7].

1) First Coding Scenario: For an arbitrary prediction or-
der k ≤ kmax , we compute the predicted value ŷt for ỹt based
on the past samples ỹt−1

1 :ŷt =
∑k

i=1 fi ỹt−i . Let εt = ỹt − ŷt

be the prediction error and E[ε2
t ] = ς2

k . The parameters fi

are chosen such as to minimize ς2
k , and after quantization,

they are sent to the decoder as side information. The pre-
diction errors εt , 1 ≤ t ≤ N , are also sent to the decoder
and the asymptotic expression of the code length for ỹN

1 is
(N/2) ln ς2

k + ((k + 1)/2) ln N . We select the prediction or-
der k∗ ∈ {0, . . . , kmax} so that the code length is minimized.
After dividing by N , the aforementioned expression becomes
L(ỹt |ỹt−1

1 ) = (1/2) ln ς2
k ∗ + ((k∗ + 1)/2)(ln N/N) [7].

2) Second Coding Scenario: Assuming the decoder has
complete knowledge on the past and the present of
x̃, the current value of ỹ can be predicted as ŷt =∑k ∗

i=1 gi ỹt−i +
∑	

i=0 hi x̃t−i , where 	 ∈ {0, . . . , k∗ − 1}. The
number of samples from the past of the ỹ and x̃ processes
used in the linear regression depends on k∗ that was deter-
mined in the previous step. For each possible value of 	, the
parameters gi and hi are estimated from the available mea-
surements such that to minimize the variance ς2

k ∗,	 of the
prediction errors. Then, the structure parameter 	∗ is chosen
to minimize the asymptotic code length. The expression of
the code length is given by L(ỹt |ỹt−1

1 , x̃t
1) = (1/2) ln ς2

k ∗,l∗ +
((k∗ + l∗ + 1)/2)(ln N/N) [7]. The savings in code length
of ỹN

1 due to the knowledge on x̃N
1 is a measure of de-

pendence between the two processes that it is grounded in
the MDL principle [7]. Based on this observation, we define
µx̃→ỹ = L(ỹt | ỹt−1

1 ) − L(ỹt | ỹt−1
1 , x̃t

1), and in the same way,
µỹ→x̃ = L(x̃t | x̃t−1

1 ) − L(x̃t | x̃t−1
1 , ỹt

1). We further define the
MDL coupling measure: µx̃,ỹ = (µx̃→ỹ + µỹ→x̃)/2.

Solving the estimation problem in the first coding scenario
is equivalent with estimating the coefficients of an AR model,
where we apply the Levinson–Durbin algorithm [29]. In our
implementation, the maximum prediction order depends on the
frequency band and takes values between 2 and 48. The second
coding scenario relies on estimating the coefficients of an ARX
model for which we employ the arx Matlab function.

E. Phase-Locking Value (PLV)

One of the mostly used PS measures is the PLV approach.
It assumes that two dynamic systems may have their phases
synchronized even if their amplitudes are zero correlated [30].
The PS is defined as the locking of the phases associated to each
signal, such as

|φx(t) − φy (t)| = const. (3)

In order to estimate the instantaneous phase of our signal,
we transform it using the Hilbert transform (HT), whereby the
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analytical signal H(t) is computed as

H (t) = x (t) + ix̃ (t) (4)

where x̃ (t) is the HT of x(t), defined as

x̃ (t) =
1
π

PV
∫ ∞

−∞

x(t′)
t − t′

dt′ (5)

where PV denotes the Gauchy principal value.
The analytical signal phase is defined as

φ (t) = arctan
x̃ (t)
x (t)

. (6)

Therefore, for the two signals x(t), y(t) of equal time length
with instantaneous phases φx(t), φy (t), respectively, the PLV
bivariate metric is defined as

PLV =

∣∣∣∣∣∣
1
N

N −1∑
j=0

ei(φX (j∆t)−φY (j∆t))

∣∣∣∣∣∣ (7)

where ∆t is the sampling period and N is the sample number
of each signal. PLV takes values within the [0,1] space, where
1 indicates perfect PS and 0 indicates lack of synchronization.

F. Robust State–Space GS Method (RS)

Alternatively, one may measure how neighborhoods (i.e.,
recurrences) in one attractor maps into the other. This idea
turned out to be the most robust and reliable way of assessing
the extent of GS [12], [13]. First, we reconstruct delay vec-
tors [31] out of our time series; xn = (xn , . . . , xn−(m−1)τ ) and
yn = (yn , . . . , yn−(m−1)τ ), where n = 1,. . ., N , and m, τ are
the embedding dimension and time lag, respectively. Let rn,j

and sn,j , j = 1,. . ., k, denote the time indices of the k nearest
neighbors of xn and yn , respectively. For each xn , the mean
squared Euclidean distance to its k neighbors is defined as

R(k)
n (X) =

1
k

k∑
j=1

(xn − xrn , j
)2 (8)

and the Y -conditioned squared mean Euclidean distance
R

(k)
n (X |Y ) is defined by replacing the nearest neighbors by

the equal time partners of the closest neighbors of yn .
If the set of reconstructed vectors (point cloud xn ) has an av-

erage squared radius R(X) = (1/N)
∑N

n=1 R
(N −1)
n (X), then

R
(k)
n (X |Y ) ≈ R

(k)
n (X) � R(X) if the systems are strongly

correlated, while R
(k)
n (X |Y ) ≈ R(X) � R

(k)
n (X) if they are

independent. Hence, an interdependence measure is defined
as [12]

S(k)(X |Y ) =
1
N

N∑
n=1

R
(k)
n (X)

R
(k)
n (X |Y )

. (9)

Since R
(k)
n (X |Y ) � R

(k)
n (X) by construction, it is clear that

S ranges between 0 (indicating independence) and 1 (indicat-
ing maximum synchronization). Another normalized and more
robust version of S maybe defined as in [13] and is the one

actually used in this study:

N (k)(X |Y ) =
1
N

N∑
n=1

Rn (X) − R
(k)
n (X |Y )

Rn (X)
. (10)

In the present study, RS was computed with the following
parameter settings: τ = 20; m = 10; w1 = 200 samples (Theiler
correction for autocorrelation effects [32]); k = 10.

G. Synchronization Likelihood (SL)

Finally, the last measure (SL) used is an unbiased normalized
synchronization estimator closely related to the previous idea,
which represents a normalized version of mutual information
[14]. Supposing that xn , xv and yn , yv be the time delay vectors,
SL actually expresses the chance that if the distance between xn

and xv is very small, the distance between the corresponding
vectors yn and yv in the state–space will also be very small.
For this, we need a small critical distance εx , such that when
the distance between xn and xv is smaller than εx , x will be
considered to be in the same state at times n and v. The term
εx is chosen such that the likelihood of two randomly chosen
vectors from x (or y) will be closer than εx (or εy ) equals a
small fixed number pref . The term pref is the same for x and y,
but εx need not be equal to εy . Now, SL between x and y at time
n is defined as follows:

SLn =
1
N ′

N∑
v=1

w 1 < |n−v |<w 2

θ(εy,n−‖yn−yv‖)θ(εx,n−‖xn−xv‖).

(11)

Here, N ′ = 2(w2 − w1 − 1)pref , ‖·‖is the Euclidean distance,
and θ is the Heaviside step function, θ(x) = 0 if x ≤ 0 and
θ(x) = 1 otherwise. The window of size w1 implements the
Theiler correction for autocorrelation effects and that of size w2
is a window that sharpens the time resolution of the synchroniza-
tion measure; window sizes are chosen such that w1 � w2 � N
[32]. When no synchronization exists between x and y, SLn

is equal to the likelihood that random vectors yn and yv are
closer than εy ; thus, SLn = pref . In the case of complete syn-
chronization, SLn = 1. Intermediate coupling is reflected by
pref < SLn < 1. Finally, SL is defined as the time average of
the SLn values. In the present study, SL was computed with
the following parameter settings: τ = 20; m = 10; w1 = 200
samples; w2 = 500 samples; pref = 0.05.

III. RESULTS

A. Testing the Nonlinear Methods Using Artificially Generated
Data by Chaotic Oscillators Under Variable Noise

To check both the ability and robustness of the nonlinear
techniques used to successfully detect nonlinear interdepen-
dencies under additive noise, we consider two classical cou-
pled chaotic dynamical systems. The first model uses two cou-
pled Rössler oscillators [18], configured to have PS, whereas
the second uses a Lorenz system [19] nonlinearly driven by
a Rössler oscillator with coupling coefficient that ensures GS.
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Fig. 1. SIs applied on two coupled Rössler oscillators, configured to have PS.

Fig. 2. SIs applied on a Lorenz system nonlinearly driven by a Rössler oscil-
lator. The coupling coefficient used is set for general synchronization.

The synchronization indexes (SIs) versus additive noise SNRs
are plotted in Figs. 1 and 2. In the first case (see Fig. 1), PLV
obviously performs better, since it is itself a PS capturing mea-
sure. SL underestimates the true synchronization, whereas RS
totally fails, since it is a purely GS measure. In the same way,
PLV fails in the second case (see Fig. 2), whereas SL and RS
are performing much better as GS capturing measures. More
specifically, RS is found to be more robust than SL (the de-
tected RS SI varies less than the SL case) when additive noise is
introduced.

B. Nonlinear Coupling Detection Ability: Testing
Using Surrogates

To demonstrate the existence of nonlinear structures and jus-
tify the use of nonlinear tools in the analysis of the real EEG
signals under investigation, bivariate surrogate data testing was

TABLE I
SYNCHRONIZATION Z-SCORES IN NORMAL SUBJECTS (ORIGINAL VERSUS

SURROGATE DATASETS)

used [33]. The surrogating procedure preserves both the auto-
correlation of the signals and their linear cross-correlation, but
destroys the nonlinear individual structure of the signals as well
as their nonlinear interdependence, if any [34]. More specifi-
cally, we consider 30 surrogate time series pairs that maintain
their linear cross-correlation as well as their linear autocorre-
lation up to a time lag and are otherwise random. Next, the
null hypothesis (H0) that the original data only reflects linear
interdependencies is tested. To test H0 , the outcome of a non-
linear synchronization measure applied to the original (actual)
data is compared to the outcomes of the measure applied to the
30 surrogate bivariate time series. This hypothesis is tested by
computing the Z-score value, which expresses the number of
standard deviations (SDs) each SI is away from the mean SIs of
the surrogate data.

Z =
(SI − SIsurrogates)

SDsurrogates

(12)

If Z > 1.96 (one-sided test), then H0 is rejected at the 95%
level of confidence, implying that the value of the original and
the mean of the set of surrogate time series is significantly
different. The results of surrogate data testing using PLV and
RS are calculated for all 20 controls (see Table I) and epileptic
(see Table II) children, during the fractal observation test. The
median, minimum, and maximum Z-score values are tabulated
for selected channel pairs focusing on brain regions that cover
different functional lobes of the working brain in gamma2 band
(40–90 Hz). SL was not included since the findings were similar
to those of RS (both are representatives of the GS case), and the
latter was found to be more robust under additive noise as shown
in the previous section.

In all lobes tested using the PLV method, the Z-scores range
from lower to higher values than 1.96. Consequently, there
is statistical evidence in a subgroup of subjects that the in-
terdependence cannot be fully described by a linear stochas-
tic model. Comparable results were obtained with the RS in-
dex as well. At the same time, there are also cases where the
Z-score is less than the critical value of 1.96, meaning that there
are strong linear interdependencies in the actual datasets. In the
160 (20 subjects, 8 lobes) epochs tabulated, nonlinearity was
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TABLE II
SYNCHRONIZATION Z-SCORES IN EPILEPTIC SUBJECTS (ORIGINAL VERSUS

SURROGATE DATASETS)

found in 26.25% and in 41.88% of the epochs listed in Table I
using the PLV and the RS method, respectively. Similarly, in
Table II, nonlinearity was found in 17.5% and in 25.63% of the
epochs listed, using the PLV and the RS method, respectively.
To maintain an experiment-wise α level of 0.05, the signifi-
cance of the individual tests has to be Bonferroni corrected:
P = (0.05/160) = 0.0003125. This corresponds with a Z-score
larger than 3.42. With this Bonferroni correction, nonlinear-
ity was found in 3.13% and in 10% of the epochs listed in
Table I, using the PLV and the RS method, respectively. In
Table II, nonlinearity was found in 1.88% and in 4.38% of the
epochs listed, using the PLV and the RS method, respectively.
Hence, one should use both linear and nonlinear measures. Such
testing was performed only on the nonlinear synchronization
measures, since linear measures are not expected to differenti-
ate their values from the actual signal to the linear surrogates
[28].

C. Actual EEG Data

Testing using surrogates suggested that real data should be
analyzed using both linear and nonlinear methods. Hence, PLV
and RS measures are performed on both “normal” and “mild-
epileptic” band-filtered data (using a fourth degree zero-phase
Butterworth filter). Averages over all possible channel couplings
in each brain lobe and band are calculated (see Table III). Only
those methods and the related bands/lobes that achieved sig-
nificant differentiation using ANOVA (p = 0.05) statistics are
tabulated. The terms θ, α1 , α2 , β, γ1 , and γ2 denote theta
(4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta (13–
30 Hz), gamma1 (30–40 Hz), and gamma2 (40–90 Hz) bands,
respectively. The identified lobes are: OPR (O2-P4, O2-P8, P4-
P8), OPL (O1-P3, O1-P7, P7-P3), CPL (C3-CP3, CP3-P3, P3-
P7), TL (FT7-T3, T3-TP7, FT7-TP7), and FL (FP1-F7, FP1-F3,
F7-F3), while N > E denotes that synchronization in normal
controls is greater than in epileptics in the specified band and
brain region. In Table III, p-values along with mean and SDs of
each SI of each group is tabulated.

The nonlinear methods (PLV and RS) do not identify any syn-
chronization differences under the control task. During fractals

TABLE III
ACTUAL EEG DATA: LOBE-BAND SELECTION

observation, PLV and RS consistently identified differences in
both OPL and OPR for the gamma2 band. Similar differences
were indicated by the MDL method but with a high variance
within each population, rendering its results less confident. MSC
was able to spot a weak coupling in a1-OPL (p > 0.04) dur-
ing the control task. AR-COH did identify the same region
with increased significance, but in the neighboring α2 band. In
addition, AR-COH appears to be a more sensitive coherence
method able to identify OPL and OPR differences during the
visual task, even though at lower frequencies than their non-
linear counterparts. Probably, both sets of techniques identified
parts of a broader activation pattern in OPL and OPR (both
linear and nonlinear), but this should require more extensive
validation.

To visualize the network topology of the results, graphs (see
Fig. 3) were used to depict the average RS synchronization
interdependences over all 20 subjects in each group. Each edge
indicates the presence of strong interdependence (higher than
a preselected threshold) between all possible pairs of channels.
The threshold was kept constant for the visualization purposes
of both the normal and epileptic groups. The “control” graph
[see Fig. 3(a)] appears to exhibit a denser network compared to
the “epileptic” one [see Fig. 3(b)]. Similar graph topology was
achieved in the case of PLV as well.

IV. DISCUSSION

The PLV method applied on phase-synchronized oscillators
obviously was the measure that performed better (see Fig. 1).
SL and RS estimators were also able to identify the coupling,
but underestimated it. However, on the second paradigm using
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Fig. 3. Network of normal (left graph) (during the fractal observation task
and fixed selected threshold) appears to have more interconnections (denser
network) compared to the “epileptic” one (right graph). These disturbances
are more prominent for the connections of the parieto–occipital lobes. Note that
both graphs depict the averaged RS synchronization interdependences (gamma2
band) over all 20 subjects in each group.

the generally synchronized oscillators, all methods were able to
perform well, except the PLV as expected, since the oscillator
was optimized for GS (see Fig. 2). The different responses of
SL and RS are due to normalization factors and do not imply
that one outperforms the other. As a conclusion in a real case
scenario, one should use both a PS measure (i.e., PLV) and one
of the proposed GS measures (preferably RS), as well as lin-
ear tools since their underlined assumptions are different. The
testing using surrogate datasets also testifies strong statistical
evidence that the interdependence in the real EEG data can be
partially described by a linear model. But at the same time, there
also exists PS and GS nonlinear coupling. The fact that both the
nonlinear methods (PLV and RS) were able to discriminate the
actual EEG from the surrogates (linear representations) leads to
the conclusion that the actual EEG data do contain significant
nonlinear synchronization couplings. The results (see Table III)
indicate that the PLV and RS methods accentuate gamma2 reac-
tivity on the occipital brain lobes during the fractal simulation
test. These findings may also be visualized and validated using
graph topological plots (see Fig. 3). Apparently, in the case of
epilepsy, significantly fewer edges are driven from the occip-
ital and parietal channels (O1, O2, P3, P7, P4, P8) compared
to the control case. Linear synchronization estimators accentu-
ate reactivity in lower frequency bands, and they also support
activations around the occipital regions. In all methods, the indi-
cated differences during the fractal observation task are located
in the regions of cortex responsible for vision (occipital), where
visual stimuli are perceived. This reactivity is always lower in
epileptic children indicating the ability of such methods to eval-
uate cortical dysfunction. This effect is unlikely to be attributed
to drugs, since they are only administered at low dosages. Fur-
thermore, if the presence of drugs was dominating, one would
expect a rather diffused activation pattern across most of the
brain lobes, especially in slower frequency bands, which was
not observed.

Numerous studies have observed an increase in induced
gamma band energy with increases in covert selective atten-
tion and visual perception [35]. Fractal observation involves
both processing in the first cortical region (V1) and processing at

higher levels, when each participant perceives primitive features
(i.e., oriented contrast gradients) and even more complex pat-
terns by combining inputs from lower levels, respectively [36].
Such an information flow has been extensively studied in the
literature and is referred as bottom-up (B-U) binding [35], [37].
At the same time, a top-down (T-D) flow of information is also
evident in gamma band, the function of which is less clear [35].
Anatomical studies have demonstrated the existence of massive
connections from higher level areas, back to lower level areas
and are believed to strongly affect neuronal function [38] and
provide a way for high-level information to affect perception.
The T-D flow is mostly related to attention processes, while
each participant is setting context (knowing what to expect).
The match between B-U and T-D information is also believed
to be reflected in gamma-band activity [39].

V. CONCLUSION

Human response to the visual qualities of fractal images
constitutes a novel test bed for visual perception studies. Such
complex targets, also present in natural environments, together
with advanced linear/nonlinear synchronization methodologies
may be of future clinical use in evaluating cortical dysfunctions
in cases where classical EEG evaluation methods fail. The use
of bivariate surrogate data allows us to check that the actual
interdependencies among lobe activations are not only linear
but also nonlinear. In such case, nonlinear methods complete
the whole picture as they allow the analysis of complex cortical
interactions from different perspectives and complement the
information provided by traditional linear tools. The results
presented indicate a significant synchronization difference
between normal controls and epileptics, mostly apparent in
occipital–parietal lobes, during fractal observation tests. Non-
linear methods identified this difference in the higher frequency
band of gamma2, whereas the linear ones identified the same
regions but shifted toward lower frequencies. Additional valida-
tion of such results may support the presence of such a marker
of cortical dysfunction in identifying mild epileptic cases. This
would probably require a combination of methods in order to
encapsulate both linear and nonlinear interdependencies.
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