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Approach to Composite Hypothesis Testing With

Applications to the Classical Linear Model
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Abstract—The newest approach to composite hypothesis testing
proposed by Rissanen relies on the concept of optimally distinguish-
able distributions (ODD). The method is promising, but so far it has
only been applied to a few simple examples. We derive the ODD de-
tector for the classical linear model. In this framework, we provide
answers to the following problems that have not been previously in-
vestigated in the literature: i) the relationship between ODD and the
widely used Generalized Likelihood Ratio Test (GLRT); ii) the con-
nection between ODD and the information theoretic criteria applied
in model selection. We point out the strengths and the weaknesses
of the ODD method in detecting subspace signals in broadband
noise. Effects of the subspace interference are also evaluated.

Index Terms—Generalized likelihood ratio test, information
theoretic criteria, linear model, minimum description length,
optimally distinguishable distributions.

I. INTRODUCTION AND PRELIMINARIES

T HE most recent developments in methods of inference
based on the minimum description length (MDL) prin-

ciple [1], [2] emerge from a happy union between algorithmic
complexity theory (ACT) [3] and coding theory. Because the
central notions from ACT, namely Kolmogorov complexity
(KC), universal distribution and the Kolmogorov structure
function (KSF) are noncomputable, their use in practical
applications poses troubles. To circumvent such difficulties,
Rissanen extends all the notions from ACT to statistical models
by replacing the set of programs with classes of parametric
models , where is
the vector of observations and is a bounded closed subset
of [1]. The symbol is used for transposition. With the
understanding that each model class is a likelihood function,
the role of the universal model is played by the normalized
maximum likelihood (NML) density function [4]
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where denotes the maximum likelihood (ML) estimate.
Whenever it is clear from the context which measurements are
used for estimation, the simpler notation will be preferred to

. Our interest is confined to models for which can
be factored as [4]

(2)

where is the marginal density of . The conditional den-
sity does not depend on the unknown parameter vector

. Furthermore, KC is replaced by stochastic complexity (SC),
whose expression is given by .

The definition of the KSF involves a partition of the param-
eter space into rectangles such that the Kullback–Leibler (KL)
divergence between any two adjacent models is constant [1]. For
the detection problems discussed in this study, the partition of

associated with the KSF is significantly more important than
the expression of the KSF itself. This motivates us to empha-
size the main steps of the construction as they are outlined in
[1]. Let be the Fisher informa-

tion matrix (FIM), and . The limit is
finite for most of the models in signal processing, but not for all
of them; for example, the limit is not finite in the case of a si-
nusoidal regression model with unknown frequency [5]. In the
following derivations, we prefer to use , with the supple-
mentary assumption that none of its singular points are included
in . For an arbitrary , consider the hyper-ellipsoid

(3)

where is a parameter whose optimal value we will find next.
We take the largest rectangle within this hyper-ellipsoid, and
then we continue defining a complete set of disjoint rect-
angles whose union is the entire parameter space . The pro-
cedure is complicated if the entries of depend on [1].
In [6], it is described how the partition can be obtained in the
general case (see also [2, Ch. 10]). For the problem addressed
in this study, is the same for all , which simplifies sig-
nificantly the construction of the partition, as we will see in the
following sections. Remark that decreases when grows
from zero to a value where a single rectangle covers the entire
parameter space [7]. With the conventions from [1], we let

denote the th rectangle within this set, and we denote
its center as . For all , the probability
density is defined by

otherwise
(4)
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with

(5)

(6)

The calculations above used (2) together with the fact that the
inner integral in (5) gives unity [1].

The key point is that the distributions in (4) are perfectly dis-
tinguishable. The idea of distinguishability is borrowed from
[8]: whenever is located close to a point in the parameter
space, it is difficult to decide if the measurements are out-
comes of the model or . By contrast, when the
distance between and is large, it is easy to make a decision
based on the sample , and consequently and
are deemed to be distinguishable. Relying on this property, Bal-
asubramanian [8] collapses all the models whose parameters are
within the hyper-ellipsoid (3) to a single probability distribution
that it is conventionally assigned to . Note that the hyper-ellip-
soid in (3) shrinks when the sample size increases. Because
it is not possible to construct a partition of with hyper-ellip-
soids, Rissanen uses the largest rectangle within the hyper-el-
lipsoid (3) instead, as already explained above. Then, the prob-
ability distribution is assigned to the center of the th
rectangle, or equivalently, to the th equivalence class.

Note that and are distinguishable for
because their supports are disjoint. In [1], [9], it is shown that

, , are optimally distinguish-
able distributions (ODD). The proof is technical and involves a
carefully defined index of separation. Additionally, is
almost constant for all the estimates within . Since
the probability distributions in (4) have desirable properties, we
want to minimize the KL divergence
between the “artificial” model and the “natural” model

for all . If the Central Limit The-
orem holds, then there exists a unique that minimizes the KL
divergence, and asymptotically, [1]. Moreover, Rissanen
shows that the number of distinguishable distributions obtained
when agrees with the number of distinguishable distri-
butions given in [8].

These findings can be applied almost straightforwardly to
composite hypothesis testing, defining a totally new framework
for this problem. We briefly explain the ODD test between the
hypotheses specified by

For partitioning the parameter space in this case, we first demar-
cate the rectangle centered at the point denoted ,

then fix the centers of its neighbors, and finally continue the
construction until the complete set of rectangles is settled. The
ODD criterion selects the model class whenever

, where is the ML estimate for the model class
[1].

Remark that it is not necessary to resort to the maximiza-
tion of the probability of detection for a given probability
of false alarm , as in traditional Neyman-Pearson (NP)
methodology [10]. However, the performance of the ODD pro-
cedure can be assessed by calculating indexes
and for [1], [9]. For an arbitrary pair ,

denotes the probability mass of induced by the

model . is intended as a confidence measure for
being wrong in accepting the null hypothesis. Similarly, is
a confidence measure for being wrong in rejecting the null hy-
pothesis. is interpreted by Rissanen as something very dif-
ferent from , even if is equal to by definition. The
probabilistic interpretation of and is difficult, and the in-
terested reader can find more details in [1], [9]. Here, we take

and to be confidence measures.
ODD testing is promising, but so far it has only been applied

in the following examples [1], [7], [9]: (i) for the model class
, the observed random variable is Gaussian with mean 0

and variance 1, whereas for , is Gaussian with nonzero
mean and nonunitary variance; (ii) is Bernoulli dis-
tributed for both and , and under the null hypothesis,

with probability . The relation between and
when the parameter space partition is constructed with has not
been previously investigated. In this study, we provide answers
to unsolved problems connected with ODD testing by consid-
ering the linear model (LM), which has many applications in
signal processing [10].

The rest of this paper is focused on the detection of a deter-
ministic signal with unknown linear parameters in zero-mean
Gaussian noise. More precisely, the signal obeys the linear sub-
space model , where is a full-rank
matrix and is the vector of the unknown parameters.
The detection problem reduces to deciding if the measurements

are outcomes from or from
[10], where and denotes the

multivariate Gaussian distribution with mean and
covariance matrix . We adopt the convention that
is a null vector/matrix of appropriate dimension. Similarly, is
employed for the identity matrix with appropriate dimension.

Section II derives the ODD detector and evaluates its perfor-
mance when both the matrix and the noise variance are
known. The most important result within Section II is Theorem
II.1, which was included without a proof in [11]. Here, we give a
rigorous proof of the theorem, and we extend it to colored noise
with known covariance matrix. Additionally, we investigate the
connection between ODD and model selection, which was not
treated in [11].

The analysis continues in Section III by decomposing
[12], where the first component bears informa-

tion on the signal and the second one models interference. The
signal component lies in , the subspace spanned by the
columns of , whereas the interference lies in . Assuming
that and are known, and the subspaces and
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are linearly independent, we elaborate on the ODD rule to test
versus . We

note that the results within Section III were not published in the
conference paper [11].

II. SUBSPACE SIGNAL IN GAUSSIAN NOISE OF KNOWN LEVEL

A. Main Results

The definitions from the previous section lead to the fol-
lowing theorem. For writing the equations within the theorem
more compactly, we notate the Gaussian right-tail probability as

for an arbitrary
[10]. We also use the notation for the largest integer less
than or equal to the real-valued argument .

Theorem II.1: For the data sequence ,
we consider the Gaussian density function with zero mean and
known variance ,

(7)

where is a known matrix of rank , is the
vector of parameters , and denotes the Euclidean
norm. For ODD testing between the hypotheses specified by the
model classes

we have the following results.
a) For , is a convex function

that attains its minimum for
.

b) After observing , select if

(8)

where ,
with the convention that are the eigenvalues of
the matrix , and are the corresponding
eigenvectors.

c) When condition (8) is satisfied,

(9)

Otherwise,

(10)

where .
The proof is deferred to Appendix A.

B. Discussion

Theorem II.1 and its proof can be easier understood via Fig. 1,
which depicts the particular case . The ODD detector se-
lects whenever . For testing the condition,

we calculate the coordinates of in the cartesian system deter-
mined by the principal axes of the hyper-ellipsoid. Then we de-
cide if there exists such that the magnitude
of the th coordinate is larger than one half of the th side length
of the rectangle . Fig. 1 illustrates the situation when

, but lies in the interior of the hyper-ellipsoid

Fig. 1. The ellipse �������� � � �������� � � ���� and the rectangle � ���

when � � �. Note that ��� � � and �� � �.

. Like in Appendix A, we have
, and is taken to be constant in the parameter space.
An equivalent form of the condition in (8) is obtained via the

singular value decomposition (SVD) of the matrix . Let

(11)

where is the matrix formed by the eigenvec-
tors of that correspond to nonzero eigenvalues. With the
notations from Appendix A, we have , and

is the diagonal matrix whose nonzero entries are .
Simple calculations lead to the identity for all

.
Theorem II.1 can be extended to the case of zero-mean

Gaussian noise with known covariance matrix that it is not
necessarily diagonal. If is nonsingular, then its inverse can
be factored as , where is an invertible matrix
[13]. Detection in colored noise reduces to replacing, in the
results above, with , with and with one. When

is singular, the problem can be also solved by discarding the
entries of that are linearly dependent on the retained entries
(see the discussion in [14]).

C. ODD and Other Detectors

To gain more insight, we relate the ODD criterion (8) with
the widely used Generalized Likelihood Ratio Test (GLRT). As-
suming the hypotheses from Theorem II.1, the GLRT as well as

the Rao and Wald test decide if , where
is the ML estimate of for the model class , and the

threshold is selected based on the desired [10]. Since it

is easy to confirm that , we have:
Proposition II.1:
a) For , the ODD detector is equivalent to the GLRT

with .
b) For , there is no such that the ODD detector

is equivalent to the GLRT. Supplementarily, GLRT with
will select whenever ODD detector selects

.

D. ODD and Model Selection

We now relate the ODD detector with information theoretic
criteria (ITC) applied in model selection. For ease of presen-
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tation, we consider only the particular case when the matrix
is diagonal. Model structure estimation is equivalent to

finding a subset of the variables that minimize the
ITC. With the notations used in the Theorem II.1 and its proof,
the most popular selection rules can be written in the general
form [15]–[17]

where is a fixed threshold. For example, for the Akaike
Information criterion (AIC) [18], and for the Bayesian
information criterion (BIC) [19]. It is evident that the minimum
condition for the ITC will retain only the indexes for which

. In terms of Theorem II.1, this is equivalent to
selecting the model class whenever ,
which shows clearly the connection between the ODD detector
and the ITC. Remark that the ODD detector is more similar to
AIC than to BIC, in the sense that does not depend on the
sample size . This is surprising because ODD was derived
from the MDL principle, and a two-part code criterion equiva-
lent to BIC was also obtained by resorting to the same principle
[20], whereas AIC has different grounds [18]. The interested
reader can find more details on the relationship between ITC
and the GLRT in [21] and [22].

E. Confidence Indexes , and the Probabilities ,

It is customary to asses the performance of a detector by eval-
uating and . For the decision rule (8), we get:

(12)

where and for the
model class . Notice the major difference between evalu-
ating performance in terms of and instead of and

. The calculation of assumes that data was generated by
with a particular parameter vector . Such an assumption is

not necessary when computing and because they depend
only on the ML estimate . More precisely, if ,
then and depend on the equivalence class defined by the
rectangle . Therefore, for each rectangle we have a dif-
ferent confidence index whose value is calculated with the
formula when falls into , and with the formula for
all other rectangles.

For illustration, Fig. 2 considers the LM with param-
eters. We draw, in the plane, the squares obtained from
the original rectangles within the plane after applying
the rotation and the scaling required by the condition in (8).
Thus, there exists a bijection from the original to the

Fig. 2. Linear model with � � � parameters: values of �� (central square)
and �� (all other squares). The edge length of each square is �

�
�.

central square in Fig. 2, where the value of , the confidence
measure for being wrong in accepting when
is written. Note that approaches 1 when , the number of
parameters, is large. Similar bijections also exist for the squares
around the central one and for which we indicate the value of

. Observe that the greater the distance is from the center of
the square to the null hypothesis, the smaller is; hence, the
confidence in rejecting is greater. We mention that is
smaller than for all the squares that are situated far away
from the null hypothesis, which are not drawn in Fig. 2.

For comparison with the performance of the GLRT, we extend
the results of Theorem II.1 by replacing (8) with the modified
ODD condition

(13)

and is chosen such that takes a predefined value. More
precisely

(14)

We readily obtain

(15)

where the are the same as in (12) for all .

F. Example: Sinusoidal Detection

One constraint in using the ODD criterion is that the FIM
must be nonsingular for the parameters that correspond to the
null hypothesis. The condition is not satisfied in sinusoidal de-
tection if the value of the frequency is not known a priori. This
difficulty was also noticed in connection with the Rao detector
[10]. A solution for such cases is the detection method based on
the NML of the competing models [23].

Here we consider

...
...
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Fig. 3. Performance for sinusoidal detection: GLRT (solid line), best results of
ODD (dashed line), worst results of ODD (dashed–dotted line).

where the frequency is known, and we use the asymp-
totic approximation [10]. For the model class

, we have . For , the parameters are
and , with the convention that is the un-
known amplitude and is the unknown phase. With
the notation from (15), and ,
where is the signal energy-to-noise ratio (ENR)
[10]. For a given , the of the ODD detector depends on
both and . To clarify the dependence on , we remark that
for fixed and , is maximized when
and it is minimized when . In other words,

is maximized when either or , and it is min-
imized when ENR is equally “distributed” between and .
For better understanding this result, we relate it to Theorem II.1,
where the ODD test amounts to comparing both and
with the threshold . Hence, the decision does not depend, as
in GLRT case, only on the estimated ENR given by ;
it also depends on how the energy of the signal is “distributed”
between and .

Fig. 3 plots the maximum and the minimum of the com-
puted for the ODD criterion when is chosen to be optimal,
namely as in Theorem II.1 (a). In this case, we have

, and this is used to compute the of the GLRT
detector for various ENR values. The evaluation of the GLRT
performance relies on the results from [10]; we emphasize that
the of the GLRT is independent of . For , Fig. 3
shows that has a marginal influence on the of ODD, and
the ODD and the GLRT detectors perform similarly. The main
drawback is that the has a value that may be considered too
large in most of practical applications. To investigate the cases
with lower , we apply (14), which leads to when

and when . For both cases,
we plot the performance of the ODD and the GLRT in Fig. 3.
Note that has an important influence on of ODD, and this
makes the maximum of the ODD superior to the GLRT, but
the minimum of the ODD is clearly inferior to GLRT.

The results can be better understood by noting that the KL
divergence between the “artificial” and the “natural” models in
the ODD settings is about 0.35 for the optimum , but

Fig. 4. Sinusoidal detection: For each � , the parameter � is computed with
formula (14), and the edge length �� ���� of the central square within the
�� � � � plane is plotted; see the modified detection condition (13). For each
� , the KL divergence between the “artificial model” (4) assigned to� ���
and the “natural” model (7) evaluated under the null hypothesis is also plotted.
The star symbol marks the points that correspond to the optimum �� � � given by
Theorem II.1 (a). The circles indicate the two cases, � � �� and � �
�� , that are compared with the optimal ODD criterion in Fig. 3.

it becomes as large as 3.13 and 6.97 for the values of that
correspond to and , respectively. It
is evident that the constraints on are not in agreement with
the ODD methodology; Fig. 4 shows that the central rectangle

must be enlarged by increasing the value of to ensure
a small . This makes the “artificial” model a poor
approximation of the “natural” model . In contrast, the
ODD strategy selects such that is the best
possible approximation of in the KL sense, which leads
to a slightly large .

III. SUBSPACE SIGNAL IN SUBSPACE INTERFERENCE AND

GAUSSIAN NOISE

A. Main Results

We assume the measurements to be distributed
according to (7), and we write the vector of parameters as

where and . Moreover, and
. To simplify the calculations, we partition the full-rank

matrix into two blocks:

contains the first columns of , and is formed by the
rest of the columns. Next we define

(16)

with the convention that
is the orthogonal projection onto the linear subspace , and
the symbol is used for the Moore-Penrose pseudoinverse. The
range of is , the orthogonal complement
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of . More details on the geometry of the linear transforma-
tions involved can be found in [12], [14]. The matrix
is positive definite [17]. The subspaces and are lin-
early independent, but they are not constrained to be orthogonal.
Proposition III.1 below shows how the ODD methodology can
be applied to detect the signal that lies in the subspace
when the interference lies in the subspace and the addi-
tive noise is Gaussian with known variance.

Proposition III.1: For the data sequence
, consider the Gaussian density

function (7) with zero mean and known variance . Addition-
ally, is a known matrix of rank . The results
on the ODD testing between the hypotheses specified by the
model classes

are obtained by replacing by and by in the
Theorem II.1.

In the above proposition, is a bounded closed subset of
. See Appendix B for the proof.

B. Discussion

For the detection problem in Proposition III.1, it was shown
in [12] that the GLRT remains unchanged when the vector of
measurements is transformed to , where

and is an arbitrary vector from

. Here is an matrix whose columns form
an orthonormal basis for , is an arbitrary or-
thogonal matrix, and is the orthogonal projection onto

. To better understand the effect of the transformation de-
fined above, consider the decomposition , where

and . It is clear that rotates the
component around , retains the component , and
adds the bias component in [12]. The invariance prop-
erty of the GLRT can be easily verified using the formula in (41)
from Appendix B. In the detection literature [12], such a prop-
erty is considered desirable because it makes all the signals of
constant energy in “equally detectable,” and it also makes
the detector invariant to the components of the signal that are
orthogonal to .

Our concern is the influence of the transformation
on the ODD decision. Like in (11), we consider the SVD

, where is the matrix
formed by the eigenvectors of that correspond
to nonzero eigenvalues, is a diagonal ma-
trix, and satisfies . We take

, and we define the vectors

and .
Based on the original data vector , the ODD detector selects

whenever , where denotes the
maximum magnitude for the entries of the vector in the argu-
ment. Similarly, for the transformed data vector , the ODD
detector selects whenever . In gen-
eral, does not imply .

This can be easily verified for the following simple example:

and . We conclude that

the ODD detector is not invariant to -transformations like the
GLRT.

C. More on the Relation Between Theorem II.1 and
Proposition III.1

Let us consider the SVD

(17)

where the matrix has orthonormal columns,
, and . As usual, is a di-

agonal matrix and satisfies . After ap-
plying the transformation

(18)

the decision as to whether the measurements are outcomes
from or from reduces to
the decision as to whether are outcomes from
or from , with the convention that

(19)

Therefore, Theorem II.1 can be applied after replacing the triplet
by , and the model class is selected

whenever , where

are the eigenvalues of and are the
corresponding eigenvectors. Because

(20)

we have from (16) and (19). Conse-

quently, and

, which shows the equivalence between
the detection strategy in Proposition III.1 and the approach
based on the transformation in (18). The key observation in
(18) is that nulls everything in the interference subspace

, while the distribution of the noise remains unmodified.
The price to be paid is a degradation of that is transformed
to .

We quantify the effects of this degradation via the ENR, cal-
culated as . Con-
ventionally, we denote as the ENR
in the absence of interference. The ENR reduction is analyzed
below in connection with how close the signal and the interfer-
ence subspaces are. For a rigorous measure of “closeness”, we
employ the definition of the principle angles [24], [25] between
the subspaces and . Because the definition involves
the SVD of both and , similar to (17), we write

(21)

where , , , and
. The matrix has orthonormal columns,

the diagonal matrix is invertible, and . Let
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be the singular values of the matrix ,
where . Then , ,
are the principle angles between and [24], [25]. Be-
cause we assume that and are disjoint, we have

; hence, .
In the corollary below, we take to be arbitrary from

, because the ODD methodology does not need any prior
knowledge on the parameter vector. We prove that removing the
interference by the transformation in (18) decreases the ENR,
except in the case when . Moreover, it is nat-
ural to expect that the impact on the ENR is more important
when the subspace is closer to . To clarify this as-
pect, Corollary III.1 gives necessary and sufficient conditions
for the dependence between the ENR reduction and the geom-
etry of the two subspaces. The result appears to be novel, and
we formalize it as follows.

Corollary III.1:
a) For , like in Proposition III.1 and ,

we have

(22)

with equality if and only if .
b) Let and , ,

such that the matrices and

are full-rank, where . For , the
principle angles between the subspaces and
are . We have:

b1) If the inequality

(23)

holds for all , then

.

b2) If , then the inequality in (23) is verified
for all .

The proof is deferred to Appendix C.

D. Example: Detection in Sinusoidal Interference

We assume that the amplitude and the phase of the interfer-
ence are unknown, but the frequency is known [12]. Also as-
sume that the signal is known except for its amplitude [10].
Hence, and . Because , we obtain immediately
from Proposition II.1 and Proposition III.1 that, except the value
of the threshold used in the test, the ODD detector is equivalent
to the GLRT, which is analyzed in Example 7.6 from [10].

IV. CONCLUSION

We investigated the use of the ODD detector for the LM by
emphasizing the strengths and the weaknesses of the method.
The confidence indexes provided by ODD without assuming
knowledge of the true parameter values are an advantage. For
the GLRT, the complement set of the critical region is a solid
hyper-ellipsoid. The ODD decision does not involve an hyper-
ellipsoid, but the largest rectangle within it, and this can reduce

for a given , as was apparent from the comparisons with

the GLRT. Moreover, the GLRT is invariant to a “natural” class
of transformations, whereas the ODD detector does not share the
same invariances. The performance of ODD testing can be po-
tentially improved by applying results from lattice theory [26]:
for example, in the two-dimensional case, the rectangles can be
replaced by hexagons. This would make the theoretical analysis
more difficult than that outlined in this paper.

APPENDIX A
PROOF OF THEOREM II.1

The proof contains three important parts. First, we construct
the partition of the parameter space, and then we obtain a closed-
form expression for the KL divergence between the most distin-
guishable models and the real ones. After these preliminaries,
the main results of the Theorem II.1 are proven.

Partition of the Parameter Space: The FIM for the model
class is given by [13], and does
not depend on the values of the parameters . To emphasize
this property, we use the notation instead of . Con-
sider the hyper-ellipsoid centered at and defined by

, where is a parameter whose
optimal value we will find next. Furthermore, let be
the largest rectangle within this hyper-ellipsoid. Its volume is

, where and
is the th eigenvalue of the matrix [1]. The procedure con-
tinues until a complete set of disjoint rectangles whose union is
the entire parameter space is defined.

Computation of the KL Divergence: For model class ,
the ML estimate is given by [13]

The symbol is used for the Moore–Penrose pseudoinverse,
hence . The function from (2)
takes the particular form [16], [17]

(24)

We next compute the KL divergence between the “artificial”
model assigned to and the “natural” model
(7) evaluated under the null hypothesis. With the supplementary
notation , and applying the defini-
tion in (4), we readily obtain

(25)

Because (6) together with (24) leads to

(26)

(27)
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all that remains is to calculate the integral. For an arbitrary ,
we define the set :

(28)

(29)

(30)

(31)

Note that (28) is obtained by applying the sufficiency factoriza-
tion (2) and the well-known identity

[16]. Since the inner integral in (28) gives unity for a fixed
[1], (24) and the definition of yield the equality in (29).

Rotation of the coordinates for the integral in (29) and some
simple manipulations similar to those from of [1, Ch. 7] lead to
(30). The result in (31) is an immediate consequence of (26) and
(30). From (25), (27) and (31), we conclude

(32)

Main Results:
a) From (32), is a convex func-

tion that attains its minimum for
. Therefore, the condition of minimizing the KL

divergence between the artificial models and the real ones
leads to the optimum value . The proof for is
similar to that from [1], with the remarkable difference
that we do not use asymptotic approximations.

b) and have the same set of eigenvectors, and
. Denote , and

let be the diagonal matrix with the entries on
the main diagonal. According to the ODD testing proce-
dure, we select if and only if . The con-

dition is equivalent to for all .
Using in the definition of , we obtain the chain
of equivalent inequalities

which leads to the condition in (8).

c) Denote , and let be a column vector of
length for which all the entries are equal to . Note
from the proof of point b) that

(33)

which implies if and only if .

Since [10], it is easy to check
that under the hypothesis . Then

and we get (9).
Before computing , remark that the parameter space

is partitioned into congruent rectangles because the matrix
does not depend on . Consequently, the -space is partitioned
into congruent hypercubes whose sides have length . The
hypercube centered at is the one associated with model

.
Assume, without loss of generality, that the ML estimate

falls within , where . Based on (33), is located
inside the hypercube centered at , where is a diagonal
matrix with the entries on the main diagonal, and

. Moreover,
. The evaluation of is as follows:

(34)

(35)

The key observation for proving (34) is that
when .

Equation (35), which coincides with (10), is obtained by
resorting to the properties of the right-tail probability .
The above calculations verify that for an arbitrary
index . It is easy to extend the results by observing that

for all .
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APPENDIX B
PROOF OF PROPOSITION III.1

Partition of the Parameter Space: For the model class ,

let be an estimate of distributed as .
The Cramér–Rao bound guarantees that

[14]. It is straightforward to write the northwest block
as . We do not give the closed-form expressions for
the other three blocks of the matrix because they are not
important in our detection problem.

It can be easily checked that
[27]. Based on these results,

we choose to be the largest rectangle within the

hyper-ellipsoid , where
and . We focus next on deter-

mining the optimal value of .
Computation of the KL Divergence: For , we

have , and for , the ML estimates are

. It can be easily shown that [24]

(36)

The region of the parameter space associated with is given
by the cartesian product , and according to (4),

the density function is zero outside this region. Inside
the region, , where the
normalization factor is

(37)

(38)

(39)

The equality in (37) is obtained immediately via (24). Equation
(38) exploits the Cholesky factorization of as given in [14].
Then, we get (39) by using the formula for .

Because is not a singleton class, we proceed as in [23]
by selecting the “natural” model for to be the NML density

function (1): , where the normaliza-

tion factor is given by . For
the computation of , we refer to [1], [16]. Here, we do not
need to calculate ; it is enough to assume . We refer
to [2] (see page 406) for a more general discussion on choosing
between the use of ML or NML in statistical inference.

With the notation ,
we have the following expression of the KL divergence

(40)

and for its calculation, we first evaluate the likelihood ratio

(41)

(42)

(43)

(44)

The identity in (41) was obtained in [12]. To get (42), we use
the fact that the projection matrix is symmetric and idempotent.
Equation (43) is a straightforward application of the definition
of the projection matrix, and (44) is a consequence of (36).

Then, we compute the integral

(45)

(46)

For with , we have used the notation
in the calculations above. The innermost

integral in (45) evaluates to one for a fixed . To get (46), we
have also used (2), (24) and (37), together with the same type of
reasoning that earlier led from (29) to (30).

Main Results: The identities in (39), (40), and (46) lead to
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which is minimized by . For selecting the optimum ,
we do not need closed-form expressions for and ; it is
enough to assume that both of them are finite. The calculations
above also show that selecting the “natural” model for to

be the ML function instead of the NML function

leads to the same optimum .
The KL divergence between the “artificial” and the “natural”
models will be different when choosing ML instead of the NML,
but this is less important for our detection problem.

The remaining steps of the proof are similar to those from
Appendix A, and we skip them for brevity.

APPENDIX C
PROOF OF COROLLARY III.1

a) We employ the definition of and (16) and
(17) to get

which proves the inequality in (22). The equality occurs
if and only if . This is equivalent to

because the columns of are linearly
independent and the null space of coincides with the
orthogonal complement of the range of .

b) From (20) and (21), we obtain

(47)

where . For ,

, and let be
the eigenvalues of arranged in increasing order. Then, we
have [24]

(48)

To complete the proof, we need the following result.
Theorem C.1: [25]If and are symmetric

matrices, then

(49)

where for an arbitrary symmetric matrix , the notation
designates the th smallest eigenvalue such that

.

b1) For an arbitrary , we define
. From the assumptions of the

Corollary III.1 b1), we have
, and using (47) we get

. Hence, the matrix is positive
semidefinite, or equivalently, its minimum eigen-
value is nonnegative. By choosing
and in (49), we obtain the inequality

.
This result, together with (48) and the fact that
is monotonically increasing on , leads to

.
b2) We again apply (49) by choosing , and

, which leads to

(50)

(51)

where (50) is a straightforward application of (48), and
(51) is due to the assumptions of Corollary III.1 b2).
Therefore, the matrix is positive semidefinite and the
inequality in (23) is readily obtained using (47).
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