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ABSTRACT
Relying on optimally distinguishable distributions (ODD), it was de-
fined very recently a new framework for the composite hypothesis
testing. We resort to the linear model to investigate the performances
of the ODD detector and to compare it with the widely used Gener-
alized Likelihood Ratio Test (GLRT). As the ODD concept is very
new, its application to models with nuisance parameters was not dis-
cussed in the previous literature. The present study attempts to fill
the gap by proposing a modified ODD criterion to accommodate the
practical case of unknown noise variance.

Index Terms— Composite hypothesis testing, optimally distin-
guishable distributions, linear model, Kolmogorov structure func-
tion, Generalized Likelihood Ratio Test.

1. INTRODUCTION AND PRELIMINARIES

The most recent developments in methods of inference based on
the Minimum Description Length (MDL) principle emerge from a
happy union between the algorithmic complexity theory and the cod-
ing theory [1],[2]. As the central notions from the algorithmic com-
plexity theory [3], namely Kolmogorov complexity, universal dis-
tribution and the structure function are non-computable, their use
in practical applications poses troubles. To circumvent such diffi-
culties, Rissanen extends all these notions to statistical models by
replacing the set of programs from the algebraic theory of complex-
ity with classes of parametric models {f(x; θ) : θ ∈ Θ}, where
x = [x0, . . . , xN−1]

� is the vector of observations and Θ is a
bounded closed subset of �k [2]. With the understanding that each
model class is a likelihood function, the role of the universal model
is played by the Normalized Maximum Likelihood (NML) density
function [4]:

f̃(x) =
f(x; θ̂(x))�

y:θ̂(y)∈Θ
f(y; θ̂(y))dy

, (1)

where θ̂(x) denotes the maximum likelihood (ML) estimate. When-
ever it is clear from the context which measurements are used for
estimation, the simpler notation θ̂ is preferred to θ̂(x). Our interest
is confined to models for which f(x; θ) can be factored as [4]

f(x; θ) = f(x | θ̂)g(θ̂; θ), (2)

where g(θ̂; θ) is the marginal density of θ̂. The conditional density
f(x | θ̂) does not depend on the unknown parameter vector θ. Fur-
thermore the Kolmogorov complexity is replaced by the stochastic
complexity (SC) whose expression is given by ln(1/f̃(x)).

This work was supported by the Academy of Finland, project No.
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To construct the Kolmogorov structure function, the parameter
spaceΘ is partitioned into rectangles such that the Kullback-Leibler
(KL) distance between any two adjacent models is constant [2]. We
outline the steps of the construction as they are given in [2]. Let

JN (θ) = − 1

N
E

�
∂2 ln f(x; θ)

∂θ∂θ�

�
be the Fisher information matrix

(FIM), and J∞(θ) = lim
N→∞

JN (θ). The limit is finite for most of
the models in signal processing, but not for all of them; for exam-
ple, the limit is not finite in the case of sinusoidal regression model
with unknown frequency [5]. In the following derivations, we pre-
fer to use JN (θ), with the supplementary assumption that none of
its singular points are included in Θ. For an arbitrary θ ∈ Θ, con-
sider the hyper-ellipsoid (θ − θ)�JN (θ)(θ − θ) = d/N , where
d is a parameter whose optimal value we will find next. We take
the largest rectangle within this hyper-ellipsoid, and then we con-
tinue the procedure until defining a complete set of Nd/N disjoint
rectangles whose reunion is the entire parameter space Θ. With the
conventions from [2], we dubBd/N (j) the j-th rectangle within this
set, and we denote θj its center. For all j ∈ {0, . . . , Nd/N − 1}, the
probability distribution f̂(x | θj) is defined by

f̂(x | θj) =

�
f(x; θ̂(x))/Qd/N (j), θ̂(x) ∈ Bd/N (j)
0, otherwise (3)

Qd/N (i) =

�
θ̂∈Bd/N (i)

g(θ̂; θ̂)dθ̂, (4)

where g(θ̂; θ) is the same as in (2). The key point is that the newly
introduced distributions are perfectly distinguishable, and here the
sense of distinguishability is borrowed from the differential geom-
etry [6]. In [7], Rissanen proposes an index to measure the distin-
guishability, and this allows to prove that f̂(x | θj) are optimally
distinguishable distributions (ODD).

The KL distance D(f̂(x | θj) ‖ f(x; θj)) between the “artifi-
cial” model f̂(x | θj) and the “natural” model f(x; θj) depends on
the parameter d for all j ∈ {0, . . . , Nd/N − 1}. If the Central Limit
Theorem is verified, then there exists a unique d̂ that minimizes this
distance, and asymptotically d̂ = 3k [2].

These findings can be applied almost straightforward for com-
posite hypothesis testing and, more importantly, they define a totally
new framework for this problem. We explain briefly the ODD test-
ing between the hypotheses specified byM0 = {f(x; θ) : θ = θ0}
andM1 = {f(x; θ) : θ �= θ0}. It is evident in this case that, for
partitioning the parameter space, we first demarcate the rectangle
centered at the point θ0 and denoted Bd̂/N (0), second we fix the
centers of its neighbors, and then we continue the construction until
the complete set of rectangles is settled. The ODD criterion selects
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the model classM0 whenever θ̂(x) ∈ Bd̂/N (0), where θ̂(x) is the
ML estimate for the model classM1 [2].

Remark that it is not necessary to resort to the maximization
of the probability of detection (PD) for a given probability of false
alarm (PFA) as it is done in the traditional Neyman-Pearson method-
ology [8]. However, the performances of the ODD procedure are as-
sessed by calculating two indices [7]: E1 = 1−P0|0 andE2 = P0|j
for j �= 0. We note that, for an arbitrary pair (i, j), Pi|j is the
probability mass of Bd̂/N (i) induced by the model f(x; θj). The
significance of E1 and E2 will be clarified in the next Section.

The approach based on the ODD testing is very promising, but
so far it was applied only in the following examples [1],[2],[7]: (i)
for the model classM0, the observed variable X is Gaussian with
mean 0 and variance 1, whereas forM1, X is Gaussian with non-
zero mean and non-unitary variance; (ii) X ∈ {0, 1} is Bernoulli
distributed for both M0 and M1, and under the null hypothesis,
X = 0 with probability 1

3
. Moreover, the ODD criterion for models

with nuisance parameters was not introduced in the previous litera-
ture. Also it was not yet investigated the relation between PD and
PFA when the parameter space partition is constructed with d̂.

In this study, we provide answers to the unsolved problems con-
nected with the ODD testing by considering the linear model (LM).
The motivation of our choice is twofold: (i) the most important re-
sults obtained in [2] by resorting to asymptotic approximations turns
out to be non-asymptotic for the LM; (ii) LM has many applications
in signal processing [8].

The rest of the paper is focused on the detection of a determin-
istic signal with unknown linear parameters in zero-mean Gaussian
noise. In Section 2 we derive the ODD detector and evaluate its per-
formances assuming the noise is white with known variance. The
case of the unknown noise variance is treated in Section 3.

2. LINEAR MODEL:WHITE GAUSSIAN NOISE WITH
KNOWN VARIANCE

The main results and definitions from the previous Section lead to
the Theorem below. For writing the equations within the Theorem
more compactly, we resort to the formula of the right-tail probability:
Q(x) =

�∞
x

1√
2π

exp
�− 1

2
y2
�
dy for an arbitrary x ∈ � [8]. We

also use the notation �x� for the largest integer less than or equal to
the real-valued argument x.

Theorem 2.1. For the data sequence x = [x0, . . . , xN−1]
�, we

consider the Gaussian density function with zero mean and known
variance τ ,

f(x; θ) =
1

(2πτ)N/2
exp

�
− 1

2τ
‖x−Hθ‖2

�
, (5)

where H is a known N × k matrix of rank k, θ is a k × 1 vector
of parameters (N > k + 1), and ‖ · ‖ denotes the Euclidean norm.
For the ODD testing between the hypotheses specified by the model
classesM0 = {f(x; θ) : θ = 0} andM1 = {f(x; θ) : θ �= 0},
we have the following results:
a) For θ0 = 0, D(f̂(x | θ0) ‖ f(x; θ0)) is a convex function that
attains its minimum k

2
ln π exp(1)

6
for d̂ = 3k.

b) After observing x, selectM1 if

max (|z1|, . . . , |zk|) >
√

3, (6)

where zj =
(v�

j H�x)/
√

�j√
τ

∀j ∈ {1, . . . , k}, with the conven-
tion that �1, . . . , �k are the eigenvalues of the matrix H�H, and
v1, . . . ,vk are the corresponding eigenvectors.

c) When the condition (6) is verified, we are wrong in accepting the
null hypothesis with probability E1 = 1 − �1− 2Q(

√
3)
�k ≈ 1 −

0.917k, otherwise, we are wrong in rejecting the null hypothesis with
probabilityE2 =

�k
j=1

�
Q
�
(2mj − 1)

√
3
�−Q

�
(2mj + 1)

√
3
��
,

wheremj =
�

zj+
√

3

2
√

3

�
∀j ∈ {1, . . . , k}.

Sketch of the proof. Note for the model class M1 that JN (θ) =
1

Nτ
H�H [9], hence FIM does not depend on the values of the para-

meters θ. We denote it JN . The proof for a) is similar with the one
from [2], with the remarkable difference that we do not use asymp-
totic approximations. Condition (6) is readily obtained with a chain
of equivalent inequalities. Because FIM does not depend on θ, the
parameter space is partitioned into congruent rectangles. Addition-
ally, we have for all j: Pj|j = P0|0 and P0|j = Pj|0. The identities
are instrumental in the proof of c).

To gain more insight, we show below the relation between the
ODD criterion and the widely used Generalized Likelihood Ratio
Test (GLRT). Assuming the hypotheses from Theorem 2.1, GLRT as

well as Rao and Wald test decideM1 if T (x) =
θ̂
�
H�Hθ̂

τ
> γ,

where θ̂ is the ML estimate of θ for the model classM1 and the
threshold γ is selected based on PFA [8]. As it is easy to check that
T (x) =

�k
j=1 z2

j , we have:

Proposition 2.1. a) For k = 1, the ODD detector is equivalent with
the GLRT for which γ = 3.
b) For k > 1, it does not exist any γ such that the ODD detector is
equivalent with the GLRT. Supplementarily, GLRT with γ = 3 will
selectM1 whenever ODD detector selectsM1.

It is customary to asses the performances of a detector by eval-
uating PFA and PD . For the detection rule (6), we get immediately:
PFA = E1 and PD = 1−�k

j=1

�
Q(−√3− ζj)−Q(

√
3− ζj)

�
,

where ζj =
v�

j θ
√

�j√
τ

∀j ∈ {1, . . . , k} and θ = θ for the model
classM1. Now we can notice the major difference between evalu-
ating the performances in terms of E1 and E2 instead of PFA and
PD . The calculation of PD assumes that data was generated byM1

with a particular parameter vector θ. Such an assumption is not nec-
essary when computingE1 andE2 because they depend only on the
ML estimate θ̂. More precisely, if θ̂ ∈ Bd̂/N (j), then E1 and E2

depend on the equivalence class defined by the rectangle Bd̂/N (j).
Therefore, for each rectangle we have a different confidence index
that it is calculated with the E1 formula when θ̂ falls into Bd̂/N (0),
and with E2 formula for all other rectangles.

For illustration, we consider in Figure 1 the LM with k = 2
parameters, and we draw in the (z1, z2) plan the squares obtained
from the original rectangles within the (θ̂1, θ̂2) plan after applying
the rotation and the scaling required by the condition (6). Thus there
exists a bijection from the original Bd̂/N (0) to the central square in
Figure 1, where it is written the value of E1, the error probability
of acceptingM0 when θ̂ ∈ Bd̂/N (0). Note that E1 approaches 1
when k, the number of parameters, is large. Similar bijections exist
also for the squares around the central one and for which we indicate
the value of E2. Observe that the larger is the distance from the
center of the square to the null hypothesis, the smaller is E2, hence
the greater is the confidence in rejectingM0. We mention thatE2 is
smaller than 10−7 for all the squares that are situated faraway from
the null hypothesis, and which are not drawn in Figure 1.
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Fig. 1. LM with 2 parameters: values of E1 (central square) and E2
(all other squares). The edge length of each square is 2

√
3.

Example: sinusoidal detectionWe consider as usual

H =

�
�

1 0

...
...

cos (ω(N − 1)) sin (ω(N − 1))

�
�, where the frequencyω ∈

(0, π) is known, and we utilize the asymptotic approximationH�H ≈
(N/2)I2. For M1, the parameters are θ1 = A cos φ and θ2 =
−A sin φ, with the convention that A > 0 is the unknown ampli-
tude and φ ∈ [−π, π) is the unknown phase. Obviously θ = 0 for
M0. For sake of comparison with the performances of the GLRT,
we extend the results of Theorem 2.1 for an arbitrary d: the condi-
tion (6) becomes max (|z1|, . . . , |zk|) >

�
d/2. With the modified

ODD condition, we can choose d = 2

�
Q−1

�
1−
√

1−PF A

2

��2

such that to satisfy the constraint on PFA. Once d is found, we cal-
culate PD = 1−�2

j=1

	
Q(−

�
d/2− ξj)−Q(

�
d/2− ξj)



for

a fixed pair (A, φ), where ξ1 =
√

η cos φ, ξ2 = −√η sin φ and
η = NA2

2τ
. Observe that η is the signal energy-to-noise ratio (ENR)

[8]. For a given PFA, PD of the ODD detector depends on both η
and φ. To clarify the dependence on φ, we remark for fixed η and
PFA that PD is maximized when |φ| ∈ {0, π

2
, π} and it is mini-

mized when |φ| ∈ {π
4
, 3π

4
}.

In Figure 2, we plot the maximum and the minimum of PD com-
puted for the ODD criterion when d is chosen to be optimal, namely
d = 6 as in Theorem 2.1 a). In this case, we have PFA ≈ 0.16,
and this is used to get PD of the GLRT detector for various ENR
values. The evaluation of the GLRT performances rely on the results
from [8], and we emphasize that PD of GLRT is independent of φ.
For d = 6, it is easy to note from Figure 2 that φ has a marginal
influence on the PD of ODD, and the performances of ODD and
GLRT detectors are very similar. The main drawback is that PFA

has a value considered to be too large in most of the practical ap-
plications. To investigate the case of low PFA, we find d ≈ 32.90
when PFA = 10−4 and d ≈ 59.43 when PFA = 10−7. For both
cases we plot the performances of ODD and GLRT in Figure 2. Re-
mark that φ has an important influence on the PD of ODD, and this
makes the maximum PD of ODD to be superior to GLRT, but the
minimum PD of ODD is clearly inferior to GLRT. This outcome
can be better understood if we mention additionally that the KL dis-
tance between the “artificial” and the “natural” models in the ODD
settings is about 0.35 for the optimum d = 6, but becomes as large
as 3.13 and 6.97 for the values of d that correspond to PFA = 10−4

and PFA = 10−7, respectively. It is evident that the constraints on
PFA are not in agreement with the ODD methodology.
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Fig. 2. Performances for sinusoidal detection: GLRT (solid line),
best results of ODD (dashed line), worst results of ODD (dashdot
line).

3. LINEAR MODEL:WHITE GAUSSIAN NOISE WITH
UNKNOWN VARIANCE

Without loss of generality we make the following assumption on the
noise variance: τ1 < τ < τ2, where τ1 and τ2 are arbitrary, and they
do not have any influence on the ODD decision. We use the nota-
tion Qtν (x) for the right-tail probability of a Student t-distribution
with ν degrees of freedom [10]. Analogously Qt′ν(δ)(x) is the right-
tail probability of a noncentral Student t-distribution with ν degrees
of freedom and noncentrality parameter δ. The next result extends
Theorem 2.1:

Theorem 3.1. For the data sequence x = [x0, . . . , xN−1]
�, con-

sider the ODD testing between the hypotheses specified by the model
classesM0 = {f(x; θ, τ) : θ = 0, τ1 < τ < τ2} andM1 =
{f(x; θ, τ) : θ �= 0, τ1 < τ < τ2}. The normal density function
f(x; θ, τ) is given in (5), whereH is a knownN × k matrix of rank
k and θ is a k×1 vector of parameters (N > k+2). Then we have:
a) The optimum value of the d parameter is d̂ = 3k.
b) SelectM1 if

max (|t1|, . . . , |tk|) >
√

3, (7)

where tj =
(v�

j H�x)/
√

�j√
v̂

∀j ∈ {1, . . . , k}, v̂ = x�(Ik−H(H�H)−1H�)x
N−k

,
�1, . . . , �k are the eigenvalues of the matrixH�H, and v1, . . . ,vk

are the corresponding eigenvectors.
c) When the condition (7) is verified, we are wrong in accepting the
null hypothesis with probability E1 = 1 − �

1− 2QtN−k (
√

3)
�k
,

otherwise, we are wrong in rejecting the null hypothesis with proba-
bilityE2 =

�k
j=1

	
Qt′

N−k
(2mj

√
3)

�−√3
�−Qt′

N−k
(2mj

√
3)

�√
3
�

,

wheremj =


tj+
√

3

2
√

3

�
∀j ∈ {1, . . . , k}.

Proof. We revisit briefly some well-known results [10],[11]. For the
model classM1, the ML estimates are: θ̂ = (H�H)−1H�x and
τ̂ = 1

N
‖x − Hθ̂‖2. Similarly τ̂0 = 1

N
‖x‖2 forM0. The func-

tion g(·; ·), involved in the factorization based on sufficient statis-
tics (2), has the expression g(θ̂, τ̂ ; θ, τ) = g1(θ̂; θ)g2(τ̂ ; τ), where
g1(θ̂; θ) = |H�H|1/2

(2πτ)k/2 exp
�
− 1

2τ
‖H(θ̂ − θ)‖2

�
and g2(τ̂ ; τ) =
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(N/2)(N−k)/2

Γ((N−k)/2)

�
τ̂
τ

�(N−k)/2 1
τ̂

exp
�−N

2
τ̂
τ

�
. Γ(·) denotes the usual

Gamma function.
In the proof of Theorem 2.1, it was straightforward to consider

as “natural” model the unique density function that belongs toM0.
Here we take as “natural” model forM0 the universal model given
by the NML function (1): f̃0(x) = f(x; θ0, τ̂0)/C0, where θ0 = 0.
The interested reader can find in [12] details on the computation of
C0 = (N/2)N/2 exp(−N/2)

Γ(N/2)
ln τ2

τ1
.

Like in the proof of Theorem 2.1, we consider the hyper-ellipsoid
centered at θ0 = 0 and defined by (θ − θ0)�JN (θ − θ0) = d/N ,
where d is the parameter whose optimal value we will find next.
Let Bd/N (0) be the largest rectangle within this hyper-ellipsoid. Its

volume is |Bd/N (0)| = 2k �k
j=1 μj [2], where μj =

�
d

Nkλj

�1/2

and λj = �j/(Nτ) is the j-th eigenvalue of the matrix JN . Be-

cause FIM for the classM1 is
�
JN 0

0 1/(2τ2)

�
, and the constraints

for τ are the same for bothM0 andM1, we choose Bτ
d/N (0) =�

(θ, τ) : θ ∈ Bd/N (0), τ ∈ (τ1, τ2)
	
to be the rectangle associated

to the model classM0. Therefore the density function f̂(x | θ0)
defined in (3) is zero outside Bτ

d/N (0), and inside Bτ
d/N (0) equals

f̂(x | θ0) = f(x; θ̂, τ̂)/Qτ
d/N (0). The expression of the normal-

ization factor (4) is obtained after some calculations: Qτ
d/N (0) =

dk/2
�

2
kπ

�k/2 (N/2)(N−k)/2 exp(−N/2)
Γ((N−k)/2)

ln τ2
τ1
.

We introduce two more notations: X τ
0 = {x : (θ̂(x), τ̂(x)) ∈

Bτ
d/N (0)} and Md/N (0) = [0, μ1] × · · · × [0, μk]. With these

preparations, we are ready to compute the KL distance,

D(f̂(x | θ0) ‖ f̃0(x))

= ln
C0

Qτ
d/N (0)

+
1

Qτ
d/N (0)



Xτ

0

f(x; θ̂, τ̂) ln
f(x; θ̂, τ̂)

f(x; θ0, τ̂0)
dx.

The change of variables ρ̂ = [v1 . . .vk]�θ̂ leads to:

Xτ

0

f(x; θ̂, τ̂) ln
f(x; θ̂, τ̂)

f(x; θ0, τ̂0)
dx =

NhH,N,k

2

τ2

τ1

2k

τ̂k/2+1

�
� 


Md/N (0)

ln

�
1 +

�k
j=1 ρ̂2

j�j

Nτ̂

�
dρ̂

�
�� dτ̂ ,

where hH,N,k = |H�H|1/2(N/2)(N−k)/2 exp(−N/2)

(2π)k/2Γ((N−k)/2)
. As d � N ,

we employ next the approximation ln(1 + εN ) = εN + O(ε2
N ),

where εN =
�k

j=1

ρ̂2
j �j

Nτ̂
<
�k

j=1

μ2
j �j

Nτ̂
= d

N
. Then we have�

Xτ
0

f(x; θ̂, τ̂) ln f(x;
ˆθ,τ̂)

f(x;θ0
,τ̂0)
dx ≈ d

6
Qτ

d/N (0), and combining with

the previous results we getD(f̂(x | θ0) ‖ f̃0(x)) = k
2

ln kπ
2d

+ d
6

+

ln
�

(N/2)k/2Γ((N−k)/2)
Γ(N/2)

�
. It is clear that D(f̂(x | θ0) ‖ f̃0(x)) is

minimized for d̂ = 3k. Moreover, if we apply the Stirling approxi-
mation, the last term becomes

ln

��
1 + 1

aN,k

�1/2 ��
1 + 1

aN,k

�aN,k
�−k/2

exp
�

k
2

��
, where

aN,k = (N − k)/k. With this approximative formula, it is obvious
that the last term is zero when N → ∞ and k is fixed, hence the
minimum of the KL distance between the “artificial” model and the
“natural” model is asymptotically the same as in the case of known
noise variance.

To prove the rest of the results, we apply similar techniques as in
the proof of Theorem 2.1, with the main difference that τ is replaced
with the unbiased estimate v̂ [8].

Without difficulties, we can show for the detection rule (7) that
PFA = E1 andPD = 1−�k

j=1

�
Qt′

N−k
(ζj)(−

√
3)−Qt′

N−k
(ζj)(

√
3)
�
,

where ζj =
v�

j θ
√

�j√
τ

∀j ∈ {1, . . . , k}, and for the model classM1

we have: θ = θ, τ = τ .
We recall that the GLRT for testing if the j-th component of

the parameter vector θ is zero relies on the statistic T (x) =
θ̂2

j

v̂h−

jj

,

where h−jj is the j-th diagonal entry of the matrix (H�H)−1 [8].
It is notorious that T (x) is the square of the usual t-statistic [10].
When the matrix H�H is diagonal, tj becomes also identical with
the usual t-statistic, and the ODD condition (7) reduces to compare
with the threshold

√
3 the t-statistic computed for each component

θj , and to selectM1 if at least one component is found to be non-
zero.

4. FINAL REMARKS

One of the constraints in utilizing the ODD criterion is the following:
FIM must be non-singular for the parameters that correspond to the
null hypothesis. The condition is not verified in sinusoidal detection
if the value of the frequency is not known a priori. This difficulty was
already noticed in connection with the Rao detector [8]. A solution
for such cases is the detection method based on the NML of the
competing models [12].

In the present study, we investigated the use of the ODD detector
for the LM model by emphasizing the strengths and the weaknesses
of the method. The confidence indices provided by ODD without
assuming knowledge on the true parameter values are an advantage.
For the GLRT, the complement set of the critical region is a solid
hyper-ellipsoid. ODD decision does not involve an hyper-ellipsoid,
but the largest rectangle within it, and this can reduce PD for a given
PFA, as it was apparent from the comparisons with the GLRT.
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