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1Department of Statistics 2Department of Automatic Control and Computers
University of Auckland Politehnica University of Bucharest

Important note: Hereafter, the main document will be re-
ferred to as [1].

1. PROOF OF PROPOSITION 1 FROM THE MAIN
DOCUMENT

In this section, we apply techniques which are similar to those
from [2, 3, 4, 5].
Preliminary calculations

For ease of writing, we introduce the notation ℓ = Kp
and define:

Zt = [y′
t, . . . ,y

′
t−p+1]

′ (ℓ× 1),

Z = [Z0, . . . ,ZT−1]
′ (T × ℓ),

U = [u1, . . . ,uT ]
′ (T ×K).

Remark that the size of each newly defined quantity is listed in
the parentheses. As Y = [y1, . . . ,yT ]

′ and B = [A1, . . . ,Ap]
′,

it follows that

Y = ZB+U. (1)

Under the hypotheses that T ≥ K+ℓ and the vectors {ut}Tt=1

are Gaussian distributed, the conditional ML estimators are
given by [6]:

B̂ = (Z′Z)−1Z′Y, (2)

Σ̂ = (Y′P⊥
ZY)/T, (3)

where P⊥
Z = I − Z(Z′Z)−1Z′ is the projection matrix onto

the subspace orthogonal to the columns of Z.
After applying the column stacking operator (·)V to both

sides of the identity in (1), we obtain

YV = (I⊗ Z)BV +UV,
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where ⊗ denotes the Kronecker product. It is evident that
UV ∼ NTK(0,Σ ⊗ I). The generalized least-squares esti-
mator for BV is [6]

B̂V = [I⊗ (Z⊤Z)−1Z⊤]YV

and coincides with the ML estimator for B [see (2)].
From the standard properties of the ML estimators, we

have:

(P1) B̂V ∼ N (BV,Ω), where Ω = Σ⊗ (Z′Z)−1;

(P2) T Σ̂ ∼ WK(Σ, T − ℓ) [Wishart distribution with scale
matrix Σ and degrees of freedom parameter T − ℓ];

(P3) B̂V is statistically independent of Σ̂.

First normalization step
We introduce the supplementary notation θ = (BV,Σ).

For simplicity, we write B̂V instead of B̂V(YV) and Σ̂
V

in-

stead of Σ̂
V
(YV). Hence, θ̂ = (B̂, Σ̂).

Using the properties (P1)-(P3) along with the fact that the
statistics θ̂ are sufficient for θ [6], we get the following chain
of identities for the likelihood function:

f(Y;θ) = f(Y|θ)g(θ; θ̂),
g(θ; θ̂) = g1(B̂

V;θ)g2(Σ̂;Σ),

g1(B̂
V;θ) =

exp
[
−
(
δ′BΩ

−1δB
)
/2

]
(2π)ℓK/2|Σ|ℓ/2|Z′Z|−K/2

,

g2(Σ̂;Σ) =
T |T Σ̂|(T−ℓ−K−1)/2 exp

[
−T

2 tr(Σ
−1Σ̂)

]
2(T−ℓ)K/2|Σ|(T−ℓ)/2ΓK [(T − ℓ)/2]

,

where δB = B̂V −BV. After little algebra, we get:

g(θ̂; θ̂) = G|Σ̂|−(ℓ+K+1)/2, (4)

where

G =
T 1+K(T−ℓ−K−1)/2

(2TK/2)(πℓK/2)

|Z′Z|K/2 exp(−TK/2)
ΓK [(T − l) /2]

,(5)



|Σ̂| =

K∏
j=1

λ̂(j). (6)

Additionally, we assume that the eigenvalues of Σ̂ are ordered
as follows: λ(K) ≥ · · · ≥ λ(1) > 0.

As a preliminary step for constraining the integration do-
main in [1, Eq. (4)], we consider the hyper-parameters R > 0

and λ(K)
min ≥ · · · ≥ λ

(1)
min > 0. We take Λmin =

{
λ
(j)
min

}K

j=1
.

With the convention that ∥ · ∥ denotes the Euclidean norm, we
define:

B(R) =
{
B̂V : ∥(I⊗ Z)B̂V∥2/(TK) ≤ R

}
,

L(Λmin) =
{
Σ̂ : λ̂(j) ≥ λ(j)min for j = 1,K

}
,

T (R,Λmin) =
{
θ̂ : B̂V ∈ B(R) and Σ̂ ∈ L(Λmin)

}
,

Y(R,Λmin) =
{
YV : θ̂(YV) ∈ T (R,Λmin)

}
,

Y(θ̂) =
{
YV : θ̂(YV) = θ̂

}
.

The constrained normalization factor is:

Cp(R,Λmin)

=

∫
Y(R,Λmin)

f
(
YV; ˆθ(YV)

)
dYV

=

∫
T (R,Λmin)


∫

Y(
ˆθ)

f(YV|θ̂)dYV

 g(θ̂; θ̂)dθ̂ (7)

= G


K∏
j=1

∞∫
λ
(j)
min

[
λ̂(j)

]− ℓ+K+1
2

dλ̂(j)


∫

B(R)

dB̂V (8)

= G


K∏
j=1

[
λ
(j)
min

]−(l+K−1)/2

(l +K − 1)/2

 vol [B(R)] . (9)

In (7), we used the fact that the inner integral equals one,
while in (8) we applied the identities in (4)-(6). For the vol-
ume which appears in (9), it is easy to show (see, for example,
[5]) that

vol [B(R)] = ηRζKℓ,

where

η =
(TKπ)lK/2

Γ [(lK)/2 + 1] |(I⊗ Z)′(I⊗ Z)|1/2
,

ζ = 1/2.

One possible option for computingCp(R,Λmin) is to make
subjective selections for the value of R and the entries of

Λmin. However, we follow the recommendations from [2]
and perform another normalization step. Before discussing
this step, we observe thatCp(R,Λmin) becomes smaller when
R decreases. Keeping in mind that we want to minimize the
“code length” given by

− log f̂(YV; p) = − log f
(
YV; B̂(YV), Σ̂(YV)

)
+ logCp(R,Λmin),

we take

R =

∥∥∥(I⊗ Z)B̂V
∥∥∥2

KT
, (10)

=
tr
(
Y′Y − T Σ̂

)
KT

. (11)

The selection of R-value in (10) is mainly determined by the
definition of B(R). The identity in (11) is straightforwardly
obtained from (3).

Similar considerations lead to

λ
(j)
min = λ̂j , j = 1, . . . ,K.

Hence, we have:

logCp(R,Λmin)

= − log ΓK [(T − ℓ)/2]

+K log
2

ℓ+K − 1

−ℓ+K − 1

2
log |Σ̂|

− log Γ

(
ℓK

2
+ 1

)

+
ℓK

2
log

tr
(
Y′Y − T Σ̂

)
T

+ logCt,

where

Ct =
T 1+K(T−K−1)/2 exp(−TK/2)

2TK/2
.

Remark that logCt does not depend on the order p of the
model, so it can be ignored in our future calculations.
Second normalization step

We choose R1, R2, λ1, λ2 such that R2 > R1 > 0 and
λ2 > λ1 > 0. As in the previous definitions, we have:

B(R1, R2) =

{
B̂V : R1 ≤

∥(I⊗ Z)B̂V∥2

TK
≤ R2

}
,

L(λ1, λ2) =
{
Σ̂ : λ1 ≤ λ̂(j) ≤ λ2 for j = 1,K

}
,

T (R1, R2, λ1, λ2)



=
{
θ̂ : B̂V ∈ B(R1, R2) and Σ̂ ∈ L(λ1, λ2)

}
,

Y(R1, R2, λ1, λ2)

=
{
YV : θ̂(YV) ∈ T (R1, R2, λ1, λ2)

}
.

The normalization term Cp(R1, R2, λ1, λ2) is computed as
follows:

Cp(R1, R2, λ1, λ2)

=

∫
Y(R1,R2,λ1,λ2)

f
(
YV; ˆθ(YV)

)
Cp(R,Λmin)

dYV

=

∫
T (R1,R2,λ1,λ2)

g(θ̂; θ̂)

Cp(R,Λmin)
dθ̂

=

[
2

ℓ+K − 1

]−K
 K∏
j=1

λ2∫
λ1

1

λ̂(j)
dλ̂(j)


×

R2∫
R1

Kℓ

2

1

R
dR

For proving the last identity, we have used the expression of
g(θ̂; θ̂) from (4)-(6) as well as the expression of Cp(R,Λmin)
from (9). For computing the integral of the inverse of the vol-
ume from Cp(R,Λmin)-formula, we have observed that the
expression of the volume coincides with the one from [5, Eq.
(10)] and we employed the identities from [5, Appendix A].
Hence, we get:

logCp(R1, R2, λ1, λ2)

= −K log
2

ℓ+K − 1
+ log ℓ

+ log
K

2
(12)

+K log log
λ2
λ1

(13)

+ log log
R2

R1
. (14)

We ignore the term in (12) because is constant. Due to the
same reasons as those invoked in [2, 4], we drop the terms in
(13) and (14).

After collecting all the terms corresponding to
logCp(R,Λmin) and logCp(R1, R2, λ1, λ2) along with neg-
ative log-likelihood, we obtain the RNML criterion which is
presented in [1, Proposition 1].

2. RNML-CRITERION FOR ZERO-ORDER MODEL

In this case, we only need to compute the estimate Σ̂0 =
(Y′Y)/T . All other calculations are similar to those from
Section 1, but simpler. It is easy to show that the logarithm of

the normalization factor which corresponds to
logCp(R,Λmin) is

logC0(Λmin,0) = −K − 1

2
log |Σ̂0|

− log ΓK

(
T

2

)
+K log

2

K − 1
,

where Λmin,0 is the set of eigenvalues of Σ̂0. Furthermore,
if we constrain these eigenvalues to the interval [λ3, λ4], then
we get the logarithm of the normalization factor which corre-
sponds to logCp(R1, R2, λ1, λ2):

logC0(λ3, λ4) = K log log
λ4
λ3
−K log

2

K − 1
.

It follows that

RNML(Y; p = 0) =
T −K + 1

2
log |Σ̂0|

− log Γ

(
T

2

)
+K log log

λ4
λ3
.

It is a simple exercise to verify that the expression above re-
duces to the one in [2, Eq. (9.40)] when K = 1. The dis-
cussion on the role of the hyper-parameters, λ3 and λ4, goes
along the same lines as in [2]. From the identity in (11) and
the definitions of B(R1, R2) and L(λ1, λ2) in Section 1, we
have the double inequality:

R1 + λ1 ≤ tr(Σ̂0)/K ≤ R2 + λ2.

At the same time, λ3 ≤ tr(Σ̂0)/K ≤ λ4, which leads to
choosing λ3 = R1 + λ1 and λ4 = R2 + λ2. If we apply the
same technique as in [2] by taking λ1 = R1 = a and λ2 =
R2 = b (0 < a < b), the contribution of the hyper-parameters
to RNML(Y; p) is (K + 1) log log(b/a) for p > 0. When
comparing this result with K log log(b/a), which is the con-
tribution of the hyper-parameters to RNML(Y; p = 0), we
can conclude that neglecting the hyper-parameters might have
a negative impact on the selection of the model.

3. PROOF OF LEMMA 1 FROM THE MAIN
DOCUMENT

The identity for GOF can be obtained straightforwardly. For
PEN1, we note that the the multivariate Gamma function can
be written as

ΓK

[
T−Kp

2

]
π

K(K−1)
4

=
K∏
i=1

Γ

[
T −Kp+ 1− i

2

]
. (15)

Furthermore, we use the Stirling approximation [7, p. 24]:

log Γ(z) =
1

2
log(2π) +

(
z − 1

2

)
log z − z + θ

12z
,



where z > 0 and 0 < θ < 1.
We neglect the factor πK(K−1)/4 in (15) because it does

not depend on the model order. With the convention that ℓ =
Kp, we have:

log ΓK

(
T − ℓ
2

)
=

K∑
i=1

log Γ

(
T − ℓ+ 1− i

2

)

=
K∑
i=1

T − ℓ− i
2

log
T − ℓ+ 1− i

2

−
K∑
i=1

T − ℓ+ 1− i
2

+
K

2
log(2π) +O

(
1

T

)
.

Because the terms which do not depend on p can be ignored,
we write

−PEN1

=
1

2

K∑
i=1

(T − ℓ− i) log(T − ℓ+ 1− i) + Kℓ

2
(1 + log 2)

=
1

2

K∑
i=1

(T − ℓ− i) log T

+
1

2

K∑
i=1

(T − ℓ− i) log
(
1− ℓ− 1 + i

T

)
+
Kℓ

2
(1 + log 2).

We drop the constant terms and use the Maclaurin series ex-
pansion for log [1− (ℓ− 1 + i)/T ] when 1 ≤ i ≤ K:

−PEN1

= −Kℓ
2

log T +
Kℓ

2
(1 + log 2)

+
1

2

K∑
i=1

(T − ℓ− i) log
(
1− ℓ− 1 + i

T

)
= −Kℓ

2
log T +

Kℓ

2
(1 + log 2)

−1

2

K∑
i=1

(T − ℓ− i)ℓ− 1 + i

T
−O

(
1

T

)
= −Kℓ

2
log T +

Kℓ

2
log 2

+
1

2T

K∑
i=1

(ℓ+ i)(ℓ+ i− 1)−O
(
1

T

)
= −Kℓ

2
log T +

Kℓ

2
log 2

+
1

2T

[
ℓ2K + ℓK2 +

K3

3
− K

3

]
−O

(
1

T

)

= −
[
Kℓ

2
log T

]
[1− o(1)]

= −
[
K2p

2
log T

]
[1− o(1)] .

This concludes the proof.

4. PROOF OF PROPOSITION 3 FROM THE MAIN
DOCUMENT

The matrix coefficients of the VAR(p)-model are denoted
A1 p, . . . ,Ap p. From Yule-Walker equations, we have [8]:

A(p) = R−1
p R(p),

Σp = R(0)−R′
(p)R

−1
p R(p),

where

A(p) = [A1 p, . . . ,Ap p]
′,

R(p) = [R(1), . . . ,R(p)]
′
,

Rp =


R(0) R(1) · · · R(p− 1)
R′(1) R(0) · · · R(p− 2)

...
...

. . .
...

R(p− 1)′ R(p− 2)′ · · · R(0)

 .
We employ the result from [8, p. 75] which says that

the sample covariance matrix R̂(h) converges to R(h) almost
surely as T → ∞. This result along with Yule-Walker equa-
tions allow us to replace, in our asymptotic analysis, Σ̂p with
Σp for all p ≥ 0.

As in [8, p. 69], we take up,t and←−u p,t−p to be the resid-
ual vectors from the multivariate regressions of yt and yt−p

on the set of predictor variables yt−1, . . . ,yt−p+1. Hence,
we have Σp−1 = Cov(up,t). Additionally, we introduce the
notation

←−
Σp−1 = Cov(←−u p,t−p).

Furthermore, for p > 0, we define the partial correlation
matrix (see also [8, p. 70][9, Eq. (16.5.52)]):

Q(p) =
[←−
Σ

1/2
p−1

]−1

Cov
(←−u p,t−p,up,t

) [
Σ

1/2
p−1

]−1

, (16)

where
←−
Σ

1/2
p−1 and Σ

1/2
p−1 are the symmetric square roots of

←−
Σp−1 and Σp−1, respectively. If in (16) we replace

←−
Σ

1/2
p−1

with the lower triangular root of
←−
Σp−1 and Σ

1/2
p−1 with the

upper triangular root of Σp−1, then we obtain the transpose
of the matrix defined in [10, Eq. (14)].

Note that the entries of Q(p) are correlation coefficients
only in the particular case when K = 1 (see [9, p. 413-414]
for a more detailed discussion). However, the eigenvalues
of Q′(p)Q(p) belong to the interval [0, 1] and they are equal
to “the (squared) partial canonical correlations between the
vectors yt and yt−p after adjustment for the dependence of
these variables on the intervening values yt−1, . . . ,yt−p+1”
[8, p. 71].



It follows from [10, p. 646] that

|Σp| = |Σ0|
p∏

i=1

|I−Q′(i)Q(i)| .

Additionally, we have that Q(i) = 0 when i > p◦. Since we
assume that Σp ≻ 0, all squared partial canonical correlations
are strictly smaller than one.

Using the inequality of arithmetic and geometric means,
we readily obtain

tr(Σ0 −Σp)

≤ tr(Σ0)−K|Σp|1/K

= K|Σp|1/K
[
ϕ(Σ0)

ψ(p, p◦)
− 1

]
,

where ψ(p, p◦) =

p∏
i=1

|I−Q′(i)Q(i)|1/K . All that remains

is to employ the inequality above in conjunction with the def-
inition of PEN3.

5. ADDITIONAL INFORMATION ON
EXPERIMENTS

5.1. Example 1

The complete description of this example as well as the inter-
pretation of the outcome can be found in [1]. Here we display
Figs. 1-4, in which the experimental results are shown. We
also give an interpretation of the estimation results by resort-
ing to multivariate Itakura-Saito divergence.

The multivariate Itakura-Saito divergence between the “true”
VAR(p◦) and the estimated VAR(p̂) is given by
J = 1

2π

∫ 2π

0
D(S(ω)||Ŝ(ω))dω [11, 12]. An approxima-

tion of J can be easily obtained from the values of the I-
divergence computed on the grid G (see [1]). The same method
can be applied for the evaluation of JME, the multivariate
Itakura-Saito divergence between the “true” model and its
maximum-entropy estimate. The statistics for J and JME are
shown in Fig. 3. When T ≤ 1000, RNML yields values of
J and JME which are larger than the values of divergences
produced by other ITC. Bearing in mind that, for these sam-
ple sizes, RNML is the best in selecting the model order, we
calculate a new set of statistics only from those runs where
RNML estimates correctly the order. For differentiating be-
tween these statistics and those computed previously, we use
the notation Jc instead of J and JME

c instead of JME. Ob-
serve in Fig. 4 that, when T is small and p̂RNML = p◦, Jc
computed for RNML exceeds the values of Jc corresponding
to other ITC. At the same time, in all these cases, RNML
yields the greatest improvement of JME

c in comparison with
Jc.

As a final observation, we note for T = 1000 that only
SBC, KIC and KICc lead to large values of J , Jc, JME and

JME
c . However, when T increases from 1000 to 3000, SBC

is the only criterion which produces relatively large values of
Itakura-Saito divergence.

5.2. Example 2

We consider a VAR-model for which K is large (K = 20)
and the “true” order takes small values (p◦ = 1 or p◦ =
2). This model was originally proposed in [13] and assumes
that the driven noise is Gaussian and Σp◦ = I. The ma-
trix coefficients of the model (A1 p◦ , . . . ,Ap◦ p◦) are of the
form [D1 0;0 D2], where both D1 and D2 are 10× 10. Re-
mark that we use notational conventions like those from Mat-
lab. The entries of D1 and D2 are statistically independent
and they are drawn from a uniform distribution on the inter-
val (−1/2, 1/2). Additionally, all entries of the matrix co-
efficients which do not belong to the main diagonal are di-
vided by 1.35p

◦
. We emphasize that, for p◦ = 2, the non-

zero entries of A1 2 and A2 2 are statistically independent and
they are statistically independent with respect to the driven
noise. In our experiments, for each p◦, we consider 104 re-
alizations of the matrix coefficients. For each realization, a
set of 275 samples is produced by randomly generating the
driven noise. The first 200 samples are employed to estimate
Â1 p, . . . , Âp p and Σ̂p for p = 1, 8 by using the ARFIT-
algorithm [14]. Then the best order is selected with seven
ITC: SBC [15], AIC [16], AICc [17], KIC [18], KICc [19]
and FPE [20]. The same is done for the first 225 samples,
then for the first 250 samples and eventually the whole data is
used in the estimation process.

According to the plots shown in Fig. 5a, when p◦ = 1, we
have: (i) SBC, RNML, AICc and KICc perfectly estimate
the correct order in all trials; (ii) AIC overestimates the order
in all runs for which the sample size is T = 200; (iii) For
T = 225, AIC estimates correctly the order only 40 times out
of 104; (iv) The performance of KIC is only slightly worse
than that of KICc; (v) FPE and KIC have the same level of
performance.

As we can see in Fig. 5b, the ranking of criteria changes
when p◦ = 2: (i) SBC severely underestimates the order and
achieves a moderate score of 60% correct estimations only
when T = 275; (ii) RNML is correct in at least 90% of the
runs, disregarding the sample size; (iii) AICc is ranked the
best and is much better than AIC; (iv) KICc is better than
KIC; (v) FPE is very good, except for T = 200.

We note that, in [13], FPE was not considered and the es-
timation results were reported only for T = 200. The results
we report for this sample size are similar to those in [13] and
we assume that the differences are due to the fact that we ap-
ply a different algorithm for estimating the matrix coefficients
of the model.
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Fig. 1: Example 1: Performance of various criteria in estimating the order of VAR-model. The value of “true” VAR-order, p◦,
is written on the top of each plot.
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Fig. 2: Example 1: Statistics for the maximum value of I-divergences computed on the G-grid. For each ITC, we plot two
error bars, each of which represents mean plus minus standard deviation: The first error bar is for Imax, while the second one is
for IME

max. The sample size, T , is written on the top of each plot. Note that p◦ = 10.
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Fig. 3: Example 1: Statistics for Itakura-Saito divergence. All graphical conventions are the same like in Fig. 2, except that
Imax is replaced by J and IME

max is replaced by JME. Note that p◦ = 10.
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Fig. 4: Example 1: Statistics for Itakura-Saito divergence computed only for the cases when RNML estimates correctly the
order of the model (p̂RNML = 10). All graphical conventions are the same like in Fig. 2, except that Imax is replaced by Jc and
IME
max is replaced by JME

c . Note that p◦ = 10.
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Fig. 5: Example 2: Performance of various criteria in estimating the order of VAR-model. All graphical conventions are the
same like in Fig. 1.
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