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Abstract—Theoretical advances of the last decade have led
to novel methodologies for probability density estimation by
irregular histograms and penalized maximum likelihood. Here
we consider two of them: the first one is based on the idea of
minimizing the excess risk, while the second one employs the
concept of the normalized maximum likelihood (NML). Appar-
ently, the previous literature does not contain any comparison
of the two approaches. To fill the gap, we provide in this paper
theoretical and empirical results for clarifying the relationship
between the two methodologies. Additionally, we introduce a new
variant of the NML histogram. For the sake of completeness, we
consider also a more advanced NML-based method that uses the
measurements to approximate the unknown density by a mixture
of densities selected from a predefined family.

I. INTRODUCTION

The regular histogram, in which all the bins are equally
wide, is generally considered to be the simplest probability
density estimator. A more advanced option is the so-called
irregular histogram (IH), where the bins are allowed to have
different widths. In both cases, the unknown density is ap-
proximated by a piecewise constant density model. However,
in most of the practical situations, the number and the borders
of the bins are not known a priori, and they should be chosen
from a predefined collection of histogram models.

Significant efforts have been dedicated to defining selection
rules based on penalized maximum likelihood (PML). One
of the first attempts was to apply the Akaike criterion [1]
to histogram density estimation (see [2] and the references
therein). During the last decade, two new methodologies have
been proposed. The first one, which is more popular in the
community of statisticians, is based on the idea of choosing
the penalty so as to minimize the excess risk [3], [4]. The
second methodology has its grounds in information theory
and employs the normalized maximum likelihood (NML) as
a criterion for selecting the histogram model. The interested
reader can find in [5] the definition of the NML as well
as strong theoretical results on its properties. However, the
computation of the NML poses troubles, and it seems that the
first practical solution for IH selection by NML was introduced
in [6].

Surprisingly, the methods from [4] and [6] have not been
compared up to now, and this is mainly because the NML
criterion was misinterpreted in some of the previous stud-
ies. As we aim to clarify the relationship between the two

methodologies, the main contributions of this work are: (i)
Show how the theoretical results from [4] can be applied to
the selection rule from [6]; (ii) Introduce a new variant of the
NML criterion; (iii) Conduct experiments with a large family
of distributions for evaluating the capabilities of five PML
criteria whose formulas are based either on [4] or on [5]. The
most relevant examples are discussed in detail for providing
guidance to the practitioners.

The rest of the paper is organized as follows. We give
in the next section a more formal description of the density
estimation problem. Then, in Section III, we analyze the NML
criterion [6] by resorting to the findings from [4]. We introduce
a new variant of NML histogram in Section IV, where we
also present all the other selection rules whose performance
is evaluated in our experiments. Section V is devoted to
the description of experiments and the interpretation of their
outcome. Section VI concludes the paper.

II. PROBLEM FORMULATION

Let ξ1, . . . , ξn be n independent and identically distributed
observations with common law P on a measurable space
(Z, T ). Under the hypothesis that P admits a density s∗ with
respect to the probability measure µ, or equivalently, s∗ = dP

dµ ,
we want to estimate s∗ from the measurements ξ1, . . . , ξn. We
take µ to be the Lebesgue measure on Z .

The main definitions as well as most of the notations
which we use are akin to those from [3], [4, Ch. 7], [7,
Ch. 5]. So, for a measurable function f on Z , we have
P (f) = E[f(ξ)], where E[·] denotes the expectation operator
and ξ stands for a generic random variable of law P on
(Z, T ). Moreover, Pn(f) = n−1

∑n
i=1 f(ξi) is the empirical

distribution associated to the samples ξ1, . . . , ξn.
Now we are prepared to introduce the well-known definition

of the histogram. It is convenient to assume that Z is a
compact interval of R. Let ΛM =

⋃DM

j=1 Ij be a finite
partition of Z , with the property that µ(I) > 0 for all
I ∈ ΛM . Furthermore, we consider the set of piecewise
constant functions with respect to ΛM , namely M̃ = {s =∑
I∈ΛM

βI1I : (βI)I∈ΛM
∈ RDM }, where 1A denotes

the indicator function of a set A. Let M be the subset
of functions in M̃ that are densities with respect to ΛM :
M = {s ∈ M̃ : s ≥ 0,

∫
Z sdµ = 1}. Given the model M ,

the maximum likelihood (ML) estimator is that function s ∈



M which minimizes Pn(− log s) = n−1
∑n
i=1 [− log s(ξi)]

(log(·) stands for the natural logarithm). It can be easily shown
that the expression of the ML estimator is [7, Ch. 5]: ŝn(M) =∑
I∈ΛM

Pn(I)
µ(I) 1I = 1

n

∑
I∈ΛM

1
µ(I) [

∑n
i=1 1I(ξi)]1I .

The problem addressed in this paper consists in selecting,
from a predefined collectionMn of IH models, the model M̂
which satisfies the condition:

M̂ = arg minM∈Mn
{Pn(− log ŝn(M)) + pen(M)}, (1)

where pen(M) is a nonnegative penalty. In the next section,
we discuss two important methods for choosing the penalty
term.

III. RISK BOUNDS AND THE PENALTY TERM

Conventionally, the risk associated with an arbitrary density
function s is P (− log s), and this leads to the following
definition of the excess risk [7]: P (− log s)− P (− log s∗) =∫
Z s∗ log s∗

s dµ. It is easy to notice that the excess risk equals
the Kullback-Leibler (KL) divergence DKL(s∗, s).

Among all densities s which belong to a given model M , the
one which minimizes DKL(s∗, s) is sM =

∑
I∈ΛM

P (I)
µ(I) 1I =∑

I∈ΛM

1
µ(I)

[∫
Z s∗1Idµ

]
1I [7]. For obvious reasons, sM is

called the KL projection of s∗ onto M . An oracle who has full
knowledge on the density s∗ will choose the model M ∈Mn

so as to minimize DKL(s∗, sM ). Hence, the performance of
the model selection criterion in (1) can be evaluated by com-
paring E[DKL(s∗, ŝn(M̂))] with infM∈Mn

[DKL(s∗, sM )].
The main drawback of this approach comes from the fact that
the KL divergence is infinite for all intervals I ∈ ΛM̂ where
s∗(I) > 0 and ŝn(M̂) is identically zero on I [3, Sec. 2.2].

A more suitable candidate for the loss function is
the squared Hellinger distance (SHD) h2(s∗, s) =

(1/2)
∫
Z
(√
s∗ −

√
s
)2

dµ, where s∗ and s have the
same significance as above. The performance of the selection
criterion can be evaluated by finding upper bounds for
E[h2(s∗, ŝn(M̂))] [3], [4]. We analyze next the NML
criterion from [6] by using [4, Th. 7.9], which we reproduce
below:

Theorem 1 (Th. 7.9 in [4]). Assumptions: (A1) Z = [0, 1];
(A2) For some positive real number ρ, s∗ ≥ ρ almost
everywhere, and

∫
Z s∗(log s∗)

2dµ ≤ L < ∞; (A3) Consider
on Z the grid G = {q/Nn : q = 0, 1, . . . , Nn}, where Nn is
a positive integer which satisfies the inequality

Nn − 1 ≤ n/(log n)2. (2)

LetMn be a collection of histogram models such that, for any
M ∈ Mn, the cut points of the partition ΛM belong to G.
Additionally, Σ is a positive constant which does not depend
on n, and (xM )M∈Mn

is a family of nonnegative weights such
that ∑

M∈Mn

e−xM ≤ Σ. (3)

Let c1 > 1/2 and c2 = 2(1 + c−1
1 ). If the following inequality

holds for the penalty term in (1),

n · pen(M) ≥ c1
(√

DM − 1 +
√
c2xM

)2

∀M ∈Mn, (4)

then there is a constant C(c1, ρ, L,Σ) such that

E[h2(s∗, ŝn(M̂))] ≤ infM∈Mn
{DKL(s∗, sM ) + pen(M)}

1− (2c1)−1/5

+
C(c1, ρ, L,Σ)

n
.

According to [6], the NML penalty term is

n · penNML(M) = log

(
Nn − 1

DM − 1

)
+ log C(DM , n), (5)

where C(DM , n) =
∑
ν1+···+νDM

=n,
ν1,...,νDm≥0

n!
ν1!···νDM

!

∏DM

i=1

(
νi
n

)νi .
Observe that the use of the penalty (5) requires a grid like
in assumption (A3) of Theorem 1. We will clarify later if the
step size of the grid should be chosen so as (2) is satisfied, or
if other options are also possible.

For the analysis of the formula in (5), we resort to an
approximation. More precisely, by employing a result from
[8], the penalty term of the NML criterion can be written as
follows [9, p. 14]:

n · penNML(M) = log

(
Nn − 1

DM − 1

)
+
DM − 1

2
log

n

2π
+ log

πDM/2

Γ(DM/2)
+ o(1) .

(6)

The well-known Stirling formula for the Euler integral of the
second kind leads to the identity − log Γ(DM/2) = −[(DM−
1)/2] log(DM/2)+DM/2−γ/(6DM )−(1/2) log(2π), where
γ ∈ (0, 1). After dropping the terms which do not depend on
DM and ignoring the term −γ/(6DM ), the expression in (6)
becomes

n · penNML(M) ≈ log

(
Nn − 1

DM − 1

)
(7)

+
DM

2
log n (8)

+
DM

2
+

1−DM

2
logDM .

It is worth mentioning that the term in (8) is the same as
the penalty of the well-known Bayesian Information Crite-
rion (BIC) [10]. More importantly, the quantities from (7)
and (8) are the dominant ones within the expression of
penNML(M). This makes us to choose, in Theorem 1, the
weights (xM )M∈Mn so as the formula of c1c2xM from (4)
to be given by the sum of the two terms from (7)-(8). So,
xM = 1

c log
[(

Nn−1
DM−1

)
nDM/2

]
∀M ∈ Mn, where c = c1c2.

It is easy to notice that the condition c1 > 1/2 leads to c > 3.
Furthermore, we focus on verifying the condition from (3):∑
M∈Mn

e−xM =

Nn∑
D=1

[(
Nn − 1

D − 1

)]1−1/c

n−D/(2c)

≤ 1 +

Nn∑
D=2

[
(Nn − 1) e

D − 1

](D−1)(1−1/c)

n−D/(2c). (9)



The key point is to prove the convergence for the series in
(9) when n→∞ and Nn →∞. To gain more insight, let us
assume that c = 4, which is equivalent to c1 = 1. Our choice is
mainly motivated by [4, p. 236], where it is mentioned that the
optimal value for c1 is one. If additionally we have that Nn−
1 < n1/6, then the convergence can be easily demonstrated.
Unfortunately, in most of the practical situations, the condition
is not fulfilled.

By using a well-known inequality, we get∑
M∈Mn

e−xM ≥ LB(n,Nn), where LB(n,Nn) =∑Nn

D=2

[
Nn−1
D−1

](D−1)(1−1/c)

n−D/(2c). It is easy to verify
numerically that LB(n,Nn) is an increasing function
of n when Nn =

⌊
n/(log n)2 + 1

⌋
and n ∈ [102, 104].

For instance, when c = 4 (c1 = 1 and c2 = 4),
LB

(
n,
⌊
n/(log n)2 + 1

⌋)
is approximately 1.64 for n = 102,

but it increases to the value of 2902.11 for n = 104. It seems,
the condition in (2) does not guarantee the convergence of
the series (3) evaluated for the weights (xM )M∈Mn

which
correspond to the penalty given by (7)-(8).

The analysis outlined above shows that, for small and mod-
erate samples sizes, the NML criterion cannot be expressed
in a form that allows to apply Theorem 1 for evaluating its
performance. This makes it necessary to compare the methods
from [4] and [6] by Monte Carlo simulations. Apparently, the
only published attempt of using the theoretical results from
[4] in formulating selection rules for IH is [11]. In the next
section, we discuss briefly the criteria from [6], [11] as well
as other criteria included in our empirical tests.

IV. ESTIMATION METHODS

Method NML-1: Hereafter, the name NML-1 will be
employed for the method involving the use of the regular grid
G and the penalty in (5).

Method NML-2: Remark in the formula of C(DM , n) from
(5) that some of the bins might be empty, in the sense that
νi = 0 for some of the indexes i ∈ {1, . . . , DM}. An
interesting alternative is to optimize the choice of k non-
empty bins, or equivalently, to consider only those partitions
of Z = [0, 1] which are defined as sequences of intervals
(I1, I1, . . . , Ik−1, Ik−1, Ik). Note that the non-empty bins
Ij (1 ≤ j ≤ k) alternate with the empty bins Ij (1 ≤
j ≤ k − 1). The convention that the first and the last bins
are non-empty allows us to apply the same scheme when the
grid G is not defined for the entire Z but for the interval
[min1≤i≤n ξi,max1≤i≤n ξi]. For an arbitrary non-empty bin,
we take wj = Nn ·µ(Ij) > 0. Similarly, ej = Nn ·µ(Ij) ≥ 0.
Because the cut points are forced to be on the grid G, the
following identity holds:

∑k−1
j=1 (wj + ej) + wk = Nn. The

modified NML penalty term is given by

n · pen′NML(M) = log min{n,Nn}

+ log

(
Nn + k − 2

2k − 2

)
+ log C′(k, n),

(10)

where C′(k, n) =
∑
ν1+···+νk=n,
ν1,...,νk≥1

n!
ν!···νk!

∏k
i=1

(
νi
n

)νi . The

first term in (10) comes from a uniform distribution for the

number of non-empty bins in the set {1, 2, . . . ,min{n,Nn}}.
The expression of the second term is based on two facts: (i)
All possible choices of bins are assumed to be equiprobable;
(ii) The identity w1+(e1+1)+· · ·+wk−1+(ek−1+1)+wk =
Nn + k− 1 defines a composition of the number Nn + k− 1
into 2k− 1 parts. The third term can be calculated efficiently
by using the recurrence C′(k + 2, n) + 2C′(k + 1, n) =
(n/k − 1)C′(k, n) [12]. For numerical stability, it may be
advisable to start the recurrence with C′(n, n) = n!/nn and
C′(n− 1, n) = 2(n− 1)C′(n, n).

Method CG (clustgram): The clustgram models have been
recently introduced in [13] as an extension of the IH. This
novel density estimator is promising, but so far it has only
been applied to a very limited number of examples. In the
case of CG, the cut points of the partitions belong to a
grid of type G. More importantly, the estimator is a mixture
of densities selected from the following family: uniform,
shifted exponential, Laplace, normal, shifted half-normal. The
selection process is based on a variant of NML [13].

Method RMG (Rozenholc-Mildenberger-Gather): Rely-
ing on the theoretical results from [4], the authors of [11]
derived a PML criterion for which the penalty term has the
expression: n · penRMG(M) = log

(
n−1
DM−1

)
+ (DM − 1) +

(logDM )5/2. The extensive experiments from [11] led to the
recommendation of restricting Mn to partitions with the cut
points on the grid defined by the measurements, instead of
taking Mn like in Theorem 1. It has been also observed
experimentally in [11] that AIC and BIC yield modest results,
and this behavior has been explained by the fact that the two
criteria “do not account for multiple partitions with the same
number of bins”.

Method MRT (Menez-Rendas-Thierry): A “corrected”
variant of BIC from [14] that solves the drawback noticed
in [11]. The formula of its penalty term is n · penMRT(M) =
log
(

n
DM−1

)
+DM log n. Like in RMG, the definition of Mn

for MRT is based on the data-dependent grid G′.

V. EMPIRICAL COMPARISON OF THE METHODS

We compare empirically the performance of the estimation
methods described in the previous section. Like in [6], [11],
our implementations are based on the dynamic programming
algorithm. If the optimal number of bins (or non-empty bins
in the case of NML-2 and CG) is selected from the set
{1, 2, . . . ,K}, then the time complexity of the algorithm is
O(Kn2). In our settings, K = min{100, d(max1≤i≤n ξi −
min1≤i≤n ξi)/δe}, where δ is the step size of the grid.

In the case of NML-1, the most difficult part is the com-
putation of C(DM , n) from (5). In our implementation, the
recursive formula from [15] is applied when n < 103, while
for larger values of n we approximate C(DM , n) by using
[16, Eq. (9)]. Another important aspect is related to the fact
that at most n of the intervals of the regular grid can contain
measurements. Hence, the computational effort is lowered if
each block of consecutive empty intervals is handled as a
single large interval. In our settings, the step size of the regular
grid is δ = 2 · 10−2. Additionally, we noticed in most of the



experiments that the step size values 2 · 10−4 or 2 · 10−6 lead
to slightly worse estimation results.

In comparison with NML-1, the method NML-2 uses less
computational resources because we need to maintain infor-
mation only about the non-empty intervals of the regular
grid. Moreover, since we wanted the method not to involve
arbitrarily chosen parameters, we have selected the step size
of the grid for NML-2 from the set {20, 2−1, . . . , 2−19} by
minimizing the criterion whose penalty is given in (10).

Following the recommendations from [11], we used the
grid G′ for RMG and MRT. To have a safeguard against
extremely narrow bins, we limited the smallest possible bin
width to δ = 2 · 10−6. The values of parameters used in the
implementation of CG are: ε = 0.001, a = 100, b = 16 (see
[13] for more clarifications on the significance and selection
of the parameters).

We tested the estimation methods by using
50 different source distributions, including simple
distributions and finite mixtures. For all sample sizes
n ∈ {50, 100, 200, 400, 800, 1600, 3200} we generated 100
random samples. Remark that not all the distributions
that were used in the tests satisfy the assumptions from
Theorem 1. For each realization, we defined the grid G
on the interval [min1≤i≤n ξi,max1≤i≤n ξi]. Given s∗ and
the sample size n, E[h2(s∗, ŝn(M̂))] was approximated by
replacing the expectation operator with an average over the
100 realizations. Furthermore, like in [14], we employed the
estimated distribution to get an estimate of the entropy. The
results of four typical test cases are plotted in Fig. 1.

When the distribution was a mixture with clearly separated
components resembling the types in the palette of CG (Ex-
amples 1 and 2), CG was the best in density estimation, but
not necessarily in entropy estimation. In Example 1 we have a
mixture of six normals. For the largest sample size (n = 3200),
CG selected the correct number and types of components
in 75% of the cases. Whenever the source distribution had
strongly overlapping components, CG was not superior to the
other methods. The richness of the family of distributions
from which the components are selected was a pitfall for CG
in Example 3: When 400 ≤ n ≤ 3200, CG modelled the
measurements with exactly one normal distribution, making
the estimation performance to be moderate. Only when we
increased the sample size further to n = 6400, CG started to
include more components in the model.

In the evaluation of the IH methods, a direct comparison
of the effect of the penalty itself is possible only between
RMG and MRT, because, in both cases, the grid as well as
the search procedures are the same. In our tests, RMG was
consistently slightly better in density estimation than MRT,
but MRT estimated the entropy of unimodal distributions
usually better (Examples 1–2 vs. Example 3). The grid used
by RMG and MRT ensures that there are no empty bins in
the resulting histogram. In the case of three well separated
uniform components (not shown in Fig. 1) the consequence
was that RMG and MRT overestimated the entropy while
NML-1, NML-2 and CG were somewhat more accurate and

prone to underestimation.
It is worth mentioning that NML-2 worked often well with

ragged multimodal source distributions, which turned out to
be difficult for the other methods when the sample size was
small (Examples 1 and 4). For a better understanding of
this behavior, we provide some more statistics concerning
Example 4, where s∗ is a mixture of five uniform distributions:
When n = 50, NML-2 used systematically a coarse grid and
the average number of non-empty bins in the resulting IH was
about seven, whereas NML-1 selected the IH model with one
single bin in most of the cases.

VI. CONCLUSION

We showed that the risk bound analysis from [4] is of little
practical value for the NML-1 penalty term. However, in our
simulations the performance of NML-1 in terms of SHD was
similar to that of RMG which has been specially designed to
minimize the statistical risk. Like RMG and MRT, the novel
NML-2 is a fully automatic method that seems to be suitable
for density and entropy estimation of ragged multimodal
distributions. In some cases, CG achieves a significantly lower
statistical risk than the IH methods.
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[6] P. Kontkanen and P. Myllymäki, “MDL histogram density estimation,” in
Proc. 11th Int. Workshop on Artificial Intelligence and Statistics, 2007.

[7] A. Saumard, “Estimation par minimum de contraste régulier et heuris-
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[15] P. Kontkanen and P. Myllymäki, “A linear-time algorithm for computing
the multinomial stochastic complexity,” Inform. Process. Lett., vol. 103,
no. 6, pp. 227–233, 2007.

[16] W. Szpankowski, “On asymptotics of certain recurrences arising in
universal coding,” Probl. Inf. Transm., vol. 34, no. 2, pp. 142–146, 1998.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -3 -2 -1  0  1  2  3

 0.001

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

Example 1. Mixture of 6 normal distributions: Z = R, s∗ = 32
63
ϕ(− 31

21
, 32

2

632
) + 16

63
ϕ( 17

21
, 16

2

632
) + 8

63
ϕ( 41

21
, 82

632
) + 4

63
ϕ( 53

21
, 42

632
) +

2
63
ϕ( 59

21
, 22

632
) + 1

63
ϕ( 62

21
, 12

632
), where ϕ(µ, σ2) is the density function of a normal distribution with mean µ and variance σ2.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

-30 -20 -10  0  10  20  30

 0.001

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

Example 2. Mixture of 2 shifted exponential and 2 normal distributions: Z = R, s∗ = 0.1f1 + 0.3ϕ(−10, 32) + 0.4ϕ(0, 22) + 0.2f2
where f1(z) = exp(−(−20− z))1]−∞,−20](z) and f2(z) = 0.2 exp(−(z − 8)/5)1[8,∞[(z).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5  0  0.5  1  1.5

 0.01

 0.1

 50  100  200  400  800  1600  3200

NML-1

NML-2

CG

RMG

MRT

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

n = 50 n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

NML-1

NML-2

CG

RMG

MRT

Example 3. Triangular distribution: Z = [−1, 1], s∗(z) = z + 1 if z ∈ [−1, 0] and s∗(z) = 1− z if z ∈]0, 1].
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Example 4. Mixture of 5 uniform distributions: Z = [−9, 9], s∗ = (1/5)
∑5

m=1 U(Im) , where Im = [−13 + 4m,−11 + 4m] for all
m ∈ {1, . . . , 5} and U(I) is the density function of a uniform distribution on the interval I.

Fig. 1. Comparison of the five methods in density and entropy estimation. The source distributions are shown in the leftmost column. In the middle column,
the average squared Hellinger distances to the true distribution are presented on a logarithmic scale. The estimated entropies in nats are plotted as error bars
in the rightmost column, the centre point of a bar indicating the average and the total height of a bar corresponding to two sample standard deviations. The
horizontal line indicates the true value of entropy in nats.


