SUPPLEMENTAL MATERIAL TO: "ON THE NUMBER OF ITERATIONS FOR THE MATCHING PURSUIT ALGORITHM"

Fangyao Li ${ }^{1}$, Christopher M. Triggs ${ }^{1}$, Bogdan Dumitrescu ${ }^{2}$, Ciprian Doru Giurcăneanu ${ }^{1}$

${ }^{1}$ Department of Statistics
University of Auckland

Private Bag 92019, Auckland 1142, New Zealand

1. PROOFS FOR PROPOSITIONS 3.1-3.3

In this document, we use the same notation as in [1]. Additionally, for an arbitrary matrix \mathbf{M}, we have that $\operatorname{Ker}(\mathbf{M})=$ $\{\mathbf{v}: \mathbf{M v}=0\}$.

We need the following technical results:
Result 1. Let $\overline{\mathbf{x}}, \mathbf{y} \in \mathbb{R}^{n}$ such that $\|\overline{\mathbf{x}}\|=1$ and $\mathbf{y} \neq \mathbf{0}$. With the convention that $\mathbf{P}=\overline{\mathbf{x}} \overline{\mathbf{x}}^{\top}$, we have:

$$
\begin{equation*}
\|(\mathbf{I}-\nu \mathbf{P}) \mathbf{y}\| \leq\|\mathbf{y}\| \text { if } \nu \in(0,1] . \tag{1}
\end{equation*}
$$

The equality is achieved if and only if $\overline{\mathbf{x}}^{\top} \mathbf{y}=0$.
Proof. The result can be established by observing that $\|(\mathbf{I}-$ $\nu \mathbf{P}) \mathbf{y} \|^{2}=\mathbf{y}^{\top}(\mathbf{I}-\nu \mathbf{P})^{2} \mathbf{y}$ and the largest eigenvalue of the symmetric matrix $(\mathbf{I}-\nu \mathbf{P})^{2}$ is equal to one. Then (1) is a consequence of the well-known Rayleigh inequality.

Result 2. For $\mathbf{y} \in \mathbb{R}^{n}$, we have that $\left\|\mathbf{A}_{m} \mathbf{y}\right\| \leq\|\mathbf{y}\|$ when $m \geq 1$.

Proof. Using the notation $\mathbf{A}_{0}=\mathbf{I}$, Result 1 implies that $\|(\mathbf{I}-$ $\left.\nu \mathbf{P}_{s(j+1)}\right)\left(\mathbf{A}_{j} \mathbf{y}\right)\|\leq\| \mathbf{A}_{j} \mathbf{y} \|$ for all $0 \leq j \leq m-1$. This leads straightforwardly to Result 2.

Result 3. The following identity holds true for $m \geq 1$:
$\operatorname{tr}\left(\mathbf{B}_{m+1}-\mathbf{B}_{m}\right)=\nu \operatorname{tr}\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right)$.
Proof. We can readily write the identities: $\operatorname{tr}\left(\mathbf{B}_{m+1}-\mathbf{B}_{m}\right)=$ $\operatorname{tr}\left[\left(\mathbf{I}-\mathbf{A}_{m+1}\right)-\left(\mathbf{I}-\mathbf{A}_{m}\right)\right]=\operatorname{tr}\left(\mathbf{A}_{m}-\mathbf{A}_{m+1}\right)$
$=\operatorname{tr}\left[\mathbf{A}_{m}-\left(\mathbf{I}-\nu \mathbf{P}_{s(m+1)}\right) \mathbf{A}_{m}\right]=\nu \operatorname{tr}\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right)$.
Proof of Prop. 3.1: An important consequence of Result 3 is that, for proving Prop. 3.1, it suffices to demonstrate the inequality $\operatorname{tr}\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right) \leq 1$. The fact that $\operatorname{rank}\left(\mathbf{P}_{s(m+1)}\right)=$ 1 implies $\operatorname{rank}\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right) \leq 1$. Additionally, we have that $\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right) \overline{\mathbf{x}}_{s(m+1)}=\left(\overline{\mathbf{x}}_{s(m+1)} \overline{\mathbf{x}}_{s(m+1)}^{\top}\right) \mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}=$ $\left(\overline{\mathbf{x}}_{s(m+1)}^{\top} \mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}\right) \overline{\mathbf{x}}_{s(m+1)}$, which demonstrates that the

[^0]${ }^{2}$ Department of Automatic Control and Computers University Politehnica of Bucharest
313 Spl. Independenţei, 060042 Bucharest, Romania

only non-zero eigenvalue of $\mathbf{P}_{s(m+1)} \mathbf{A}_{m}$ is $\overline{\mathbf{x}}_{s(m+1)}^{\top} \mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}$. Hence, we get:

$$
\begin{align*}
\left|\operatorname{tr}\left(\mathbf{P}_{s(m+1)} \mathbf{A}_{m}\right)\right| & =\left|\overline{\mathbf{x}}_{s(m+1)}^{\top} \mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}\right| \\
& \leq\left\|\overline { \mathbf { x } } _ { s (m + 1) } \left|\left\|\mid \mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}\right\|\right.\right. \tag{2}\\
& =\left\|\mathbf{A}_{m} \overline{\mathbf{x}}_{s(m+1)}\right\| \\
& \leq\left\|\overline{\mathbf{x}}_{s(m+1)}\right\|=1 \tag{3}
\end{align*}
$$

The inequality in (2) is obtained by using the properties of the scalar product [2, Th. 1.1], while the inequality in (3) is based on Result 2.

The equality holds in [1, Eq. (5)] if and only if we have simultaneously equalities in (2) and (3). As we know from Result 1 that $\left\|\left(\mathbf{I}-\nu \mathbf{P}_{s(j)}\right) \overline{\mathbf{x}}_{s(m+1)}\right\| \leq\left\|\overline{\mathbf{x}}_{s(m+1)}\right\|$ for any $j \in\{1, \ldots, m\}$, the only possibility for having equality in [1, Eq. (5)] is $\overline{\mathbf{x}}_{s(m+1)} \in \bigcap_{j=1}^{m} \operatorname{Ker}\left(\mathbf{P}_{s(j)}\right)$. The condition is equivalent to $\overline{\mathbf{x}}_{s(m+1)}^{\top} \overline{\mathbf{x}}_{s(j)}=0$ for all $j \in\{1, \ldots, m\}$.
Proof of Prop. 3.2: (i) Using the identity in [1, Eq. (1)], it is easy to show that \mathbf{B}_{m} is idempotent if and only if \mathbf{A}_{m} is idempotent. Another important observation is that $\operatorname{det}\left(\mathbf{A}_{m}\right)=$ $(1-\nu)^{m}$, where $\operatorname{det}(\cdot)$ denotes the determinant. This is a consequence of the fact that $\operatorname{det}\left(\mathbf{I}-\nu \mathbf{P}_{s(j)}\right)=1-\nu$ for $j \in\{1, \ldots, m\}$. As $\nu \in(0,1)$, we have $\operatorname{det}\left(\mathbf{A}_{m}\right) \in(0,1)$. Therefore, \mathbf{A}_{m} is not idempotent because the determinant of an idempotent matrix can only be zero or one.
(ii) We have from hypothesis that $\mathbf{P}_{s(i)} \mathbf{P}_{s(j)}=\mathbf{0}$ for $m \geq$ $i>j \geq 1$. This property together with the identities in [1, Eqs. (3)-(4)] lead to the conclusion that $\mathbf{A}_{m}=\mathbf{I}-\left(\mathbf{P}_{s(m)}+\right.$ $\left.\cdots+\mathbf{P}_{s(1)}\right)$. It follows from [1, Eq. (1)] that $\mathbf{B}_{m}=\mathbf{P}_{s(m)}+$ $\cdots+\mathbf{P}_{s(1)}$. It is easy to check that \mathbf{B}_{m} is idempotent and symmetric.
Proof of Prop. 3.3: (i) Assume that

$$
\begin{align*}
\mathbf{A}_{m}^{\top} \mathbf{A}_{m}+\mathbf{B}_{m}^{\top} \mathbf{B}_{m} & =\mathbf{I}, \text { or equivalently } \tag{4}\\
2 \mathbf{A}_{m}^{\top} \mathbf{A}_{m}-\mathbf{A}_{m}-\mathbf{A}_{m}^{\top} & =\mathbf{0} \tag{5}
\end{align*}
$$

Let \mathbf{v} be an eigenvector of \mathbf{A}_{m} corresponding to the eigenvalue λ. Using the fact that $\mathbf{A}_{m} \mathbf{v}=\lambda \mathbf{v}$ together with (5), we get: (a) $\mathbf{A}_{m}^{\top} \mathbf{v}=\frac{\lambda}{2 \lambda-1} \mathbf{v}$, which shows that $\frac{\lambda}{2 \lambda-1}$ is an eigenvalue for \mathbf{A}_{m}^{\top}. As the eigenvalues of \mathbf{A}_{m}^{\top} are the same with

ς^{2}	ν	SC_{1}	SC_{2}	ESC_{1}	ESC_{2}	gMDL_{1}	gMDL_{2}	EgMDL $_{1}$	EgMDL_{2}	BIC	EBIC	AIC_{C}
Model 1												
8.0	0.95	0.1933	0.1933	0.1745	0.1736	0.1932	0.1933	0.1747	0.1682	0.1941	0.1941	0.1927
8.0	0.10	0.1263	0.1263	0.1262	0.1263	0.1263	0.1263	0.1262	0.1262	0.1265	0.1265	0.1259
0.2	0.95	1.8986	1.8985	0.9257	0.9170	1.8979	1.8980	0.9417	0.9257	1.9049	1.9049	1.8761
0.2	0.10	1.1261	1.1265	1.1255	1.1256	1.1261	1.1261	1.1254	1.1254	1.1279	1.1279	1.1047
Model 2												
8.0	0.95	0.0163	0.0163	0.0132	0.0132	0.0163	0.0163	0.0134	0.0133	0.0163	0.0163	0.0163
8.0	0.10	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0113	0.0112
0.2	0.95	0.0584	0.0584	0.0266	0.0265	0.0584	0.0584	0.0273	0.0271	0.0586	0.0586	0.0576
0.2	0.10	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	0.0362	0.0355
Model 3												
8.0	0.95	1.06	1.06	0.87	0.87	1.06	1.06	0.87	0.87	1.06	1.06	1.06
8.0	0.10	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
0.2	0.95	9.61	9.61	4.50	4.50	9.61	9.61	4.55	4.55	9.65	9.65	9.48
0.2	0.10	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.55	5.56	5.56	5.41
Model 4												
8.0	0.95	8.10	8.10	6.31	6.28	8.10	8.10	6.38	6.37	8.10	8.10	8.08
8.0	0.10	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.44	5.43
0.2	0.95	31.51	31.51	14.94	14.94	31.51	31.51	15.08	14.94	31.58	31.58	30.94
0.2	0.10	18.92	18.92	18.91	18.91	18.92	18.92	18.90	18.91	18.95	18.95	18.59

Table 1. MISE computed for various IT criteria by applying the formula in [1, Eq. (15)] when $n=20$. For each row of the table, or equivalently for each pair $\left(\varsigma^{2}, \nu\right)$, we show in bold the results which are within a range of 5% from the minimum value on that row.
the eigenvalues of \mathbf{A}_{m}, it follows that $\frac{\lambda}{2 \lambda-1}$ is also an eigenvalue for \mathbf{A}_{m}. (b) $\left(\mathbf{A}_{m}^{\top} \mathbf{A}_{m}\right) \mathbf{v}=\frac{\lambda^{2}}{2 \lambda-1} \mathbf{v}$, which demonstrates that $\frac{\lambda^{2}}{2 \lambda-1}$ is an eigenvalue for $\mathbf{A}_{m}^{\top} \mathbf{A}_{m}$. Since we know from the proof of Prop. 3.2(i) that $\operatorname{det}\left(\mathbf{A}_{m}\right)=(1-\nu)^{m}>0$, we have that the symmetric matrix $\mathbf{A}_{m}^{\top} \mathbf{A}_{m}$ is positive definite. Hence, all the entries of \mathbf{v} are real-valued and $\lambda>1 / 2$.

The considerations above imply that the positive numbers λ and $\frac{\lambda}{2 \lambda-1}$ are eigenvalues for \mathbf{A}_{m}. An important consequence of Result 2 is that both eigenvalues are less than or equal to one. However, if $\lambda \leq 1$, then $\frac{\lambda}{2 \lambda-1} \geq 1$. Therefore, we need to have $\lambda=1$. In other words, all eigenvalues of \mathbf{A}_{m} are equal to one, which we know it is not possible because $\operatorname{det}\left(\mathbf{A}_{m}\right)=(1-\nu)^{m}<1$. We obtained this contradiction because we have assumed that the identity in (4) holds true.
(ii) We have from the proof of Prop. 3.2(ii) that \mathbf{A}_{m} is idempotent and symmetric, therefore the identity in (5) is true.

2. ADDITIONAL RESULTS

For illustrating the case when $p_{n}>n$ (overcomplete dictionary), we repeat the experiments presented in [1] for $n=20$. All other experimental settings are the same as in [1, Sec. 5]. The results are reported in Table 1.

3. REFERENCES

[1] F. Li, C.M. Triggs, B. Dumitrescu, and C.D. Giurcăneanu, "On the number of iterations for the matching pursuit algorithm,"

EUSIPCO 2017.

[2] H. Yanai, K. Takeuchi, and Y. Takane, Projection matrices, generalized inverse matrices, and singular value decomposition, Springer Science+Business Media, 2011.

[^0]: E-mails: lfan523@aucklanduni.ac.nz, cm.triggs@auckland.ac.nz, bogdan.dumitrescu@acse.pub.ro, c.giurcaneanu@auckland.ac.nz.

