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1. PROOFS FOR PROPOSITIONS 3.1-3.3

In this document, we use the same notation as in [1]. Addi-
tionally, for an arbitrary matrix M, we have that Ker(M) =
{v : Mv = 0}.

We need the following technical results:

Result 1. Let x̄,y ∈ Rn such that ||x̄|| = 1 and y ̸= 0. With
the convention that P = x̄x̄⊤, we have:

||(I− νP)y|| ≤ ||y|| if ν ∈ (0, 1]. (1)

The equality is achieved if and only if x̄⊤y = 0.

Proof. The result can be established by observing that ||(I−
νP)y||2 = y⊤(I − νP)2y and the largest eigenvalue of the
symmetric matrix (I − νP)2 is equal to one. Then (1) is a
consequence of the well-known Rayleigh inequality.

Result 2. For y ∈ Rn, we have that ||Amy|| ≤ ||y|| when
m ≥ 1.

Proof. Using the notation A0 = I, Result 1 implies that ||(I−
νPs(j+1))(Ajy)|| ≤ ||Ajy|| for all 0 ≤ j ≤ m − 1. This
leads straightforwardly to Result 2.

Result 3. The following identity holds true for m ≥ 1:
tr(Bm+1 −Bm) = νtr(Ps(m+1)Am).

Proof. We can readily write the identities: tr(Bm+1−Bm) =
tr [(I−Am+1)− (I−Am)] = tr(Am −Am+1)
= tr

[
Am − (I− νPs(m+1))Am

]
= νtr(Ps(m+1)Am).

Proof of Prop. 3.1: An important consequence of Result 3 is
that, for proving Prop. 3.1, it suffices to demonstrate the in-
equality tr(Ps(m+1)Am) ≤ 1. The fact that rank(Ps(m+1)) =
1 implies rank(Ps(m+1)Am) ≤ 1. Additionally, we have
that (Ps(m+1)Am)x̄s(m+1) = (x̄s(m+1)x̄

⊤
s(m+1))Amx̄s(m+1) =

(x̄⊤
s(m+1)Amx̄s(m+1))x̄s(m+1), which demonstrates that the
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only non-zero eigenvalue of Ps(m+1)Am is x̄⊤
s(m+1)Amx̄s(m+1).

Hence, we get:

|tr(Ps(m+1)Am)| = |x̄⊤
s(m+1)Amx̄s(m+1)|

≤ ||x̄s(m+1)||||Amx̄s(m+1)|| (2)
= ||Amx̄s(m+1)||
≤ ||x̄s(m+1)|| = 1. (3)

The inequality in (2) is obtained by using the properties of the
scalar product [2, Th. 1.1], while the inequality in (3) is based
on Result 2.

The equality holds in [1, Eq. (5)] if and only if we have
simultaneously equalities in (2) and (3). As we know from
Result 1 that ||(I − νPs(j))x̄s(m+1)|| ≤ ||x̄s(m+1)|| for any
j ∈ {1, . . . ,m}, the only possibility for having equality in
[1, Eq. (5)] is x̄s(m+1) ∈

∩m
j=1 Ker(Ps(j)). The condition is

equivalent to x̄⊤
s(m+1)x̄s(j) = 0 for all j ∈ {1, . . . ,m}.

Proof of Prop. 3.2: (i) Using the identity in [1, Eq. (1)], it is
easy to show that Bm is idempotent if and only if Am is idem-
potent. Another important observation is that det(Am) =
(1 − ν)m, where det(·) denotes the determinant. This is a
consequence of the fact that det(I − νPs(j)) = 1 − ν for
j ∈ {1, . . . ,m}. As ν ∈ (0, 1), we have det(Am) ∈ (0, 1).
Therefore, Am is not idempotent because the determinant of
an idempotent matrix can only be zero or one.

(ii) We have from hypothesis that Ps(i)Ps(j) = 0 for m ≥
i > j ≥ 1. This property together with the identities in [1,
Eqs. (3)-(4)] lead to the conclusion that Am = I− (Ps(m) +
· · ·+Ps(1)). It follows from [1, Eq. (1)] that Bm = Ps(m)+
· · · + Ps(1). It is easy to check that Bm is idempotent and
symmetric.
Proof of Prop. 3.3: (i) Assume that

A⊤
mAm +B⊤

mBm = I, or equivalently, (4)
2A⊤

mAm −Am −A⊤
m = 0. (5)

Let v be an eigenvector of Am corresponding to the eigen-
value λ. Using the fact that Amv = λv together with (5), we
get: (a) A⊤

mv = λ
2λ−1v, which shows that λ

2λ−1 is an eigen-
value for A⊤

m. As the eigenvalues of A⊤
m are the same with



ς2 ν SC1 SC2 ESC1 ESC2 gMDL1 gMDL2 EgMDL1 EgMDL2 BIC EBIC AICC

Model 1
8.0 0.95 0.1933 0.1933 0.1745 0.1736 0.1932 0.1933 0.1747 0.1682 0.1941 0.1941 0.1927
8.0 0.10 0.1263 0.1263 0.1262 0.1263 0.1263 0.1263 0.1262 0.1262 0.1265 0.1265 0.1259
0.2 0.95 1.8986 1.8985 0.9257 0.9170 1.8979 1.8980 0.9417 0.9257 1.9049 1.9049 1.8761
0.2 0.10 1.1261 1.1265 1.1255 1.1256 1.1261 1.1261 1.1254 1.1254 1.1279 1.1279 1.1047

Model 2
8.0 0.95 0.0163 0.0163 0.0132 0.0132 0.0163 0.0163 0.0134 0.0133 0.0163 0.0163 0.0163
8.0 0.10 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0112
0.2 0.95 0.0584 0.0584 0.0266 0.0265 0.0584 0.0584 0.0273 0.0271 0.0586 0.0586 0.0576
0.2 0.10 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0362 0.0355

Model 3
8.0 0.95 1.06 1.06 0.87 0.87 1.06 1.06 0.87 0.87 1.06 1.06 1.06
8.0 0.10 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
0.2 0.95 9.61 9.61 4.50 4.50 9.61 9.61 4.55 4.55 9.65 9.65 9.48
0.2 0.10 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.56 5.56 5.41

Model 4
8.0 0.95 8.10 8.10 6.31 6.28 8.10 8.10 6.38 6.37 8.10 8.10 8.08
8.0 0.10 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.43
0.2 0.95 31.51 31.51 14.94 14.94 31.51 31.51 15.08 14.94 31.58 31.58 30.94
0.2 0.10 18.92 18.92 18.91 18.91 18.92 18.92 18.90 18.91 18.95 18.95 18.59

Table 1. MISE computed for various IT criteria by applying the formula in [1, Eq. (15)] when n = 20. For each row of the
table, or equivalently for each pair (ς2, ν), we show in bold the results which are within a range of 5% from the minimum value
on that row.

the eigenvalues of Am, it follows that λ
2λ−1 is also an eigen-

value for Am. (b) (A⊤
mAm)v = λ2

2λ−1v, which demonstrates

that λ2

2λ−1 is an eigenvalue for A⊤
mAm. Since we know from

the proof of Prop. 3.2(i) that det(Am) = (1 − ν)m > 0, we
have that the symmetric matrix A⊤

mAm is positive definite.
Hence, all the entries of v are real-valued and λ > 1/2.

The considerations above imply that the positive numbers
λ and λ

2λ−1 are eigenvalues for Am. An important conse-
quence of Result 2 is that both eigenvalues are less than or
equal to one. However, if λ ≤ 1, then λ

2λ−1 ≥ 1. There-
fore, we need to have λ = 1. In other words, all eigenvalues
of Am are equal to one, which we know it is not possible
because det(Am) = (1− ν)m < 1. We obtained this contra-
diction because we have assumed that the identity in (4) holds
true.

(ii) We have from the proof of Prop. 3.2(ii) that Am is
idempotent and symmetric, therefore the identity in (5) is true.

2. ADDITIONAL RESULTS

For illustrating the case when pn > n (overcomplete dictio-
nary), we repeat the experiments presented in [1] for n = 20.
All other experimental settings are the same as in [1, Sec. 5].
The results are reported in Table 1.
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