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Abstract— The paper is focused on the problem of discrete
universal denoising: one estimates the input sequence to a
discrete channel based on the observation of the entire output
signal, and without assuming any particular knowledge on the
statistical properties of the input sequence. A 2k + 1 sliding
window denoiser (DUDE) has recently been introduced, and its
asymptotic optimality was proven in the case of memoryless
channels and additive channels with memory. However, DUDE
is computationally infeasible for large values of its context
parameter k. The purpose of this paper is to further investigate
DUDE in the case of channels with memory. First, for the
important family of binary additive channels, we propose H-
DUDE, a computationally feasible implementation of DUDE. It
modifies the DUDE algorithm to exploit the property of the block
transition probability matrix to be diagonalized by the Hadamard
transform. H-DUDE accommodates large values of k, and we
demonstrate this for the particular case of the finite-memory
contagion channel. Second, we apply DUDE for a non-additive
channel model that was previously used in design of stack filters
to show its favorable performance.

I. INTRODUCTION

Denoising is a time honored problem, and many approaches

have been already proposed, but most of them assume that the

models are either continuous or are known in the discrete case

for both the signal and the noise. The problem of discrete

universal denoising is to estimate the input sequence to a

discrete channel based on the observation of the entire output

signal, and without assuming any particular knowledge on the

statistical properties of the input sequence. The state of the art

algorithm for discrete universal denoising is dubbed DUDE

and it was originally introduced in [1]. DUDE assumes that

the channel is memoryless and known a priori. In [2] DUDE

is extended for additive memory channels, and experimental

results are reported for the particular case of burst noise

channel [3][4]. We will use in the sequel the name DUDE

for the denoising algorithm described in [2]. More theoretical

results and extensions for this algorithm can be found in [5].

The kernel of DUDE is a 2k + 1 sliding window denoiser.

Since the probabilities for the 2k + 1-tuple of the original

signal are not known a priori, DUDE estimates them from

the noisy signal. It was pointed out in [2] that increasing

the value of k can improve the denoising performances,

but the results are reported only for small values of k due

to computational burdens. When the symbols at the input

and the output of the channel are from a binary alphabet,

the direct application of DUDE leads to the computation

of the inverse for a 22k+1 × 22k+1 matrix, which prevents

the use of the denoiser for k larger than five. The solution

proposed in [2] to lower the computational complexity relies

on a supplementary hypothesis that the noiseless source is

Markov with order no greater than 2k′, where the value of

k′ is empirically chosen. Since it was already proven that

DUDE is asymptotically optimal under mild conditions for

the noise sequence [2], it is highly desirable to investigate

experimentally the performances of DUDE for large values of

the parameter k and for various channel models.

In this paper we assume that the symbols in the noiseless

and noisy sequences are from the binary alphabet A = {0, 1}.

Our choice is supported by the fundamental role of binary

case in discrete denoising. We show that for additive channels

the computation of the inverse of a huge matrix can be

circumvented by exploiting the property of the block transition

probability matrix to be diagonalized by the Hadamard trans-

form. To illustrate the procedure, we apply it for the finite-

memory contagion channel [6], which was used during the

last years in several joint source-channel coding studies, see

for example [7] and the references therein. We investigate also

the use of DUDE in the case when the original signal and the

channel errors are assumed to be statistically independent, but

the output of the channel is not simply the sum modulo two

of the two sequences.

The rest of the paper is organized as follows. In Section II

we revisit the DUDE algorithm for memory channels relying

on results from [1] and [2]. For the family of binary additive

channels, Section III-A outlines a modified DUDE algorithm

that accommodates large values of the context parameter k.

The newly proposed algorithm is applied in Section III-B to

the particular case of the finite-memory contagion channel. To

complete the analysis, we investigate in Section IV the DUDE

performances for a non-additive binary channel.

II. THE DUDE ALGORITHM REVISITED

To outline the main steps of the algorithm we need to

introduce some notations and definitions. For the underlying

signal we employ the notation Xn = X1 . . . Xn when re-

ferring to the corresponding stochastic process, and xn =



x1 . . . xn when referring to a specific realization. Similarly

the stochastic process that models the output of the channel

is Zn = Z1 . . . Zn, and a specific realization is denoted

zn = z1 . . . zn. We use the notation X̂k
zn for the DUDE

denoiser, with the convention that X̂k
zn(t) is the estimated

binary symbol for an arbitrary index t between 1 and n. We

emphasis here that for each t, X̂k
zn(t) is evaluated only after

the whole sequence zn was received.

The input sequence is estimated by DUDE such that to

minimize a loss criterion. To be more precise let us assume

that Λ is a square matrix with nonnegative entries, where

Λ(i, j) is the loss incurred by estimating the symbol i with the

symbol j. To simplify the notations, we assume that indices

in vectors and matrices are beginning from zero. DUDE

is designed to minimize the normalized total loss criterion

1

n

n∑
t=1

Λ
(
xt, X̂

k
zn(t)

)
. The 2k + 1 sliding window denoiser

that solves the optimization problem is X̂k
zn(t) = Dk

zn
(zt+k

t−k),
and the definition of the mapping Dk

zn : A2k+1 → A is given

by Dk
zn(zk

−k) = arg minx λ
�
x PX|zk

−k

, where λx is the column

of Λ that corresponds to symbol x, and the symbol � denotes

transposition. PX|zk

−k

is a column vector with two entries:

PX|zk

−k

(x) = P (X = x|Zk
−k = zk

−k)∀x ∈ A.

When the loss function is measured by the Hamming

distance, the columns of Λ matrix are λ0 = [0 1]� and

λ1 = [1 0]�. With the convention that ⊕ denotes the addition

modulo two, the following identities are readily obtained:

Dk
zn

(zk
−k) = arg min

x
P (X = (x ⊕ 1)|Zk

−k = zk
−k)

= arg max
x

P (X = x|Zk
−k = zk

−k)

= arg max
x

∑
xk

−k
:x0=x

PXk

−k
|zk

−k

(xk
−k) (1)

The column vector PXk

−k
|zk

−k

has 22k+1 entries such that for

each index i ∈ {0, . . . , 22k+1 − 1}, PXk

−k
|zk

−k

(i) = P (Xk
−k =

i|Zk
−k = zk

−k), where i is the binary representation of i written

with 2k + 1 bits. Whenever necessary to refer to the binary

representation of a nonnegative integer, we will underline its

symbol.

Calculations based on Bayes’ rule lead to

PXk

−k
|zk

−k

∝ Pzk

−k
|Xk

−k

� PXk

−k

, (2)

where ∝ indicates equality up to normalization and � denotes

componentwise multiplication of vectors. PXk

−k

is the vector

of probabilities for the 2k+1-tuple of the noiseless signal, and

its entries must be estimated from the received sequence zn.

The key role in this estimation is played by the block transition

probability matrix Q with entries Q(i, j) = P (Zk
−k =

j|Xk
−k = i), where i and j are binary strings formed by the

2k + 1-bit representation of the nonnegative integers i and j,

respectively. We remark that Pzk

−k
|Xk

−k

is the column of Q

with index zk
−k, or equivalently we can write with Matlab-like

notations that Pzk

−k
|Xk

−k

= Q(:, zk
−k). Under the hypothesis

that Q is nonsingular, the distributions of 2k + 1-tuple for

noiseless and noisy signals verify: PXk

−k

= Q−�PZk

−k

. The

empirical distribution P̂Zk

−k

of the noisy 2k + 1-tuple can be

easily obtained from zn as

P̂Zk

−k

(i) =
1

n − 2k

n−k∑
t=k+1

1(zt+k
t−k , i) (3)

for each i ∈ {0, . . . , 22k+1−1}. The function 1(zt+k
t−k , i) takes

value one whenever the binary strings zt+k
t−k and i are equal,

and is zero otherwise. Consequently we can write P̂Xk

−k

=

Q−�P̂Zk

−k

, and together with (2), we obtain:

P̂Xk

−k
|zk

−k

= Q(:, zk
−k) �

[
Q−�P̂Zk

−k

]
(4)

The equations (1)-(4) suggest the steps of the denoising

algorithm. During the first pass through data zn, the number

of occurrences of each binary context with length 2k + 1
is counted. The empirical distribution P̂

Z
t+k

t−k

is computed

according to (3), and the output of the denoising mapping is

evaluated by using (1) and (4) . In the second pass, the estimate

X̂k
zn(t) is obtained for each t by observing the context zt+k

t−k

and applying the denoising mapping. We show in the next

section how can be surmounted the difficulties related to the

computation and storage of Q−�.

III. ADDITIVE NOISE CHANNEL

A. Applying Hadamard transform in discrete denoising

We focus now on the case when the input-output depen-

dence of the channel is described by Zt = Xt ⊕ Nt, where

t ∈ {1, . . . , n}, and Nn is the noise process. We mention that

this class of channel models is very important since encom-

passes famous models like the burst-error channel [3][4] and

the finite-memory contagion channel [6]. The computational

improvement that we propose for DUDE is based on the

fundamental result below.

Proposition 3.1: [8] For any binary additive channel for

which Xn and Nn are statistically independent, the block

channel transition matrix Q has the following properties:

(a) Q is dyadic, i.e. two entries Q(i, j) and Q(i′, j′) are equal

if i ⊕ j = i′ ⊕ j′;
(b) The Hadamard transform of the column of Q indexed

with zero is the vector having as entries the eigenvalues

of Q: [�0 . . . �22k+1−1]
� = H22k+1Q(:, 0), where H22k+1

is the Hadamard matrix of order 22k+1;

(c) Q =
1

22k+1
H22k+1 ×L×H22k+1 , where L is a diagonal

matrix with entries �0, . . . , �22k+1−1.

Note that for each k ≥ 1, H22k+1 = H2 ⊗ · · · ⊗H2︸ ︷︷ ︸
2k+1

, where

H2 =

[
1 1
1 −1

]
and ⊗ denotes the Kronecker product. We

will use the notation H(v) for the Hadamard transform of an

arbitrary vector v. We outline in Figure 1 the new H-DUDE

algorithm (H for Hadarmard). Since each dyadic matrix is

symmetric, Q� is replaced with Q in the description of H-

DUDE. Remark that the complexity of calculating Q−�P̂Zk

−k



Input: The context size k and the noisy sequence zn.

1. Apply (3) to calculate P̂Zk

−k

;

2. Compute the entries of Q(:, 0);
[�0 . . . �22k+1−1]

� = H (Q(:, 0));

P̂Xk

−k

= 1

22k+1H
(
[1/�0 . . . 1/�22k+1−1]

� �H
(
P̂Zk

−k

))
;

3. Evaluate the mapping Dk
zn(zk

−k) for each context zk
−k:

For zk
−k = 0 : 22k+1 − 1,

If P̂Zk

−k

(zk
−k) > 0,

For i = 0 : 22k+1 − 1,

Q(i, zk
−k) = Q(i ⊕ zk

−k, 0);
End

P̂Xk

−k
|zk

−k

= Q(:, zk
−k) � P̂Xk

−k

;

Apply (1) to compute Dk
zn(zk

−k);
End

End

4. Perform the denoising:

For t=k+1:n-k,

Evaluate X̂k
zn(t) = Dk

zn
(zt+k

t−k);
End

Fig. 1. H-DUDE: The DUDE algorithm modified to exploit the property of
binary additive channels that the block transition matrix Q is diagonalized by
the Hadamard transform. The channel is assumed to be known.

in H-DUDE is O(k22k) instead of O(26k) in DUDE, and

this is the major computational improvement introduced by

H-DUDE. Moreover, we observe from Figure 1 that H-DUDE

does not need to store all 24k+2 entries of the matrix Q , but

only the 22k+1 entries of the vector Q(:, 0).

B. Finite-memory contagion channel

We investigate the application of the H-DUDE algorithm for

the finite-memory contagion channel [6]. The noise process is

an M -th order Markov chain for which P (Nt = 1|N t−1
t−M =

nt−1
t−M ) =

(
ε + δ

∑M
i=1

nt−i

)
/ (1 + Mδ). The parameter ε is

the channel bit error rate, ε = P (N = 1), and takes values in

the interval (0, 1/2]. The nonnegative parameter δ determines

the correlation between errors at different time moments. More

precisely, the correlation coefficient between Nt and Nt−i is

given by δ
1+δ

for i ∈ {1, . . . , M}. M describes the range of

dependence in the noise process. The larger the M , the longer

the dependence range. δ is a measure on the strength of this

dependence. When δ → 0, the channel reduces to the binary

symmetric channel with parameter ε.

The finite-memory contagion channel has only three pa-

rameters (M, ε, δ) and theoretical results on its properties

are already known. For example, closed form formulae are

given in [8] for the entries of Q(:, 0), and the computational

complexity for each entry is linear in the context parameter

k. We assess experimentally the performances of H-DUDE

in four different scenarios. Since H-DUDE accommodates

large values for k, the first goal of the experiments is to

demonstrate the impact of k on the denoising results. We gain

more insights by comparing the results of DUDE with those

achieved by a 2k+1 sliding window denoiser that has complete

knowledge on the probability distribution for the 2k + 1-tuple

of the underlying process Xn. Following the nomenclature

from [2] we call this denoiser “genie-aided”. The genie-aided

denoiser outperforms all 2k +1 sliding window denoisers that

do no assume any knowledge on the source distribution. The

difference between the algorithm listed in Figure 1 and the

genie-aided denoiser consists in that the last one does not

estimate from data the entries of the vector PXk

−k

. We extend

the comparisons by reporting results obtained with the median

filter.

In the first experiment, the samples x1, . . . , xn are outcomes

from a Bernoulli model with parameter p
∆
= P (X = 0) =

0.95, and (M, ε) = (1, 0.01) for the finite-memory conta-

gion channel. We test the algorithm for various values of

the parameter δ that determines the correlation between two

adjacent noise samples. It is proven in [9] that the singlet “say-

what-you-see” is an optimal sequence maximum a posteriori

(MAP) detection rule if δ ≤ 1−ε−p
2p−1

. In our settings, the

condition becomes δ ≤ 0.044, and we choose to experiment

with four different values of δ, namely δ ∈ {0.5, 1, 2, 10}.

For each value of δ, one single realization with length 106

is generated. The denoising results expressed in terms of bit

error rate (BER) are shown in Figure 2. For easy comparison,

we plot in the same figure the results achieved by H-DUDE,

the genie-aided algorithm and the median filter, together with

BER of the noisy sequence (raw data). For all denoisers,

the window length parameter k is varied between one and

seven, and the best BER is shown in Figure 2. Note that the

median filter fails to denoise the observed sequence, and the

results of H-DUDE are very close to those of the genie-aided

algorithm. For better understanding this last fact, let us note

that for all values of δ the best BER is obtained with the H-

DUDE when k = 4, and the same is true for the genie-aided

algorithm. The difference is that for the genie-aided algorithm

the performances remain constant for all values of k ≥ 4,

while for H-DUDE the performances decrease when k takes

values larger than four. Remark for both H-DUDE and genie-

aided algorithm that the larger the value of δ, the better the

performances. This observation agrees with the statement from

[9] that the increase of noise correlation improves the results

of the MAP detector when xn is a Bernoulli string.

In the next experiments the underlying signal is a order-

1 symmetric Markov chain with parameter q
∆
= P (Xt+1 =

Xt) = 0.95. For the results shown in Figure 3 the parameters

of the finite memory contagion channel are M = 1 and ε =
0.01, the same as in the first experiment. In [9] it is proven

that in the case of symmetric Markov sources, the singlet “say-

what-you-see” is an optimal sequence MAP detector if δ ≥
q

1−q

√
ε(1 − ε) + ε− 1. Since for q = 0.95 and ε = 0.01, the

threshold is approximately 0.9, we evaluate the performances

of the denoising algorithms for δ ∈ {0.1, . . . , 0.8}. The same

values of the correlation coefficient are used also for the results

plotted in Figures 4 and 5. In all cases one single realization

with length 106 is considered for each value of δ. We observe



in Figure 3 that H-DUDE performs very similarly with the

genie-aided algorithm. We note that like in the first experiment

the best results are obtained for both denoisers with small

values of the context parameter: k = 2 or k = 3. Unlike the

first experiment, the median filter has good results achieved

with the window parameter k = 1.

For the last two experiments, the channel parameter M
is selected to be three, and due to this choice the context

parameter k is varied between two and seven such that the

context length, 2k + 1, to be larger than the channel memory.

The difference between the two experiments is that for Figure

4, ε = 0.01, and for Figure 5, ε = 0.1. We can observe in both

Figures 4 and 5 a gap between the results obtained with H-

DUDE and genie-aided algorithm. This is easy understandable

if we note that the best result for the genie-aided algorithm is

obtained for k = 6 or k = 7, and the H-DUDE performs best

for k = 4.

Therefore when the channel parameter M is large, the

DUDE has to work with large values of the context parameter

k. We have shown that this is computationally practical, but

the drawback is that for large k, even if the sample is 106,

the number of occurrences of each 2k + 1-tuple in zn is not

enough to ensure an accurate estimate P̂Zk

−k

. The use of this

faulty P̂Zk

−k

in (4) leads to moderate denoising results.

IV. NON-ADDITIVE BINARY CHANNEL

We extend the analysis of performances for the case when

the output of the channel is not calculated as Xt ⊕Nt, where

Xt is the input symbol and Nt is the error. To illustrate this

case, we resort to a channel model previously applied in stack

filters design [10]. The noise process is modelled by a Markov

order 1 chain whose state space is denoted S = {0, 1, 2}, and

for which the transition matrix is A =


 0.1 0.3 0.6

0.1 0.1 0.8
0.2 0.2 0.6


 ,

with entries aij = P (St+1 = j|St = i), 0 ≤ i, j ≤ 2. The

output of the channel coincides with its input whenever the

noise state is s = 2. If the noise state s is 0 or 1, the value of

the input symbol is ignored, and the channel output is s.

The key role in the application of the DUDE algorithm is

played by the computation of the Q matrix and its inverse.

To gain more insights on the differences between the additive

channel discussed in the previous section, and the channel

model described above, we consider the example of computing

in both cases the probability of observing as output of the

channel the sequence 011 when the input sequence is 010. For

the additive channel the calculation reduces to the probability

of the noise sequence 011 ⊕ 010 = 001. For the non-additive

channel, the possible sequences of noise states that produce

the desired output for the given input are: 011, 021, 211 and

221.

Generally, for a context size k, the entries

of the block transition matrix Q have the

expressions Q(i, j) = P (Zk
−k = j|Xk

−k = i) =∑
s∈S2k+1 πs0

∏2k
m=1

asm−1,sm

∏2k
m=0

bsm
(im, jm), where

πs0
denotes the stationary distribution for an arbitrary initial

state s0. The mapping bsm
(im, jm) takes either value zero

or one: bsm
(im, jm) = 1 if and only if jm is the channel

output symbol when the input symbol is im and the noise

state is sm. Since the matrix Q is not dyadic, we apply in

experiments the DUDE algorithm.

In line with the experiments reported in the previous section,

we investigate the influence of the context size k, and plot

in Figures 6 and 7 the BER for k ∈ {1, . . . , 5}. The

results obtained with DUDE and the genie-aided algorithm

are very similar. Remark how the performances depend on the

parameter P (Xt+1 = Xt) of the underlying Markov source.

V. CONCLUSION

Based on the Hadamard transform, a 2k+1 sliding window

denoiser, H-DUDE, was derived from the DUDE algorithm for

the family of binary additive channel models. In contrast with

the original DUDE, the new algorithm can be implemented

with moderate computational resources even when the context

parameter k is large. The major improvement is related to

the computation of the inverse for the block channel tran-

sition matrix Q: the complexity is reduced from O(26k) to

O(k2k). Through experiments, the performances of H-DUDE

were tested against the genie-aided 2k + 1 sliding window

denoiser and the median filter, for the case of finite-memory

contagion channel. It was observed that the BER gap between

the Hadamard transform-based algorithm and the genie-aided

algorithm increases when the channel memory range M is

larger, but the denoising results are superior to those achieved

by the median filtering. The last remark can be easily explained

since the median filter does not assume any knowledge on

the statistics of the underlying signal, neither on the channel

statistics. The experiments have been further extended for a

non-additive channel model.

ACKNOWLEDGEMENT

The work of C.D. Giurcăneanu was supported by Academy of Fin-
land, project no. 44876. Bin Yu’s research was partially supported by
NSF grants CCR-0106656 and FD01-12731, ARO grant DAAD19-
01-1-0643, and a Miller Research Professorship by Miller Institute
at UC Berkeley in Spring 2004.

REFERENCES

[1] T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. Weinberger,
“Universal discrete denoising: known channel,” IEEE Trans. Inform.
Theory, vol. 51, no. 1, pp. 5–28, Jan. 2005.

[2] R. Zhang and T. Weissman, “On discrete denoising for the burst-
noise channel,” in Forty-second Annual Allerton Conf. on Com-
munication, Control, and Computing, Sep. 29 - Oct. 1 2004,
http://www.stanford.edu/ tsachy/pdffiles/allertonpaper.pdf.

[3] E.O.Elliot, “Estimates of error rates for codes on burst-noise channels,”
Bell Syst. Tech. J., vol. 42, pp. 1977–1997, Sep. 1963.

[4] E. Gilbert, “Capacity of burst noise channels,” Bell Syst. Tech. J., vol. 39,
pp. 1253–1265, Sep. 1960.

[5] R. Zhang and T. Weissman, “Discrete denoising for channels with
memory,” Feb. 2005, preprint.

[6] F. Alajaji and T. Fuja, “A communication channel modeled on conta-
gion,” IEEE Trans. Inform. Theory, vol. 40, pp. 2035–2041, 1994.

[7] F.Behnamfar, F. Alajaji, and T. Linder, “Image transmission over the
Polya channel via channel-optimized quantization,” IEEE Trans. Signal
Processing, vol. 53, no. 2, pp. 728 – 733, Feb. 2005.

[8] R. Iordache, I. Tabus, and J. Astola, “Robust index assignement using
Hadamard transform for vector quantization transmission over finite-
memory contagion channels,” Circuits, Systems, and Signal Processing,
vol. 21, no. 5, pp. 485–509, 2002.

[9] F. Alajaji, N. Phamdo, N. Farvardin, and T. Fuja, “Detection of binary
Markov sources over channels with additive Markov noise,” IEEE Trans.
Inform. Theory, vol. 42, no. 1, pp. 230–239, Jan. 1996.

[10] E. Coyle and J.-H. Lin, “Stack filters and the mean absolute error
criterion,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
no. 8, pp. 1244–1254, Aug. 1988.



0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

Channel correlation parameter δ

B
E

R

raw data

H−DUDE

genie−aided

median filter

Fig. 2. Source Bernoulli with parameter P (X = 0) = 0.95; Finite-
memory contagion channel (M, ε) = (1, 0.01).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

−3

Channel correlation parameter δ

B
E

R

raw data

H−DUDE

genie−aided

median filter

Fig. 3. Source Markov order one, symmetric, P (Xt+1 = Xt) =
0.95; Finite-memory contagion channel (M, ε) = (1, 0.01).
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Fig. 6. Source Markov order one, symmetric, P (Xt+1 = Xt) =
0.95; Non-additive binary channel model.
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Fig. 7. Source Markov order one, symmetric, P (Xt+1 = Xt) =
0.85; Non-additive binary channel model.




