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ABSTRACT

This paper studies the estimation of the number of clusters us-
ing the so-called stability-based approach, where clusters obtained
for two subsets of the dataset are compared via a similarity index
and the decision regarding the number of clusters is taken based on
the statistics of the index over randomly selected subsets. We in-
troduce a new similarity index s(-, -), and analyze the consistency
of the estimator of the number of classes when k-means algorithm
is used in conjunction with s(-,-). Various similarity indices are
experimentally evaluated when comparing the “true” data partition
with the partition obtained at each leve! of a hierarchical clustering
tree. Finally, experimental results with real data are reported fora
glioma microarray dataset.

1. INTRODUCTION

Two different approaches have been considered when applying the
stability-based methods for finding structure in micrearray data:
(1) After randomly splitting the dataset into two subsets, select one
subset for leaming, and the other one for testing. Firstly a cluster-
ing aigorithm C 4 is applied to the learning set, and the resulting
classes are used to classify the samples which belong to the test
set. Then the test set is clustered with the same algorithm C 4, and
a similarity measure (index) is computed between the labels pro-
duced by classification and clustering, respectively [1, 2, 3];

(2) Apply the same clustering algorithm C'4 to both subsets and
calculate the similarity index on the samples belonging to the in-
tersection of subsets [4]. A modified variant is introduced in [5]:
{4 is applied to the whole dataset (reference clustering), and to a
randomly chosen subset. The similarity index is computed for the
samples contained in the selected subset.

In both cases, it is assumed that the number of clusters k be-
longs to {2,3, ..., kmas}, and for each value allowed for k, af-
ter running many times the algorithm, the empirical distribution
of the similarity index is collected. While various methods were
proposed for estimating the number of clusters from the shape
of the collected empirical distribution, less attention was paid to
the selection of the clustering algorithm and of similarity index.
We investigate the impact of various partitioning and hierarchical
clustering algorithms when used in conjunction with well-known
similarity indices like Fowlkes-Matlows, Jaccard, Rand [6], and
RﬂndH A [7]

The definition for the partition-distance D(-,-) is introduced
in [8}: for any two partitions P and P of an N object set T,
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D(P, P'} is the minimum number of elements that must be deleted
from T, so that P and P’ restricted to the remaining elements
are identical. An assignment is defined as a selection of entries
of the contingency matrix M such that no row or cotumn con-
tains more than one selected entry, and is called optimal when the
sum of the selected cell values is the largest over all possible as-
signments {9]. Let A(P, P') denote the value of the optimal as-
signment for the contingency matrix of partitions P and P'. An
important result was proven in [9] stating that the partition dis-
tances and the assignments satisfy D(P, P') = N — A(P, P'),
and the elements to be removed from 7' to induce identical parti-
tions on P and P’ are all those objects associated with the cells
not selected in the optimal assignment. We define a new index
of similarity between any two partitions, P and P’, as follows:

s(P, P’) 21- st‘pﬁ’) = A“;‘,}i’i);l, It is a measure of sim-
ilarity, ranging from s(P, P’} = 0 when the two partitions have
no similarities (i.e., when one consists of a single cluster and the
other only of clusters containing single objects), to s{P, P') = 1
when the partitions are identical.

The paper is organized as follows. In Section 2 we investigate
analytically the stability-based approach for estimating the number
of clusters when k-means algorithm is used in conjunction with the
similarity index s(-,-). In Section 3 various similarity indices are
expetimentally evaluated when assume that the “true” structure of
the data (the number of clusters and the membership) is known,
and compare this partition with the partition obtained at each level
of a hierarchical clustering tree. Experimental results are reported
in Section 4 for a glioma dataset.

2, ON THE CONSISTENCY OF THE STABILITY-BASED
ESTIMATOR

We consider the simple case of well-separated clusters used in
[31 to give a theoretical justification for the prediction strength of
the method: a distribution that is spread uniformly over K unit
balls in p-dimensional space (p > 1) B(a,), B(a,), ... B(ak)
where a; denotes the center of the i-th ball, or equivalently the
mean of the i-th population. Assume that the distance between
any two different centers o, and a; is not smaller than four. Let
&1, Zg,--., 2y be asample from this distribution. Following the
same procedure as in f1, 2, 3] we randomly split the sample into
two sets: one used for learning, and the other one for testing. For
simplicity we analyze the case when the cardinality of each set is
N/2. Hypothesizing that k different clusters exist in the observed
data, the centroids {@:'" : 1 < i < k}and {8 :1 <i <k}
are found after running the k-means algorithm over the leamning



set, respectively the test set. The centroids determined during the
learning step induce a partition on the test set. Let us denote s(k)
the similarity index computed between this partition and the parti-
tion obiained during the test step. Repeat the sample splitting N,
times, and let (k) be the average of s(k) over all splittings. We
make the hypothesis that the cardinality of the sample set is large
(N = x), and also Ny — oo.

Proposition 2,1 Under the hypotheses listed above, 5(k) verifies
k=K 5(k) = 1+ o0,(1),

- 11
k>K s(k)glng—Fop(l)

where o, (-} is employed for the stochastic order symbol.

The proof is deferred to the Appendix. According to the Propo-
sition, we expect that 5(k) is close to 1 when & < K, and has a
sharp drop at k = K + 1. This allows us to estimate K by check-
ing at which k the average 3(k) significantly drops below 1. Note
that the sharpness of the transition at K decreases with K, which
makes the method most suitable for the cases when there exist a
prior knowledge that K is relatively small.

3. MEASURING SIMILARITY IN HIERARCHICAL
CLUSTER ANALYSIS

In this section we want to understand the behavior of similarity
indices and hence we assume that the “true” structure of the data
is known, and compare this partition with the partition obtained at
each level of the hierarchical solution. This approach was origi-
nally used in [10] to compare some similarity indices. It is a well-
known fact that the hierarchical clustering does not yield a discrete
number of clusters, but rather a hierarchical arrangement between
objects.

We perform similar experiments to those described in [10]
in order to evaluate the newly introduced index s(-,-), and for
comparison we also compute Rand[6], Rand g 4[7] and Jaccard[6].
For the first set of experiments, each generated data set consists
of 50 points uniformly distributed in a hypercube in 4,6, or 8-
dimensional Euclidean space. There is no significant cluster struc-
ture in the data, but a “criterion” solution is assumed: a hypothet-
ical number of clusters (set at either 2,3,4, or 5), and a particular
distribution pattern of the points to the clusters, the so-called 60%
density cendition, namely one cluster contains 60% of the total
number of objects, while 40% of objects are uniformly assigned
across the other clusters. For each selected number of clusters, 15
data sets are generated. The hierarchical clustering is performed
by using the following methods: single link, complete link, group
average, and Ward’s method [6]. The computed similarity index
is averaged over the data sets and over the hierarchical clustering
methods, and the mean statjstics (and the borders at two standard
deviation) are plotted in Figure 1a) versus the hicrarchy level. The
only index for which the mean plot is flat, and close to zero, is
Randpg 4. For s{-, -) and Jaccard the computed mean is decreasing
when the number of clusters in hierarchical clustering is increas-
ing. Rand takes values larger than the other indices, and the mean
is increasing slowly when the number of clusters in hierarchical
clustering is increasing.

In the second set of experiments, the test data are generated ac-
cording to the algorithm described in [11]; the clusters contained
in the data are separated in the variable space, and internally cohe-
sive. It was observed that the means of similarity indices are close
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te 1.0 when the number of clusters in hierarchical solution is equal
to the true number of clusters, for all considered structures. We
plot in Figure 1b) the mean statistics for the similarity indices in
the case of the “60% density condition” for 4 clusters.

All plots in Figure 1 for Rand, Rand s 4, and Jaccard are very
close to similar plots in [10]. The new index s(-,-) has almost
the same performance pattern as Jaccard; howevey, generally the
variance of 5(-,-) is smaller than the variance of Jaccard index,
while the mean is larger, After performing similar experiments for
“equal density conditien” and “10% density condition™ (data not
shown), we can extend the conclusions from [10]: a value of at
1east 0.9 for the Rand, 0.7 for the Jaccard, and 0.8 for s(-,+) is
likely to reflect the recovery of some part of the true structure, and
not only an agreement due to chance.

4. CLUSTER ANALYSIS FOR A GLIOMA DATASET

We consider here a microarray dataset containing gene expressions
from patients with various types of glioma (brain cancer)[12]. The
glioma dataset contains measurements of 588 genes for 25 pa-
tients: 4 cases of anaplastic astrocytoma (AA), 3 cases of anaplas-
tic oligodendroma (AQ), 6 cases of oligodendroma (OL}, and 10
cases of glioblastoma mulitiforme (GM) [12]. The measurements
include also 2 patients with pathological attributes close both to
anaplastic oligodendroma and to glioblastoma multiforme (AO/GM).

Note that the dataset is summarized as a N x p matrix where
N = 588, while p = 25. Before applying the clustering algo-
rithms, the data are processed as described in [13] by quantization
to four levels, corresponding to four values of the gene expres-
sions: “very low”, “low”, “high” and “very high”. The well-known
Lloyd quantizer is used, and we emphasize here that the quantiza~
tion does not rely on a priori knowledge about how the samples are
assigned to different cases of gliomas.

As it was already shown in many studies, the selection of
genes (feature selection), plays an important role in sample (pa-
tient) clustering. Since feature selection is not the aim of this pa-
per, we resort to use the four genes (IGFBP2, GNB2, UBEZA,
CTGF) found to be discriminative for the glioma types [13]. Now
the dataset reduces to a 4 x 25 matrix containing values quan-
tized at four different levels. Applying a hierarchical algorithm
C'a, we cluster all 25 samples to obtain a reference dendrogram.
Then 23 randomly chosen samples are clustered with C4, and a
new dendrogram is built; a similanty index is computed between
the partitions obtained by cutting the reference dendrogram, re-
spectively the new dendrogram at level &k corresponding to the hy-
pothesized number of clusters. For every algorithm C a, the ex-
periment is repeated N, = 100 times, and the median for every
considered similarity index is computed. Observe in Table I that
for £ = 5 non-singleton clusters the agreement between the ref-
erence dendrogram and 23 samples-based dendrogram is perfect
for all similarity indices and all clustering algorithms. Observe
also that median value varies strongly with k, depending on the
used clustering algorithm. Based on cluster stability criterion, one
can easily decide from Table 1 that the number of distinct clusters
present in the glioma dataset is K= 5, which is in good agree-
ment with the known pathological classification of that data set,
Table 2 shows how the samples are assigned to the clusters when
cutting the reference dendrogram at level K = 5. We remark that
the best version of the hierarchical clustering methed is Ward algo-
rithm which produces the optimal assignment closest to the known
pathological discrimination.



Conclusion The hierarchical agglomerative algorithms can be suc-
cessfully applied for the estimation of the number of (sample) clus-
ters in microarray data, in a very efficient computational scheme,

since the same (ree can be used for all values of k € {2,3,.. ., kmasz}-

Once K is estimated, partition methods can be further employed
for assigning the objects to the clusters.

5. APPENDIX

Proof of Proposition 2.1: The method of proof follows closely
[3]. When the hypothesized number of clusters equals the true
number of unit balls for the underlying distribution (k = K, re-
lying on the main theorem in [14] we conclude that, after an ap-
propriate relabelling, sup; ;<  [1&8'" — a,]| = 0p(1), respectively
SUP; ;e i ||82° — ;) = 0,(1). Reasoning as in [3], it results that
§(k) =1 + 0p,(1), or equivalently 3(k) converges in probability
tolwhenk = K.

When k > K, there exist at least one population (out of K') for
which the k-means algorithm finds two different centroids during
the training, respectively the test stage. To fix the ideas we con-
sider k = K +1, and without loss of generality we can assume that
the training data laying in B(g, } are split into two clusters by the
boundary of a halfspace H,,. As in [3] we analyze the important
case when the split of the test set occurs in the same population,
and denote H. the respective halfspace. For computing s(k), we
focus on the particular structure of the k x k contingency matrix
M corresponding to the partitions induced on the test set by the
centroids {&;'" : 1 < i < k}, respectively {4, : 1 < i < k}.
Relying on similar arguments as in the case k = K, remark that
all entries of M except 11z, mz1 and {m}icick converge to
zero, thus

s(k) = max{1myy +;iz,1m12 +ma1) + N;_le__l

+ Op(l)

where n; is the cardinality of the intersection between B(g, ) and
the test set. Let {z,,Z.,. .. =:’£N/2} be the test set, while the train-
ingsetis {Zn/py10Tnyapns---»IN)

For any set 5 C R* we define the indicator function ¢g :
{24:Z35. .2 2npn} — {0,1} for which ¢s(z;) takes value 1
if and only if z. € S. Now we can write the expression for
UL UL = Dy e vy PBa, N H O H (z,;). We investigate
the behavior of the ratio T4 when N — oo. First consider the
following arguments from {3]: the random haifspaces Hy,. and
Hi. are independent, their normal directions are distributed uni-
formly on the unit sphere S~ !, and the distance of the bounding

hyperplane to ¢, converges to zero. Using the identity %1’3_; =

) PB(a, )N HiaNHeolE;) .
ZK'(N/ 2 N?‘,‘, T te = observe that for given halfspaces

Hyy and H,,, %,‘—}% is the relative frequency of the event {£ :

Z;1<icny falls into Blg, ) 1 Hie 1N Hie}, or equivalently the
sample average of the indicator function, and the strong law of

large numbers imptlies that %Ji converges alinest sure (a.s.) to

Pr(£). Reasoning as in [3] leads to Pr{z; ;,cn/ € Blg,) 1
Hir N Hee|Hir, Hio) = 22%% where 8 € (0, ) is the angle
between the nommals of H,, and H,.. We conclude that, with

A m 1—8/r m g/n m 8/n
probability 1, W/% — 7(/—, g - —2/?, 7\"% — 35 and
ma2

1-¢ -
T8 = 138 Similarly ¥j — % as. Moreover, observe
that max(imi; + maz, Miz + ma;) takes the value l;z,& when
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6 € (0,%/2], respectively 2,% when 8 € (x/2, ). From the
asymptotic expression of s(k), it is elementary to obtain:

1 ma.x(mu + Mgz, M1z + mal)

s(k)§1+2 N2

For N —+ coand V; — oo we compute 3(k) applying a result
from [15): the density of the angle & is
g(8) = Tpr_%ﬁ%ﬁ(sin §)P~2. We focus on the contribution to

3(k) of the term '"“(m”"";:,'“:,i,""”*'""uz

w72
a 1-8/n
7'—/0 —x 9(B)de +/

/2

" 8/x
K

9(8)do

; a1
Elementary calculations lead to T < 3%

straightforward to show that (k) < 1 — t &

for any p > 2, then is
X +o0p(1).
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Figure : The case "60% density condition™; mean of the similarity indices versus the number of clusters (solid line) with limits at two
standard deviation (dotted line). a} No structure exists in the data. b) Data contains four distinct clusters.

Similarity index Hierarchical clustering method Number of clusters (k)
2 3 4 5* 6 7
s(-,) group-average 1.0000 0.9545 0.8095 1.0000 0.7727 0.7727
complete-linkage 1.0000 0.9091 0.8500 1.0000 0.7727 0.8182
Ward 1.0000 1.0000 1.0000 1.0000 09318 0.9091
Jaccard group-average 1.0000 0.8182 05763 1.0000 0.6092 0.5147
complete-linkage 1.0000 0.6927 06190 10000 0.6232 0.5705
Ward 1.0000 1.0000 1.0000 1.0000 0.7963 0.8298
Fowlkes-Mallows group-average 1.0000 09001 07322 10000 0.7585 0.6822
complete-linkage 1.0000 08188 0.7653 1.0000 07690 0.7354
Ward 1.0000 10000 1.0000 1.0000 0.8866 0.9070
Randp 4 group-average 10000 0.8528 0.6026 1.0000 0.6189 0.6077

complete-linkage

LO000 0.7295 0.6870 1.0000 0.7021 0.6784
1.0000 1.0000 10000 1.0000 038624 (.3879

Table 1: Glioma dataset: the median of similarity indices, computed for N; = 100 trials when the hypothesized number of clusters varies
between 2 and 7. Bold characters are used to represent the maximum computed value for each similarity index, and for each clustering
method. We estimate for all clustering algorithms and all similarity indices K = 5, because five is the largest value of k for which the

clustering is stable.
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Table 2: The contingency tables for the glioma dataset: the true partiticn given by a priori knowledge on the type of disease for each
patient is compared with partitions obtained by cutting hierarchical clustering trees at level K = 5. For each contingency table, the entries
associated to the optimal assignment are represented in bold. The optimal assignment takes value 15 for group-average and complete-
linkage, respectively 17 for Ward algorithm. The 4 AA cases, respectively the 6 OL cases are correctly clustered by all algorithms.
Group-average and complete-finkage cluster together only 5 GM cases, while Ward method group properly 6 GM cases.
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