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ABSTRACT 
This paper shldies the estimation of the number of clusters us- 

ing the so-called stability-based approach, where clusters obtained 
for two subsets of the dataset are compared via a similarity index 
and the decision regardingthe number of clusters is taken based on 
the statistics of the index over randomly selected subsets. We in- 
troduce a new similarity index s(., .), and analyze the consistency 
of the estimator of the number ofclasses when k-means algorithm 
is used in conjunction with s(., .). Various similarity indices are 
experimentally evaluated when comparing the “true” data partition 
with the partition obtained at each level of a hierarchical clustering 
tree, Finally, experimental results with real data are reported for a 
glioma microarray dataset. 

1. INTRODUCTION 

Two different approaches have been considered when applying the 
stability-based methods for finding shuchlre in microarray data: 
( 1 )  Afier randomly splitting the dataset into two subsets, select one 
subset for learning, and the other one for testing. Firstly a cluster- 
ing algorithm CA is applied to the learning set, and the resulting 
classes are used to classify the samples which belong to the test 
set. Then the test set is clustered with the same algorithm CA, and 
a similarity measure (index) is computed between the labels pro- 
duced by classification and clustering. respectively [ I ,  2 , 3 ] ;  
(2) Apply the same clustering algorithm CA to both subsets and 
calculate the similarity index on the samples belonging to the in- 
tersection of subsets 141. A modified variant is introduced in [SI: 
CA is applied to the whole dataset (reference clustering), and to a 
randomly chosen subset. The similarity index is computed for the 
samples contained in the selected subset. 

In both cases, it is assumed that the number of clusters k be- 
longs to {Z, 3,. . . , le,,,}, and for each value allowed for k, af- 
ter running many times the algorithm, the empirical distribution 
of the similarity index is collected. While various methods were 
proposed for estimating the number of clusters f” the shape 
of the collected empirical distribution, less attention was paid to 
the selection of the clustering algorithm and of similarity index. 
We investigate the impact of various partitioning and hierarchical 
clustering algorithms when used in conjunction with well-known 
similarity indices like Fowlkes-Mallows, Jaccard, Rand 161, and 
h n d x a  171. 

The definition for the partition-distance D(. ,  .) is introduced 
in [8]: for any hvo partitions P and P’  of an N object set T, 
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D ( P ,  P’) is the minimum number ofelements that must he deleted 
from T ,  so that P and P’ restricted to the remaining elements 
are identical. An assignmenr is defined as a selection of entries 
of the contingency matrix M such that no row or column con- 
tains more than one selected entry, and is called optimal when the 
sum of the selected cell values is the largest over all possible as- 
signments [9]. Let A(P,  p ‘ )  denote the value of the optimal as- 
signment for the contingency matrix of partitions P and p‘. An 
important result was proven in [9] stating that the partition dis- 
tances and the assignments satisfy D ( P ,  P ’ )  = h‘ - A(P, P ‘ ) ,  
and the elements to he removed from T to induce identical parti- 
tions on P and P’ are all those objects associated with the cells 
not selected in the optimal assignment. We define a new index 
of similarity between any two partitions, P and P’, as follows: 

= w. It is a measure ofsim- s ( P , P ’ )  = 1 - N-, 
ilarity, ranging from s ( P ,  P’) = 0 when the two partitions have 
no similarities (i.e., when one consists of a single cluster and the 
other only of clusters containing single objects), to s(P, P’) = 1 
when the paltitions are identical. 

The paper is organized as follows. In Section 2 we investigate 
analytically the stability-based approach for estimating the number 
ofclusters when k-means algorithm is used in conjunction with the 
similarity index ,s(., .). In Section 3 various similarity indices are 
experimentally evaluated when assume that the “true” stmcbre of 
the data (the number of clusters and the membership) is known, 
and compare this partition with the partition obtained at each level 
ofa  hierarchical clustering tree. Experimental results are reported 
in Section 4 for a glioma dataset. 

A 

2. ON THE CONSISTENCY OF THE STABILITY-BASED 
ESTIMATOR 

We consider the simple case of well-separated clusters used in 
[3] to give a theoretical justification for the prediction strength of 
the method: a distribution that is spread uniformly over K unit 
halls inpdimensional space @ > 1): B(a,), B(a,), . . ., E@,) 
where ai denotes the center of the i-th ball, or equivalently the 
mean of the i-th population. Assume that the distance between 
any two different centen CZ~ and sj is not smaller than four. Let 
gl, g2,. . . , gN be a sample from this distribution. Following the 
same procedure as in [ I ,  2, 31 we randomly split the sample into 
hvo sets: one used for learning, and the other one for testing. For 
simplicity we analyze the case when the cardinality of each set is 
N/2 .  Hypothesizing that k different clusters exist in the observed 
data, the centroids {&t‘ : 1 5 i 5 k} and {kea : 1 5 i 5 k} 
are found after running the k-means algorithm over the learning 



set, respectively the test set. The centroids determined during the 
learning step induce a partition on the test set. Let us denote s ( k )  
the similarity index computed between this partition and the parti- 
tion obtained during the test step. Repeat the sample splitting Nt 
times, and let s (k )  be the average of s ( k )  over all splittings. We 
make the hypothesis that the cardinality of the sample set is large 
(N + CO), and also N ,  + m. 

Proposition 2.1 Under the hypotheses listed above, s(k) verifies 

k = K : s(k )  = 1 + op(l), 
1 1  
8 K  

k > K : q l e )  5 1 ~ -- +op(l)  

where on(.)  is employed for the stochastic order symbol. 

The proof is deferred to the Appendix. Acwrding to the Propo- 
sition, we expect that s ( k )  is close to I when k 5 K, and has a 
sharp drop at k = K + 1. This allows us to estimate K by check- 
ing at which k the average Z ( k )  significantly drops below I .  Note 
that the sharpness of the transition at K decreases with K, which 
makes the method most suitable for the cases when there exist a 
priori knowledge that K is relatively small. 

3. MEASURING SIMILARITY IN HIERARCHICAL. 
CLUSTER ANALYSIS 

In this section we want to understand the behavior of similarity 
indices and hence we assume that the “true” structure of the data 
is known, and compare this partition with the partition obtained at 
each level of the hierarchical solution. This approach was origi- 
nally used in [IO] to compare some similarity indices. It is a well- 
known fact that the hierarchical clustering does not yield a discrete 
number of clusters, hut rather a hierarchical arrangement between 
objects. 

We perform similar experiments to those described in [IO] 
in order to evaluate the newly introduced index s(.,.), and for 
comparison we also compute Rand[6], Randxa[7] and Jaccard[6]. 
For the first set of experiments, each generated data set consists 
of 50 points uniformly distributed in a hypercube in 4.6, or 8- 
dimensional Euclidean space. There is no significant cluster struc- 
ture in the data, but a “criterion” solution is assumed a hypothet- 
ical number of clusters (set at either 2,3,4, or 5).  and a particular 
distribution pattern of the points to the clusters, the so-called 60% 
density condition, namely one cluster contains 60% of the totaf 
number of objects, while 40% of objects are uniformly assigned 
across the other clusters. For each selected number of clusters, 15 
data sets are generated. The hierarchical clustering is performed 
by using the following methods: single link, complete link, group 
average, and Ward‘s method [6]. The computed similarity index 
is averaged over the data sets and over the hierarchical clustering 
methods, and the mean statistics (and the borders at two standard 
deviation) are plotted in Figure la) versus the hierarchy level. The 
only index for which tbe mean plot is flat, and close to zero, is 
Randtta. Fors(,,  .) and Jaccard the computed mean is decreasing 
when the number of clusters in hierarchical clustering is increas- 
ing. Rand takes values larger than the other indices, and the mean 
is increasing slowly when the number of clusters in hierarchical 
clustering is increasing. 

In the second set of experiments, the test data are generated ac- 
cording to the algorithm described in [ l  I]; the clusters contained 
in the data are separated in the variable space, and internally cohe- 
sive. It was obselved that the means of similarity indices are close 

to 1 .O when the number of clusters in hierarchical solution is equal 
to the true number of clusten, for all considered structures. We 
plot in Figure Ib) the mean statistics for the similarity indices in 
the case of the “60% density condition” for 4 clusters. 

All plots in Figure 1 for Rand, Randtta, and Jaccard are very 
close to similar plots in [IO]. The new index s(.,.) bas almost 
the same performance pattern as Jaccard however, generally the 
variance of s(.,.) is smaller than the variance of Jaccard index, 
while the mean is larger. A h r  performing similar experiments for 
“equal density condition” and “10% density condition” (data not 
shown), we can extend the conclusions from [IO]: a value of at 
least 0.9 for the Rand, 0.7 for the Jaccard, and 0.8 for s(., .) is 
likely to reflect the recovery of some part of the hue structure, and 
not only an agreement due to chance. 

4. CLUSTER ANALYSIS FOR A GLIOMA DATASET 

We consider here a microanay dataset containing gene expressions 
from patients with various types of glioma (brain cancer)[l2]. The 
glioma dataset contains measurements of 588 genes for 25 pa- 
tients: 4 cases of anaplastic astrocytoma (AA), 3 cases of anaplas- 
tic oligodendroma (AO), 6 cases of oligodendroma (OL), and IO 
cases of glioblastoma multiforme (GM) 1121. The measurements 
include also 2 patients with pathological attributes close both to 
anaplastic oligodendroma and to glioblastoma multiforme (AOEM). 

Note that the dataset is summarized as a N x p matrix where 
A‘ = 588, while p = 25. Before applying the clustering algo- 
rithms, the data are processed as described in 1131 by quantization 
to four levels, corresponding to four values of the gene expres- 
sions: “very low”, “low”, “high” and”very high”. The well-known 
Lloyd quantizer is used, and we emphasize here that the quantiza- 
tion does not rely on a priori knowledge ahout how the samples are 
assigned to different cases of gliomas. 

As it was already shown in many studies, the selection of 
genes (feature selection), plays an important role in sample @a- 
tient) clustering. Since feature selection is not the aim of this pa- 
per, we resort to use the four genes (IGFBPZ, GNBZ, UBEZA, 
CTGF) found to be discriminative for the glioma types [l3]. Now 
the dataset reduces to a 4 x 25 matrix containing values quan- 
tized at four different levels. Applying a hierarchical algorithm 
CA,  we cluster all 25 samples to obtain a reference dendrogram. 
Then 23 randomly chosen samples are clustered with CA, and a 
new dendrogram is built; a similarity index is computed between 
the partitions obtained by cutting the reference dendrogram, re- 
spectively the new dendrogram at level le corresponding to the hy- 
pothesized number of clusters. For every algorithm CA, the ex- 
periment is repeated N ,  = 100 times, and the median for every 
considered similarity index is computed. Observe in Table I that 
for k = 5 non-singleton clusters the agreement between the ref- 
erence dendrogram and 23 samples-based dendrogram is perfect 
for all similarity indices and all clustering algorithms. Observe 
also that median value varies strongly with k ,  depending on the 
used clustering algorithm. Based on cluster stability criterion, one 
can easily decide from Table 1 that the number of distinct clusters 
present in the glioma dataset is K = 5, which is in good agree- 
ment with the known pathological classification of that data set. 
Table 2 shows how the samples are assigned to the clusters when 
cutting the reference dendrogram at level K = 5. We remark that 
the best version of the hierarchical clustering method is Ward algo- 
rithm which produces the optimal assignment closest to the known 
pathological discrimination. 
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Conclusion The hierarchical agglomerative algorithms can be suc- 
cessfully applied for the estimation ofthe number of (sample) clus- 
ters in microamay data, in a vely efficient computational scheme, 
sincethesametreecanbeusedforallvaluesofk t {2 ,3 , .  . . ,kmor}. 
Once I? is estimated, partition methods can be further employed 
for assigning the objects to the clusters. 

5. APPENDIX 

Proof of Proposition 2.1: The method of proof follows closely 
131. When the hypothesized number of clusters equals the true 
number of unit balls for the underlying distribution (k = K), re- 
lying on the main theorem in 1141 we conclude that, after an a p  
propriaterelabehg,  up^<,<^ llil’ -gill = +(I), respectively 
 SUP,^,<^ 116: -ail[ = op(l). Reasoningasin[3],itresultsthat 
S(k) = 1 + op(l), or equivalently B(k) converges in probability 
t o l w h e n k = K .  

When k > K ,  thereexistatleastonepopulation(outofK)for 
which the k-means algorithm finds two different centroids during 
the training, respectively the test stage. To fix the ideas we coo- 
sider k = K f l ,  and without loss of generality we can assume that 
the training data laying in B(a,) are split into two clusters hy the 
boundary of a halfspace Ht,. As in [3] we analyze the important 
case when the split of the test set occurs in the same population, 
and denote Ht, the respective halfspace. For computing s(k), we 
focus on the particular shucture of the k x k contingency matrix 
M corresponding to the partitions induced on the test set by the 
centroids {&*? : 1 5 i 5 k } ,  respectively {&“ : 1 5 i 5 k). 
Relying on similar alguments as in the case k = K, remark that 
all entries of M except m12, mzl and {m,,}ls,sk converge to 
zero. thus 

s(k) = 

where nl is the cardinality ofthe intersection between B(&,) and 
the test set. Let {g,, z2,. . . ,g,,} be the test set, while the train- 

For any set S c Rp we define the indicator function 4s : 
{gi,g2,. . . , g N l z }  + { O , l }  for which 4s(g,) takes value I 
if and only if I. E S. Now we can write the expression for 
mil: mll = g,<i<NIZ $B(2,)nx,,nrr,.(zi). we investigate 
the behavior of t h e i h o  $ when N + m. First consider the 
following arguments from (31: the random halfspaces H,? and 
Ut, are independent, their normal directions are distributed uni- 
formly on the unit sphere Sp-’, and the distance of the bounding 
hyperplane to a, converges to zero. Using the identity % = 

CICI<N,Z ,wn,)w,nx.,(zi) , observe that for given halfspaces 
Ut, and Ht, ,  3 is the relative kquency of the event {& : 

gi,l<l<NII falls into B ( a , )  n Hep n H L ~ } .  or equivalently the 
s m $ <  average of the indicator function, and the strong law of 
large numbers implies that converges almost sure (as.) to 
Pr(&). Reasoning as in [3]  leads to Pr(gi,l<i<N12 t B(g,)  fl 
Ut, n Ht,IHt,, Ht , )  = where 0 t ( 0 , ~ )  is the angle 
between the normals of H,, and Hte. We conclude that, with 
probability I ,  ?%L + w, i $, Eu --t and 

3 + w. Similarly $ i k a.s. Moreover, observe 

that niax(ml1 + m22,miz + “2) takes thevalue when 

_ _  

max(mll+mzz,mrz+mz,) N - n ~  - 1  + OP(Q 
+ N - 1 .  N - 1  

ingsetis{gN,2+1,zN12+2,.- - , z N } .  

NI2 

NI2 

_ _  

NI2 NI2 ZK 

0 E (0 ,a/2] ,  respectively 
asymptotic expression of s(k), it is elementary to obtain: 

when 0 E (7112,~).  From the 

For N --t m and Nt --t m we compute B(k) applying a result 
from 1151: thedensityoftheangle8is 
g(0) = ,((~~{;:)6(sinO)P-2. We focus on the contribution to 
qk)  ofthe ma=(-rI+mzz.mlz+mll) .  

NI 2 

Elementary calculations lead to 7 5 4 & for any p 2 2, then is 
straightfonvard to show that S ( k )  5 1 - Q k + op( 1). 
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Similarity index 

s(,, ,)  

Hierarchical clustering method Number of clusters (k) 
2 3 4 5' 6 7 

group-average 1.0000 0.9545 0.8095 1.0000 0.7727 0.7727 
comolete-linkaee 1.0000 0.9091 0.8500 1.0000 0.1727 0.8182 

Jaccard 

Fowlkes-Mallows 

RandH.4 

L 

Ward 1.0000 1.0000 1.0000 1.0000 0.9318 0.9091 
groupaverage 1.0000 0.8182 0.5763 1.0000 0.6092 0.5147 

complete-linkage 1.0000 0.6927 0.6190 1.0000 0.6232 0.5705 
Ward 1.0000 1.0000 1.0000 1.0000 0.7963 0.8298 

group-average 1.0000 0.9001 0.7322 1.0000 0.7585 0.6822 
complete-linkage 1.0000 0.8188 0.7653 1.0000 0.7690 0.7354 

Ward 1.0000 1.0000 1.0000 1.0000 0.8866 0.9070 
group-average 1.0000 0.8528 0.6026 1.0000 0.6189 0.6077 

comolete-linkaee 1.0000 0.7295 0.6870 1.0000 0.7021 0.6784 

group-average I complete-linkage I Ward 
AA A 0  OL GM AOIGM I AA A 0  OL GM AOIGM I AA A 0  OL GM AOIGM 
n o n s  0 1  n 1 6 n  1 1 0  I 6 n I 

I 

ward 1.0000 1.0000 1.0000 1.0000 0.8624 0.8879 

Table 2: The contingency tables for the glioma dataset: the true partition given by a priori howledge on the type of disease for each 
patient is compared with partitions obtained by cutting hierarchical clustering trees at level I? = 5. For each contingency table, the entries 
associated to the optimal assignment are represented in hold. The optimal assignment takes value 15 for group-average and complete- 
linkage, respectively 17 for Ward algorithm. The 4 AA cases, respectively the 6 OL cases are correctly clustered by all algorithms. 
Group-average and complete-linkage cluster together only 5 GM cases, while Ward method group properly 6 GM cases. 

0 0 0 1  0 
0 1 6 1  1 
0 0 0 2  0 
4 2 0 1  1 
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0 0 0 2  0 0 0 0 2  0 
0 0 0 5  0 4 1 0 1  0 
0 0 0 1  0 0 1 0 1  1 
4 2 : o  2 1 0 0 0 6  0 


