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ABSTRACT

Starting from the attention payed in the last period to the
sign of kurtosis as criterion for stability of ICA/BSS algo-
rithms [3][12], the paper investigates how the sign is de-
termined by the shape of the probability density function
(pdf). Since the approach based on the number of inter-
section points between the pdf and the gaussian pdf with
the same mean and variance [12] does not generalize, an-
other approach [4][5][13], based on the number of crossing
points of the pdf’s is considered. Some results from litera-
ture are revisited and original proofs are presented, linking
the above approaches. A non-trivial example of pdf which
illustrates the general approach is presented.

1. INTRODUCTION

1.1. Kurtosis and the stability of ICA/BSS algo-
rithms

In the linear version of ICA/BSS problem the realizations
of a random vector £ = As are observed; s is an n X 1 vec-
tor of independent components and A is an n X n invertible
matrix with unknown entries. The goal is to find an n X n
“separation” matrix B such that y = Bz retrieves the orig-
inal components of s (modulo a scaling and a permutation
operation). A general class of on-line algorithms adapt the
matrix B following the rule [3]:

y() = B()z(?)
B(t+1) = [I-u(t)G(y®))]B(®) (1)

where {u(t)} is a sequence of positive learning steps, I is the
n X n identity matrix and the function G : R — R™*" is an
appropriate vector-to-matrix mapping. In [3] the stability
conditions are stated for the cases

G(y) = Gr(y) = d(y)y" -1 (2

and

Gy)=Goly) =y xy" —1+ o)y —ydm)" (3

where

(y) [61 (1), B2(y2), - -, B (yn)]”
¢1(S,) = —T;(Si) 1= 1,n (4)

Ti (Sz) ’

ri(s;) being the hypothesized marginal density of the source
s;. Let’s observe the marginal densities are supposed to be
differentiable and the function ¢(y) is component-wise non-
linear. For simplicity E [s] = 0.

In [3] the stability conditions for algorithm (1) are found
for the regular case (2) and the orthogonal case (3). In
the regular case, the scale stability condition for the i-th
source is 1 + F [qﬁi(yl)yf] > 0. In the orthogonal case the
local stability with respect to scale is ensured by forcing the
components of y to have unitary variance. To express the
pair-wise stability conditions in [3] are defined the moments:

ki = E [¢i(yi)] E [yi] — E [¢i(yi)wi] . (5)
With respect to these notations, the stability conditions are:

e regular case:

A+k)1+k)>1 1<i<j<n
1+ki >0

e orthogonal case:
ki+kj>0 1<i1<j<n (7)

In both (6) and (7) k; > 0,i = 1,n is a sufficient condition
for stability. For ¢;(y;) = ay: + v (with any scalar a), we
have k; = 3 (E [yﬂ)z - FE [yf] which is the fourth order
cumulant of y; with reversed sign.

This final observation stresses the role played by kur-
tosis in the context of studying the stability for ICA/BSS
algorithms. The kurtosis is the fourth order normalized cu-
mulant and for symmetric, zero mean sources (the case we
address in this paper) it has the expression v, = %‘é -3

where 4 is the fourth and ps is the second moment ;bout
the mean for the considered distribution. Is is immediate
to observe that the kurtosis is null for the gaussian density
with zero mean and unitary variance, denoted in the sequel
by a(z).It is well known [11] that 72 > —2 for any random
variable. We can note for the random variable which takes
only the values +1 with probability 0.5 each, the kurtosis
attains the minimum value —2.

1.2. Definitions and notations

In [12] it is investigated how the kurtosis sign describes
the asymptotic behavior of the distribution and the next
definition is introduced:



Definition 1[12]: A symmetric, zero mean pdf f(z) with
unitary variance is said to be over-gaussian (respectively
sub-gaussian) if exists zo € R' such that Vo > zo, f(z) >
a(z) (respectively f(z) < a(z)).

A tantalizing question: a pdf is over-gaussian (sub-
gaussian) if and only if it has positive (negative) kurto-
sis ? This is the main question in [12]. Theorem 1 from
[12] proves that any symmetric, zero mean, unitary vari-
ance density p(x) for which the equation p(z) = a(z) has
two roots, is over-gaussian (sub-gaussian) if and only if the
kurtosis fulfills the condition y2 > 0 (y2 < 0).

The community of statisticians has also investigated
this problem; probably the first reference is the seminal
paper of Pearson [15]. In this paper the author claims that
not all the experimental frequency curves are well-fitted to
gaussian distributions. In his work, Pearson uses the degree
of flat-toppedness of the curve to establish the gaussianity
feature and also for classifying the non-gaussian curves:

?Given two frequency distributions which have the same
variability as measured by the standard deviation, they may
be relatively more or less flat-topped than the normal curve.
If more flat-topped I term them platykurtic, if less flat-
topped leptokurtic, and if equally flat-topped mesokurtic”.

In the same paper [15], the author observes for some
pdf’s f(z) that v2 > 0 for leptokurtic sources (those with
f() > \/%—ﬂ ), v2 < 0 for platikurtic sources (those with

f(0) < \/% ) and v2 = 0 for mesokurtic sources and em-
pirically correlates the kurtosis sign with the shape of the
distribution curve in the neighborhood of the mean.

We are using in the following the symbols f(z) and g(z)
to denote two symmetric, zero mean pdf’s. The notation
C(f,g) is for how many times the sign of f(z) — g(z) is
changing for z > 0. Due to symmetry, the total number of
sign changes for f(z) — g(z) when z € R is 2 x C(f, g). The
notation p,£ is used for the k-th order moment about the
mean of distribution f(z); 4 is the kurtosis of the distribu-
tion. For any non-negative integer s, v = f j—:: |z|® f(z)dz.
From definition results v(’; = 1 and for any integer p > 0,
ol =ud .

2p 2p

In the sequel we will analyze the relation between 75"

and 3§ with respect to different values for C(f, g).

2. SIGN OF KURTOSIS AND SHAPE OF THE
PROBABILITY DENSITY FUNCTION

The idea that the kurtosis sign can be inferred from the
shape of the distribution function has been popular since
the Pearson’s paper, and more results have been formulated,
which we review in the following. We will illustrate them
with several examples and present also original results.

2.1. Equal variance continuous pdf’s f(z) and g(z)
cannot have two crossing points

Proposition 1: There are no continuous and distinct pdf’s
f(z) and g(z) with the same variance (uf = pg) for which
C(f,9)=1.

Proof: Suppose there are two distinct, continuous, symmet-
ric, zero mean pdf’s f(z) and g(z) with C(f,g) = 1. Let
a1(0 < a1 < o0) be the sign changing point, i.e. f(z) >

g(z) if |z| < a1 and f(z) < g(z) if || > a1. We define
h:® = R, h(z) = (2” — al)(g(z) — f(z)). 1t is direct to
observe h(z) > 0,YVz € R and I = f::o h(z)dz > 0. But
I = (4 —pd) - a}(vg — v) = 0 and from the continu-
ity condition it results Vz € R,h(z) = 0 & f(z) = g(z),
contradiction.

O

Corollary 1.1: There are no continuous pdf’s f(z) and g(z),
with pf = pg such that the equation f(z) = g(z),z € R
has exactly two different solutions.

Proof: Let’s consider p and —p are the real-valued solutions
of the equation f(z) = g(x). The condition fj;o flx)dz =

fj:: g(z)dz = 1 implies there is at least one point a1,0 <
a1 < oo which is a crossing point of the distributions f and
g. From Bolzano theorem [2] it results a; is a root for the
equation f(z) = g(z). Due to the uniqueness of the positive
root of the equation f(z) = g(z), it results a1 = p. It is
immediate to observe that any other positive value which
is a crossing point should be a root of the equation f(z) =
g(z), therefore equals p. So p and —p are the only values
for which the sign of the function f(z) — g(z) is changing
and C(f,g) = 1.Proposition 1 applies directly.

O

Corollary 1.2: There is no continuous pdf f(z), p = ug =
1 such that the equation f(z) = a(z),z € R has exactly
two different solutions.

Proof: From Corollary 1.1 by choosing g(z) = a(z).

O

Observation: Corollary 1.2 shows that the conditions of
Theorem 1 from [12] are accomplished only if at least one
of the pdf’s is not continuous. As one pdf in the theorem is
a(z) (continuous),remains that the distribution for which
we decide if is over-gaussian (sub-gaussian) has necessarily
to have discontinuous pdf.

In Section 1.1 we shown that the kurtosis based com-
parison of two distributions is interesting when both distri-
butions have the same variance. As a result of Corollary
1.2 the case f(z) = a(x) has exactly two roots (treated in
Theorem 1 [12]) is possible only for discontinuous pdf f(z).

2.2. Densities with four crossing points

We can observe that comparing kurtosis of distributions in
the hypothesis of equal variances reduces to the comparison
of fourth order moments.
Proposition 2: If the pdf’s f(z) and g(z) are such that pf =
p5 and two numbers a1, a2 exist such that 0 < a1 < a2 < 0o
and
f(z) >g(z) if |z|<aior|z|>as
f(z) <g(z) if a1 <|z|<a2
then
a) vJ > ~¢ which is equivalent with pf > g [4][5].
b) vi(f) < vi(g) [1][13].
Proof:

a) We summarize the proof from [4][5]. Let h : ® —
R,h(z) = (z* - ai)(z® - a3)(f(z) — g(z)). From h(z) >
0,Ve € R = (uf — i) — (af + a3)(uf — uf) + aia3(v] —
v§) > 0. By reducing the null terms, the inequality becomes
pi e >



b) We give a simpler proof than in [1][13]. Define h :
Rt = R, h(z) = (z — a1)(z — a2)(f(x) — g(z)). It is easy
to observe h(z) > 0,Vz € R and of = fj;o |z| f(z)dz =
2 f0+°° zf(z)dz. The fact that function h(z) has only non-
negative values implies f0+°° h(z)dz > 0 = (ui — pd) —
(a1 + a2)(v] — v¢) + araz2(v{ — v§) > 0. From condition
of equal variance for f(z) and g(z), it results that —(a1 +
az)(v] —v?) > 0 and with a1,as > 0 we get v] < v?.

O

Observation: From the hypotheses of Proposition 2 results
that the function h(z) used to prove part a) is null at most
for z € {—a2, —a1,a1,az2}. In proof of part b), the function
h(z) is zero at most for © € {ai,a2}. In both situations
the number of roots of the equation h(z) = 0 is finite and
therefore the inequalities are strict in the parts a) and b) of
Proposition 2.
An example of such a pair of pdf’s is f(z) = a(z) and

1 .
ooy ={ i Kzl Ve
0 if |z| > /3

Elementary calculations prove the conditions from Propo-

sition 2 are accomplished: ,ug =ud =1LC(f,9) =2, a1 =
1/2

(2 In (%)) ~ 0.8, az = V3 &~ 1.73. The rectangular

pdf g(x) is platykurtic [15] and also is sub-gaussian [12] (for

o can be chosen any real value greater than \/§) The neg-

ative value of kurtosis v§ = —1.2 is like in the part a) of
the Proposition 2 (v = 7§ = 0) and v{ = % ~ 0.79 <
v = ? ~ 0.86. The negative kurtosis for f(z) agrees

with the intuition we have about the pdf that is platykurtic
or sub-gaussian. It is easy to check that f(z) fulfills the
conditions of Theorem 1 from [12], and we note that f(z) is
discontinuous ( Corollary 1.2) with two discontinuity points.

2.3. Arbitrary number of crossings

Proposition 3: Let f and g be pdf’s with v{ = v? for s >
Sk—1 > --- > 81 = 0, k > 2. Let the positive axis be
divided into k + 1 successive intervals (ao, a1), (a1,az2), ...,
(ak,ak+1), where ap = 0, aky1 = +oo, such that f(z) >
g(z) on the first, third, etc., intervals, and f(z) < g(z) on
the second, fourth,etc.,intervals. Then

vl >0 for s3<s<s3,8<5<Ss,...,
for s such that v? < oo, while
vf <v? for s1 <5< 9,53<5<8a,...,

for s such that v{ < oo [13].

Proof: An elegant proof is based on the theory of total
positivity [13].

Definition 2[10]: A function of two real variables Q(z,y)
ranging over linearly ordered sets X and Y is said to be to-
tally positive of order r (TP,) if forall 1 < m < r,z1 <
2 < -0 < Tyt < Y2 < o0 < Ym, (7 € X,y €
Y'), the determinants of the matrices [T3;], ., ;,, are non-
negative, where the entries of the matrices are given by
Tij = Q(wivyj)7 1<4,j<m.

Let’s define h,w : Rt — R,h(z) = f(z) — g(z),w(s) =
fo * 2°h(z)dz. From vf —v? = 2w(s) it results that finding
the sign for v{ — v¢ is equivalent with finding the sign for
w(s)Vs € R (in fact we pay attention only for the case s is
a positive integer). The properties of generalized Vander-
monde determinants [6] imply the function @ : RT x RT —
R,Q(s,z) = z° is TP,4, for any integer r > 1. Moreover
for the function Q(s,z) = z° the determinants invoked by
Definition 2 are strict positive [6]. Now the demonstra-
tion is direct from the wariation diminishing property of
totally positive functions [10]: Q(s,z) is TPr41 and h(z)
changes the sign k£ < r times, then w(s) changes sign at
most k times. Since w(s) changes sign exactly k times, then

w(s) = 0+°° Q(s,z)h(xz)dxr must have the arrangement of
sign as the function h(z) as s and z traverse their domains
from left to right.

O

Observations:a) Proposition 2 results from Proposition 8 for
the particular case k = 2,51 = 0,52 = 2.

b) Proposition 3 is proved also in [1], but for the case
when a1, as,...,ar are positive integers.

Proposition 3 provides a general statement and in the
following we give an example of densities which satisfy the
constraints in the hypotheses of the proposition. Let f :
R - R, f(z) = a(z) [1 + GT;:)!Hgn(x)] ,n > 1 where
Hsy(z) is the order 2n Chebyshev-Hermite polynomial [11]
and a2y, is a small positive constant. The order r Chebyshev-
Hermite polynomial is recursively defined by Hy(z) = 1 and

1 da@)] _

a(@)  der T

for any positive integer r, H,(z) = (-1)"
(—1)76% % [e_ %] . In our approach we are using also the
order r Hermite polynomial recursively defined [9] by the
equations Hj (z) =1, H) (z) = (—l)rezr" % |:6_22:| Vr > 1.

Tt follows H,(z) = iy Hy (ﬁ) Ve € ®,r > 1. From

M)

z

|H3, (z)] < 2" [(2n)"]'/? 7 Vn,z (equality occurs for z =
0,n = 0) [9] results

2

z

Hyn(z)| < azne™ ™ (8)

Vv (2n)!

We are looking for a2, > 0 such that f(z) > 0,Vz € R. The
polynomial Hs,(z) has 2n distinct real roots [11]. Since
Hj, () is an even function [11], the roots are
+p1,E£p2, -, Epn, 0 < p1 < p2 <--- < pn.

‘ a2n

The roots of Hj,(z) are i%,i%,u-,:ﬁ:”—\/% and % <

24/n [9]. It is immediate to observe Ha,(z) > 0,Vz such
that |z| > 2v/2n. It results f(z) > 0,Vz such that |z| >
2

2v/2n. If we choose a2, € (0,6_2") it results aspe’®T <
1,Vz such that |z| < 2v/2n. The inequality (8) implies

\;:;TﬂHgn(x) < 1,Vz such that |z| < 2v/2n which in turn
implies that f(z) > 0,V such that |z| < 24/2n. This proves
the existence of a2, (small and positive constant) such that
f(z) >0,Vz € R.

Let’s note that from a(z) symmetric and Hs,(z) an
even function results that f(z) is also symmetric. Since the




equation Ha,(z) = 0 has 2n distinct real roots +p;,i = 1,n
the borders of the intervals from the hypothesis of Proposi-
tion 3 can be chosen a; = p;,t = 1,k,k = n,g(z) = a(z).

After some straight derivations we obtain for any non-
negative integer p

_ (2p)! azn2"
ng ~ Tompl MP(P -1)-(p—mn+1) (9)

From (9), for p = 0 it results fj;o f(z)dz = 1 which
confirms that f(z) is really a pdf. Furthermore for p €
{1,2,...,n -1}, v, = 22 = vg

So using the nota-

2P p! 2p-
tions from Proposition 3 with & = n and g(z) = «a(z)
we can write v = vJ for s1 < s2 < --- < s where
s1 = 0,82 = 2,...,8x = 2(k — 1), in particular the vari-

ance of f(z) is unitary.
For odd order moments the expression of ng 11~ Uiyl
is given by

agn (_1)n—p—1 2 (2p+1)!1(2n—2p—2)! if 2p+1<2n

\/m w 2n=P=I(n—p—1)!
n 3 2P~ " (p—n)!(2p+1)! .
\/a(zzn)! ks (2572n+1§)! if Zp+1>2n

(10)
where v5,,1 = \/g 2Ppl. It follows that all the inequalities
between v{ and v? are like in Proposition 3.

Due to Hzn(0) = (—1)"55 E22 [9], it follows f(0) >
a(0) (f(=) is leptokurtic) if n even and f(0) < a(0) (f(z) is
platikurtic) if n odd, but 'yg = 0. This example shows that
the condition vJ = 0 is not sufficient for the source f(z) to
be mesokurtic, contrary to what Pearson suggested [15].

From the proof above we observe that o = 24/2n is the
point for which f(z) > a(x),Vz > zo. Therefore f(z) is
over-gaussian [12], but the kurtosis v = 4§ = 0, showing
that over-gaussian does not necessarily imply strict positive
kurtosis.

3. FINAL REMARKS

Proposition 2 and 3 present conditions on the shape of a pdf
for which the sign of kurtosis can be predicted. In general,
the converse propositions are not true. In [4] there is a
counter-example for the converse of Proposition 2. So, in
general, it is not possible to find direct links between the
flat-toppedness or shape of tails of the pdf and the sign of
kurtosis.

We finish by recalling the more realistic interpretation
of kurtosis found in [14]. To any random variable X with
mean g and variance 0% we associate the standardized ran-
dom variable Z = ¥=£ having E [Zz} = 1. The kurtosis of

o

Xisy, =F [Zﬂ —3 =var [ZQ] — 2 where var [Zz] denotes
the variance of Z2. Now it is obvious that the kurtosis of X
is a measure of the dispersion of Z? around its mean [14].
Therefore the kurtosis of X is an inverse of the concentra-
tion of the distribution of X in the points u+ o and u — o.
In the particular case of symmetric X with zero mean and
unitary variance the kurtosis measures the dispersion of X
around the values +1 and —1.

It remains as an open question how the ideas of quantile
based measures for kurtosis [7][8][14] could be applied to

ICA/BSS problems since the quantile based measures are
more robust than the fourth order normalized cumulant.
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