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a b s t r a c t

During the last decades, the use of information theoretic criteria (ITC) for selecting the

order of autoregressive (AR) models has increased constantly. Because the ITC are

derived under the strong assumption that the measured signals are stationary, it is not

straightforward to employ them in combination with the forgetting factor least-squares

algorithms. In the previous literature, the attempts for solving the problem were focused

on the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and

the predictive least squares (PLS). In connection with PLS, an ad hoc criterion called SRM

was also introduced. In this paper, we modify the predictive densities criterion (PDC)

and the sequentially normalized maximum likelihood (SNML) criterion such that to be

compatible with the forgetting factor least-squares algorithms. Additionally, we provide

rigorous proofs concerning the asymptotic approximations of four modified ITC, namely

PLS, SRM, PDC and SNML. Then, the four criteria are compared by simulations with the

modified variants of BIC and AIC.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Autoregressive (AR) modeling is widely used for
stationary time series because it yields high resolution
power spectral density estimates. However, in most
of the practical applications, the signals are non-station-
ary, and they are approximated by piecewise AR processes,
which are generally called segments. The number of
segments, their locations, and the AR order for each
segment are not assumed to be a priori known. Therefore,
finding the ‘‘best’’ segmentation reduces to solve an
optimization problem which is difficult because the
search space is huge [3]. Various sub-optimal solutions
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have been proposed in the past: for example, in the dyadic
approach, the length of each segment is assumed to be a
power of two, and the signal is divided into blocks, in a
dyadic manner, up to a pre-specified scale [19]. It is
beyond the scope of this paper to investigate exhaustively
the vast literature on segmentation.

More importantly, the methods mentioned above
have the disadvantage of a high computational burden,
and they are not suitable when the spectrum of non-
stationary signals must be computed on-line [9]. In such
applications, the coefficients of the AR models are
estimated by algorithms that use the recent observa-
tions and ‘‘forget’’ the past. Due to their design, the
estimators are dubbed localized, and they have been
intensively researched during the last two decades in
the context of adaptive control and signal processing
[12,18].

Accuracy of spectral estimation depends crucially on
the AR order selection, which makes it necessary to
employ information theoretic criteria (ITC). Because the
ITC are derived under the strong hypothesis that the
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measured signals are stationary, they cannot be used in
conjunction with the localized estimators. Therefore, it is
mandatory to modify the ITC, and the previous literature
contains few attempts: a pioneer approach is the one from
[16], where the Akaike information criterion (AIC) [2] was
re-designed for the case of localized estimators. The
celebrated Bayesian information criterion (BIC) [27],
which is equivalent with a crude variant of the minimum
description length (MDL) selection rule [21] was modified
in [11,17] such that to be compatible with the localized
estimators. We mention that the modified expressions of
BIC and AIC have been applied in on-line spectral
estimation for EEG signals [9] and in tracking of the fast
varying systems [32]. Ref. [11] contains some heuristics on
the localized estimators-based formula for the predictive
least squares (PLS) [22], and introduces also an ad hoc
criterion, which is dubbed SRM (the significance of the
acronym SRM is not given in [11]).

The previous studies do not discuss how the predictive
densities criterion (PDC) can be made compatible with
the localized estimators. Note that PDC was derived
in [4] by using Bayesian predictive densities, and it is
equivalent with another criterion introduced by
Rissanen [23].

The sequentially normalized maximum likelihood
(SNML) was proposed recently as a new model selection
rule [25,26]. The major advantage of the SNML is given by
its normalizing coefficient that can be computed much
easier than for the ordinary NML whose evaluation for AR
and autoregressive-moving-average (ARMA) models is
discussed in [8]. The acronym SNLS (sequentially normal-
ized least squares) is employed sometimes instead of
SNML, but hereafter we prefer to use SNML.

The rest of the paper is organized as follows. The most
important ITC designed for stationary AR models are
briefly revisited in Section 2. The definitions and notations
concerning the modified ITC are outlined in Section 3,
where we also introduce variants of the PDC and SNML
criteria that can be employed in combination with the
forgetting factor least-squares algorithms. The principal
result within Section 4 is Proposition 4.1, which is devoted
to the asymptotic approximations for the modified ITC.
Some of the asymptotic formulas have been included,
without complete proofs, in [7]. In this paper, we provide
rigorous proofs under two main assumptions, called ðA1Þ
and ðA2Þ. A novel aspect is the study on how to select the
forgetting factor such that ðA1Þ and ðA2Þ are satisfied.
The performance of the modified ITC is demonstrated
with simulated data, in Section 5, by computing two
figures of merit at each sampling point: the empirical
probability of estimating the true order and the average
spectrum estimation error. This extends the findings from
[7], where only the first figure of merit was employed in
evaluation. For the experiments in [7], the data have been
produced by a piecewise AR model, which was taken
from [11]. In our simulations, we use again the model
from [7] for three different experimental settings, together
with other two models from [3,19]: a piecewise AR
process with dyadic structure and a slowly varying AR
process. We do not restrain the experiments to the
modified variants of BIC, PLS, PDC and SNML as it was
done in [7], and we consider additionally a form of AIC
which is suitable to be used in conjunction with localized
estimators.
2. Order selection criteria for stationary AR models

We consider the stationary AR model with order k,

yt þ a1yt�1 þ � � � þ akyt�k ¼ �t , (1)

where �t is zero-mean white Gaussian noise of variance
s2. With the convention that the symbol ð�Þ> denotes
transposition, we employ the notation a ¼ ½a1; . . . ; ak�

> for
the coefficients of the model.

Suppose the measurements y1; . . . ; yn are available. We
choose an integer m such that kom5n. Let m0 ¼ m� ðkþ

1Þ and t 2 fm; . . . ;ng. Then we define ȳt ¼ ½yt ; . . . ; ym0þ1�
>

and x̄t ¼ ½yt�1; . . . ; yt�k�
>, where yi ¼ 0 for io1. Addition-

ally, we have Xt ¼ ½x̄t ; . . . ; x̄m0þ1�. Remark that the number
of columns of Xt is larger than k, for all t 2 fm; . . . ;ng. It is
useful to denote Vt ¼ ðXtX

>
t Þ
�1.

Given y1; . . . ; yt , we estimate the parameters of
the AR model in (1) by minimizing the least-squares
criterion

Xt

i¼m0þ1

ðyi þ a>x̄iÞ
2, (2)

which leads to

ât ¼ �VtXtȳt , (3)

and the residual sum of squares Rt ¼ ȳ>t ðI� X>t VtXtÞȳt ,
where I is the identity matrix. The equations above are
equivalent with the prewindow method for m ¼ kþ 1, and
with the covariance method for m ¼ 2kþ 1 [12]. We
denote ct ¼ x̄>t Vt�1x̄t , and because Vt�1 is positive definite
we have ct40. Lemma 2(i) from [14] implies

jVtj=jVt�1j ¼ 1=ð1þ ctÞ, (4)

where the operator j � j is used for the determinant
of the matrix in the argument. Based on the definitions
from [12], the forward a priori prediction error is
given by

et ¼ yt þ â
>

t�1x̄t , (5)

while the forward a posteriori prediction error has the
expression

êt ¼ yt þ â
>

t x̄t . (6)

The well-known BIC is computed by using [27]

BICðkÞ ¼
n

2
ln

Rn

n
þ

kþ 1

2
ln n, (7)

and PLS [22] is evaluated with the formula

PLSðkÞ ¼
Xn

i¼mþ1

e2
i . (8)
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We elaborate on the PDC [4] as a preparatory step for the
results included in the next sections:

PDCðkÞ ¼ � ln
Yn

i¼mþ1

1ffiffiffiffiffiffi
2p
p

jV�1
i�1j

1=2

jV�1
i j

1=2

G
i�mþ 1

2

� �
G

i�m

2

� �
2
664

3
775

� ln
Yn

i¼mþ1

ðRi�1=2Þði�mÞ=2

ðRi=2Þði�mþ1Þ=2
(9)

¼ � ln
1

pðn�mÞ=2

G
n�mþ 1

2

� �
Gð12Þ

R1=2
m

Rðn�mþ1Þ=2
n

2
664

3
775

þ ln
Yn

i¼mþ1

ð1þ ciÞ
1=2 (10)

�
n

2
ln

Rn

n
þ

1

2

Xn

i¼mþ1

lnð1þ ciÞ þ
1

2
ln n. (11)

Eq. (9) is obtained by using the formula (7) from [4] and
by taking m ¼ 2kþ 1. The identity in (4) together with
some simple manipulations yield (10). Then, we proceed
like in [7] to get (11). We consider the SNML formula from
[26], and we employ the approximation ðn�mÞ=2 � n=2
because nbm. After ignoring the term ðn=2Þ lnð2p expð1ÞÞ,
we get

SNMLðkÞ �
n

2
ln

1

n

Xn

i¼mþ1

ê
2
i

 !
þ
Xn

i¼mþ1

lnð1þ ciÞ þ
1

2
ln n.

(12)

The asymptotic analysis reveals the relationship between
the four criteria. For example, it was shown in [31] that
PLS and BIC are asymptotically equivalent by proving that

PLSðkÞ ¼ Rn þ s2k ln n 1þ oð1Þð Þ (13)

if

lim
n!1

1

n
Rn ¼ s2.

A similar result was obtained previously in [11]. In [26],
the asymptotic equivalence between SNML and BIC was
verified, and the following limit was obtained as part of
the proof:

lim
n!1

Pn
i¼mþ1 lnð1þ ciÞ

ln n
¼ k.

The last result together with (11) lead to the equivalence
between PDC and BIC for n large.

All the ITC discussed above share a common feature,
namely they can be derived by applying the minimum
description length (MDL) principle [24]. It is known that
the MDL-based criteria are consistent: if the true model is
among the candidates, then the probability that this
model is selected goes to one as the sample size increases
[10]. The fact that AIC does not have the same property
was traditionally considered to be a drawback. But AIC is
asymptotically efficient: it selects the candidate model
that minimizes the one-step mean squared error of
prediction [28]. We refer to [20] for a very lucid analysis
of BIC and AIC.

In time-varying environments, the main concern is
not the consistent estimation of the model order, but
choosing the model which has the best performance in
terms of prediction, spectrum estimation, or adaptive
control. This is why we include in our study the Akaike
criterion [2]:

AICðkÞ ¼
n

2
ln

Rn

n
þ kþ 1. (14)

Its expression for the time-varying case, along with the
modified formulas of all other ITC that we investigate, will
be given in the next section.

3. Non-stationary case

When the hypothesis of stationarity is not satisfied, the
loss function (2) is replaced by [11]

Xt

i¼1

lt�i
ðyi þ a>x̄iÞ

2. (15)

The forgetting factor l is positive and less than one, and
the criterion (15) is minimized by

âl;t ¼ �Vl;t

Xt

i¼1

lt�ix̄iyi, (16)

where Vl;t ¼ ð
Pt

i¼1 l
t�ix̄ix̄

>
i Þ
�1. We choose m such that the

inverse Vl;t exists for t ¼ m. It was proven in [7] that such
a selection guarantees the inverse Vl;t to exist for all
t � m. Similarly with (5) and (6), we define for
t 2 fmþ 1; . . . ;ng:

el;t ¼ yt þ â
>

l;t�1x̄t , (17)

êl;t ¼ yt þ â
>

l;tx̄t . (18)

Let Rl;t be the value of the loss function (15) evaluated at
a ¼ âl;t . Relying on results from [12], we can easily write
the identities:

Rl;t ¼ lRl;t�1 þ e2
l;t=ð1þ cl;tÞ (19)

¼ lRl;t�1 þ e2
l;tð1� dl;tÞ, (20)

jVl;t j

jVl;t�1j
¼

1

lk
ð1þ cl;tÞ

¼
1� dl;t

lk
, (21)

where cl;t ¼ l�1x̄>t Vl;t�1x̄t and dl;t ¼ x̄>t Vl;tx̄t . Since Vl;t is
positive definite, we get

0odl;to1; 8t 2 fmþ 1; . . . ;ng. (22)

The ITC given in (7)–(8), (11)–(12) and (14) are obtained
under the hypothesis that the AR coefficients are esti-
mated by (3). We show next how the ITC can be re-
designed to use the estimation (16) instead of (3).

The traditional way of modifying BIC is to operate in
(7) the following changes: Rn is replaced by Rl;n, and n is
replaced by the effective number of samples, nef ¼

Pn�1
i¼0 li

[17]. This leads to

BIClðkÞ ¼
nef

2
ln

Rl;n

nef
þ

kþ 1

2
ln nef . (23)
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In [7,11], the formula above was further modified by
employing instead of nef its asymptotic value,
limn!1 nef ¼ n1ef ¼ 1=ð1� lÞ. In this paper, we prefer to
use the formula in (23) because it has better capabilities
for estimating the structure when the sample size, n, is
small.

In [11], the PLS criterion (8) was altered such that

PLSlðkÞ ¼
Xn

i¼mþ1

ln�ie2
l;i, (24)

and the following ad hoc criterion was introduced as an
improvement of PLSl:

SRMlðkÞ ¼
Xn

i¼mþ1

ln�ie2
l;i þ k. (25)

The preparatory results (9)–(11) suggest to modify PDC as
follows:

PDClðkÞ ¼
nef

2
ln

Rl;n

nef
� ln

Yn

i¼mþ1

jV�1
i�1;lj

1=2

jV�1
i;l j

1=2
þ

1

2
ln nef (26)

¼
nef

2
ln

Rl;n

nef
þ

1

2

Xn

i¼mþ1

ln½ð1þ cl;iÞl
k
�

þ
1

2
ln nef . (27)

Note that (27) was derived from (26) by applying (21).
Based on (12), it is natural to define

SNMLlðkÞ ¼
nef

2
ln

1

nef

Xn

i¼mþ1

ln�iê
2
l;i

 !

þ
Xn

i¼mþ1

ln½ð1þ cl;iÞl
k
� þ

1

2
ln nef . (28)

We apply to AIC-formula in (14) the same changes that
have been previously used to transform the expression of
BIC from (7) to the BICl-formula in (23), and we readily
obtain

AIClðkÞ ¼
nef

2
ln

Rl;n

nef
þ kþ 1. (29)

Sometimes the practitioners prefer to employ the criterion
above after replacing nef by n1ef (see, for example, [9]).
More interestingly, Ref. [16] gives theoretical grounds for
replacing in (29) the effective number of samples ðnef Þ by
the equivalent number of samples ðneqÞ, where
neq ¼ ð

Pn�1
i¼0 li

Þ
2=ð
Pn�1

i¼0 l2i
Þ. The effect of this change can

be understood better by considering the following result
from [18]: limn!1 ðneq=nef Þ ¼ 1þ l � 2 when l is close to
one. The interested reader can find more on the sig-
nificance of neq in [18, Chapter 4]. In our experiments, we
prefer to use the criterion (29). The reason for our choice
is twofold: (i) the comparison with BICl-formula from
(23) is fair if we employ nef and not n1ef ; (ii) using neq

instead of nef is not a very common option for the
practitioners.

In the next section, we learn more about the modified
ITC by evaluating them under time-invariant conditions.
4. Analysis of the modified information theoretic criteria

To investigate the behavior of PLSl, SRMl, PDCl and
SNMLl under time-invariant conditions, we assume:
ðA1Þ
 y1; . . . ; yn are outcomes of the Gaussian stationary
AR process defined in (1), for which E½x̄tx̄

>
t � ¼ C.
ðA2Þ
 For l close to one and n!1, we have:

Xn

i¼1

ln�ix̄ix̄
>
i � Gl, (30)

Xn

i¼1

ln�ix̄ix̄
>
i �

2
i � Hl, (31)

where

Gl ¼
1

1� l
C and Hl ¼

s2

1� l
C.
In ðA1Þ, E½�� is the expectation operator, and the matrix C
is supposed to be positive definite. Remark that ðA1Þ
guarantees the model to be the correct one. To circumvent
some technical difficulties, we do not consider the case of
incorrect models. We mention for completeness that the
incorrect model case was omitted also in [26].

The approximation (30) is used frequently in the
analysis of the adaptive algorithms (see, for example,
[18] and the references therein). Let us note that
limn!1 E½Gl;n� ¼ Gl, where Gl;n ¼

Pn
i¼1 l

n�ix̄ix̄
>
i . Relying

on this property, Eleftheriou and Falconer proposed in [5]
to decompose Gl;n into two terms: Gl;n ¼ Gl þ G̃l;n. The
perturbation matrix G̃l;n is assumed to have the following
properties: (i) is symmetric; (ii) its entries are zero-mean
random variables and they are statistically independent
from the random vector x̄n. Hence, the approximation in
(30) is equivalent to ignoring the contribution of G̃l;n
when Gl;n is evaluated. According to heuristics from [5],
this can be done if, for n!1, Gl;n fluctuates slowly
around its mean. A more solid approach is the one from
[15], where the following condition is used to find out
when theapproximation (30) can be applied:

trðE½ðGl;n � E½Gl;n�Þ
2
�Þ5trððE½Gl;n�Þ

2
Þ for n!1. (32)

The operator trð�Þ denotes the trace of the matrix in the
argument. Conventionally, the matrix Gl;n is called quasi-

deterministic whenever (32) is satisfied [15].
In Appendix A.1, we discuss how the forgetting factor l

must be selected such that the matrices
Pn

i¼1 l
n�ix̄ix̄

>
i andPn

i¼1 l
n�ix̄ix̄

>
i �

2
i are quasi-deterministic, in the sense of

the definition above. We find the condition
ð1þ lÞ=ð1� lÞb8k, and we compare it with the results
from [1,5]. The derivations within Appendix A.1 give also a
hint on the accuracy of the approximations (30) and (31)
when l satisfies ð1þ lÞ=ð1� lÞb8k. It was already
pointed out in [12, see p. 648] that, in the previous
literature,

Pn
i¼1 l

n�ix̄ix̄
>
i is proven to be quasi-determinis-

tic by assuming the vectors x̄1; . . . ; x̄n are statistically
independent. Our approach appears to be novel because
we do not use such an assumption for x̄1; . . . ; x̄n.

After these preliminaries, we are prepared to formalize
the principal result.
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Proposition 4.1. If ðA1Þ and ðA2Þ are satisfied, then

PLSlðkÞ ¼ Rl;n þ Oðs2kÞ, (33)

SRMlðkÞ ¼ Rl;n þ kþ Oðs2kÞ, (34)

PDClðkÞ ¼
n1ef

2
ln

Rl;n

n1ef

þ
kþ 1

2
ln n1ef

þ
1

2
ln
jCj

jV�1
m;lj
þ oð1Þ, (35)

SNMLlðkÞ ¼
n1ef

2
ln

Rl;n

n1ef

þ
2kþ 1

2
ln n1ef

þ ln
jCj

jV�1
m;lj
� OðkÞ. (36)

The proof is deferred to Appendix A.2.

Discussion: The equality in (35) shows that PDCl and
BICl are equivalent for n1ef large. Because ln n1ef does not
appear explicitly as a factor in the penalty term of PLSl, we
cannot conclude that PLSl and BICl are asymptotically
equivalent. The approximation in (33) is in line with the
heuristic result given by Eq. (1.11) from [11], and it makes
us to expect modest estimation performance for PLSl. To
gain more insight, we investigate in Appendix A.3 the
relationship between the asymptotic approximations (13)
and (33). The ‘‘big-O’’ term in (36) poses troubles when
one wants to check if SNMLl is asymptotically equivalent
to BICl.

In the next section, the performance of the modified
ITC is evaluated by simulations.

5. Experimental results

Computational aspects and performance evaluation:
Assuming the observations y1; . . . ; yn are available, the
ITC whose performance we want to evaluate must be
computed at each time moment for AR orders between
Kmin and Kmax. Because in our simulations the true AR
order takes values between zero and eight, we choose
Kmin ¼ 0 and Kmax ¼ 15. To reduce the computational
burden, we use predictive lattice filters for the imple-
mentation of the forgetting factor least-squares estimator
[29]. Note that all variables involved in (23)–(25) and
(27)–(29) are byproducts of the algorithm from [29]. We
mention for completeness that m ¼ 2Kmax in our settings.

When the forgetting factor is l 2 ð0;1Þ, at each time
moment t 2 fmþ 1; . . . ;ng, the order k̂ 2 fKmin; . . . ;Kmaxg

selected by an information theoretic rule, ITCl, is the one
which minimizes the criterion. Let us assume that the data
are simulated such that the true AR order at instant t is k,
and let us consider Nr independent realizations of
y1; . . . ; yn. Then we count in NcðITClÞ how many times,
after observing the first t samples, the AR order estimated
by ITCl, k̂, coincides with k. Hence, the empirical prob-
ability of correctly estimating the true order after observing
t samples is PcðITClÞ ¼ NcðITClÞ=Nr . This is the first figure of
merit that we use to compare the performance of various
selection criteria. Remark that PcðITClÞ depends also on t,
and not only on ITCl, but we drop t for having a simpler
notation. In all the examples discussed next, we calculate
the empirical probability of correctly estimating the true AR
order from Nr ¼ 5000 simulation runs.

If the true AR process at instant t is the one from Eq.
(1), then its spectrum is given by the well-known formula
[9,19],

fðf Þ ¼
s2

j1þ a1 expð�i2pf Þ þ � � � þ ak expð�i2pfkÞj2
, (37)

where 0 � f � 0:5 and i ¼
ffiffiffiffiffiffiffi
�1
p

. Let us suppose that, after
observing the first t samples, ITCl selects the AR order k̂,
and the parameter estimates are âr;1; . . . ; âr;k̂

, ŝ2
r . Then the

estimated AR spectrum is

f̂r;ITCl
ðf Þ ¼

ŝ2
r

j1þ âr;1 expð�i2pf Þ þ � � � þ â
r;k̂

expð�i2pf k̂Þj2
.

(38)

To keep the formula as simple as possible, we do not
emphasize in the equation above the dependency of the
parameter estimates on t, l and k̂. The second figure of
merit that we use in the performance evaluation of the ITC
is the average spectrum estimation error measured for
Nr ¼ 5000 independent realizations of the process,

DfðITClÞ ¼
1

Nr

1

Mj=2þ 1

XNr

r¼1

XMj=2

j¼0

ln
f̂r;ITCl

ðj=MjÞ

fðj=MjÞ

" #2

, (39)

where fð�Þ and f̂r;ITCl
ð�Þ were defined in (37) and (38),

respectively. Performance measures that are similar with
(39) have been employed in [3,16,17,19]. Like in [16], we
take Mj ¼ 200, and the reason for our choice will be
evident from the description of the examples below.
Remark that for the computation of DfðITClÞ, it is necessary
to calculate the AR model coefficients at each instant
t 2 fmþ 1; . . . ;ng. This can be done efficiently by using the
lattice parameters that have been computed as part of the
procedure for the selection of the optimum order k̂ (the
details of the algorithm can be found in [6,12]).

We consider three different examples to illustrate the
capabilities of BICl, PLSl, SRMl, PDCl, SNMLl and AICl.

Example 1 (Piecewise AR process). The following model
was originally proposed in [11]:

yt ¼

�t ; 1 � t � 1000;

0:4397yt�1 þ 0:1316yt�2

�0:0905yt�3

þ0:1053yt�4 þ 0:2814yt�5

�0:5120yt�6 þ �t ; 1001 � t � 2000;

0:9896yt�1 � 0:8097yt�2

þ0:8912yt�3

�0:6736yt�4 þ 0:7575yt�5

�0:5850yt�6

þ0:6077yt�7 � 0:5220yt�8 þ �t ; 2001 � t � 3000;

�t ; 3001 � t � 4000;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(40)

where the noise sequence �1; . . . ; �4000 is white Gaussian
with zero-mean and variance s2 ¼ 1. The interested
reader can find in [11] the spectra for the AR models
within the second and the third frame, and also some
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details on how they have been designed to mimic the
speech spectrum.

In our experiments, the value of the forgetting factor is

the same as in [11], namely l ¼ 0:99, which is equivalent

to n1ef ¼ 100. Because in the previous literature, BICl is the

mostly used selection rule, we show PcðBIClÞ and DfðBIClÞ

in the top plots of Fig. 1. For comparison, we take BICl as a

reference, and we plot in the same figure the differences

PcðITClÞ � PcðBIClÞ and DfðITClÞ � DfðBIClÞ for all other

ITC whose capabilities are evaluated in our simulations.

Remark in Fig. 1 that PLSl, PDCl and SNMLl are less

effective than BICl in estimating correctly the structure

for the zero-order model within the first frame, especially

when the number of observations is small.
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Fig. 1. Example 1—the true model is given in (40), the driven noise variance is

correctly estimating the true order, PcðBIClÞ, is shown in the first plot, while the

other plots represent the differences PcðITClÞ � PcðBIClÞ and DfðITClÞ �DfðBICl
For PDCl, this drawback can be explained by observing

in (26) that the penalty term is 1
2 ln j

Pn
i¼1 l

n�ix̄ix̄
>
i j�

1
2 ln j

Pm
i¼1 l

n�ix̄ix̄
>
i j þ

1
2 ln nef . When l ¼ 1, js�2

Pn
i¼1

ln�ix̄ix̄
>
i j is the Fisher information (FI) for the AR

parameters a1; . . . ; ak. It is known that 1
2 lnðFIÞ has desirable

properties and asymptotically it becomes equal to

ðk=2Þ ln n, which is the penalty term for BIC. A more

comprehensive discussion on this issue can be found in

Section 5 of [31]. Therefore, subtracting 1
2 ln j

Pm
i¼1 l

n�ix̄ix̄
>
i j

from 1
2 lnðFIÞ leads to a penalty term which is likely to favor

the higher order models, especially when n is not much

larger than m. The undesirable effects described above can

be limited by using the method proposed in [4] for the

initialization of ITC.
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s2 ¼ 1, and the forgetting factor is l ¼ 0:99. The empirical probability of

second plot shows the average spectrum estimation error, DfðBIClÞ. The

Þ for ITCl 2 fPLSl ; SRMl; PDCl ; SNMLl,AIClg.
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Fig. 2. Example 1—the true model is given in (40), the driven noise variance is s2 ¼ 10, and the forgetting factor is l ¼ 0:99. All graphical conventions are

the same like in Fig. 1.
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The same heuristics can be extended from the case l ¼
1 to l 2 ð0;1Þ. The findings on PDCl can be applied also to

SNMLl because
Pn

i¼mþ1 ln½ð1þ cl;iÞl
k
� ¼ ln j

Pn
i¼1 l

n�ix̄ix̄
>
i j

� ln j
Pm

i¼1 l
n�ix̄ix̄

>
i j is part of its penalty term.

We can also remark in Fig. 1 that the performance of

PLSl is modest in all frames, and not only in the first one.

Hence, the empirical evidence supports the asymptotic

result in (33), where it is easy to see that the goodness-of-

fit term dominates the penalty term. This is why PLSl
tends to over-estimate the model order, as was already

noticed in [11]. The capabilities of SRMl are superior to

those of PLSl, but SRMl compares favorably with BICl only

in the second frame. Moreover, SRMl performs very

similarly to AICl during the first three frames, and is

slightly inferior to AICl in the fourth frame.
By focusing on the breaks at the time instants 1001,

2001 and 3001, we observe in Fig. 1 that all criteria are

faster than BICl when responding to an increase of the AR

order, but they are slower than BICl when the AR order

decreases.

To investigate further the ranking of the five selection

criteria, we simulate another Nr ¼ 5000 realizations of the

process in (40). In this set of experiments, the variance of

the driven noise is chosen to be s2 ¼ 10 and not s2 ¼ 1 as it

was for the previous runs. The estimation results obtained

for l ¼ 0:99 are plotted in Fig. 2, and by comparing them

with those from Fig. 1, we note immediately that SRMl is

the only criterion affected by the increase of s2. More

precisely, the empirical probability of correctly estimating

the true order, PcðSRMlÞ, becomes almost equal to PcðPLSlÞ
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Fig. 3. Example 1—the true model is given in (40), the driven noise variance is s2 ¼ 1, and the forgetting factor is l ¼ 0:995. All graphical conventions are

the same like in Fig. 1.
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when s2 ¼ 10. This is easily explained by the results of

Proposition 4.1. The asymptotic approximations (33) and

(34) lead to the following outcomes: (i) the goodness-of-fit

term is the same for both PLSl and SRMl; (ii) when s2
b1,

we have also s2kbk, and the penalty terms of the two

criteria are almost the same.

Next we analyze the influence of l on ITCl. To this end,

we consider the same experimental settings like those

used to produce Fig. 1, except the forgetting factor that

now is taken l ¼ 0:995 (n1ef ¼ 200) instead of l ¼ 0:99

(n1ef ¼ 100). The results are plotted in Fig. 3.

Let us concentrate on the behavior of BICl in the second

frame. In Fig. 1, PcðBIClÞo1 for all time points between

1001 and 2000, whereas in Fig. 3, PcðBIClÞ attains value

one approximately at the time moment 1500 and remains
at this level until the end of the frame. Then we focus on

the fourth frame: in Fig. 1, PcðBIClÞ equals one shortly

after the time moment 3000, whereas in Fig. 3 PcðBIClÞ

attains the same level only after the time moment 3500.

Thus, the effect of using longer memory is that BICl

improves its accuracy during the frames when the model

does not change, but it is less sensitive to parameter

changes. The same is true for PDCl and SNMLl. This

behavior is in line with the principle of uncertainty which

is outlined in [18].

We can also see in Fig. 3 that PLSl yields modest results,

while the capabilities of SRMl are moderate. Switching from

l ¼ 0:99 to 0:995 has a negative effect on the estimation

accuracy of AICl, which makes it to be inferior to BICl at all

sampling points, except the beginning of the second and the
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Fig. 4. Example 2—the true model is given in (41), the driven noise variance is s2 ¼ 1, and the forgetting factor is l ¼ 0:99. All graphical conventions are

the same like in Fig. 1.
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third frame. This confirms that the increase of nef affects

AICl like the increase of the sample size affects AIC.

We conclude the discussion related to Example 1 by

mentioning that, in Figs. 1–3, the average spectrum

estimation errors are smaller for a particular ITCl than

for BICl only when PcðITClÞ4PcðBIClÞ.

Example 2 (Piecewise AR process with dyadic structure).
The true model for this example is taken from [3,19]:

yt ¼

0:9yt�1 þ �t ; 1 � t � 512;

1:69yt�1 � 0:81yt�2 þ �t ; 513 � t � 768;

1:32yt�1 � 0:81yt�2 þ �t ; 769 � t � 1024;

8><
>: (41)

where �t is zero-mean white Gaussian noise with unitary
variance. Because the lengths of all stationary frames are a
power of two, the model is ideal for the segmentation
algorithms that divide the time series into blocks, in a
dyadic manner, up to a pre-specified scale.

For an easier comparison with the previous example,

we choose the forgetting factor l ¼ 0:99, and we plot the

estimation results in Fig. 4 by using the same conventions

like in Figs. 1–3. Remark in the first plot of Fig. 4 that BICl

is very good in estimating the structure for the order-1 AR

process within the first frame. In the same frame,

SRMl and AICl approach the performance of BICl much

faster than PDCl and SNMLl. The difference PcðPLSlÞ �

PcðBIClÞ is smaller than �0:2 for almost all time points

within the first frame, hence the performance of PLSl is

modest.
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Fig. 5. Example 3—the true model is given in (42), the driven noise variance is s2 ¼ 1, and the forgetting factor is l ¼ 0:99. All graphical conventions are

the same like in Fig. 1.
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The increase in AR order from the first frame to the

second one is detected by all criteria, except BICl. In spite

of modest performance in the beginning of the second

frame, BICl is the best in both the second and the third

frames. For the time moments t � 513, SNMLl is the

second-best and is followed closely by AICl.

Example 3 (Slowly varying AR process with order 2). The
true model is also taken from [3,19], and it is an order-2
AR process for which the first coefficient changes slowly
over time, while the second coefficient is constant. This
makes the true spectrum to change from one time point to
another, as it can be seen in Fig. 5 from [3], or Fig. 12 from
[19]. Thus, we simulate Nr ¼ 5000 realizations of the model:

yt ¼ �a1;tyt�1 � 0:81yt�2 þ �t ; 1 � t � 1024, (42)
where a1;t ¼ �0:8½1� 0:5 cosðpt=1024Þ�, and �t is zero-
mean white Gaussian noise with unitary variance.

The values of Pcð�Þ and Dfð�Þ obtained when l ¼ 0:99 are

plotted in Fig. 5. Similarly with what we have seen

in the previous examples, the accuracy of PDCl and

SNMLl improves slower than the accuracy of the other

criteria when the sample size increases. However,

after the time moment 200, PLSl is the only selec-

tion rule which has difficulties in correctly estimating

the order of the model. It was already shown experimen-

tally in [26] that BIC is very accurate in estimating

the structure of stationary AR models whose order is at

most two. Our results for Examples 2 and 3 confirm that

the same is true for BICl applied to non-stationary AR

models.
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6. Conclusion

Transforming the ITC to become compatible with the
forgetting factor least-squares algorithms is not a trivial
task, especially for criteria that do not involve explicitly
the residual sum of weighted squares. In this paper, we
focused on five ITC which can be seen as embodiments of
the MDL principle. Additionally, a modified variant of AIC
was considered. For decomposing each MDL-based criter-
ion into the goodness-of-fit term and the penalty term, we
resorted to an asymptotic analysis.

Both the theoretical and the experimental results lead to
the following outcomes: (a) BICl estimates accurately the
structure of non-stationary AR models whose order is at
most two, which extends the similar result that was
previously obtained for BIC in the stationary case; (b) PLSl
has modest performance; (c) SRMl is superior to PLSl, but
the accuracies of the two criteria become almost equal
when the variance of the driven noise increases; (d) PDCl is
faster than BICl in detecting the increase of the AR order,
but it is slower than BICl in detecting when the AR order
decreases; (e) SNMLl and PDCl have similar behaviors, with
the supplementary remark that SNMLl is slightly superior
to PDCl; (f) AICl is superior to SNMLl when the true AR
order is at most two and the sample size is small, but it
becomes inferior to SNMLl when l is chosen such that the
equivalent number of samples (nef ) is large enough.

The investigation can be further extended to the case of
variable forgetting factor, which is known to account
better for the non-stationarity of the signal. A more
advanced option is to select the forgetting factor such that
to minimize the description length. The difficult part is
the theoretical analysis which will be more complicated
than that outlined in this paper.
Acknowledgment

This work was supported by the Academy of Finland,
Project nos. 113572, 118355 and 213462.
Appendix A

A.1. On the assumption ðA2Þ

In this appendix, we investigate the conditions for
which the approximations in (30) and (31) are sharp. To
perform the analysis, we consider like in [16] that the
covariance function of the Gaussian process defined by
z̄t ¼ ½x̄

>
t �t�

> is exponentially decaying, or equivalently,
there exist Z40 and z 2 ð0;1Þ such that for all integers n,
the magnitudes of the entries of E½z̄t z̄

>
tþn� do not exceed

Zzjnj. For an arbitrary integer n, we denote cðnÞ ¼ E½ytytþn�

and sðnÞ ¼ E½�tytþn�. Therefore, we have

jcðnÞj � Zzk�1þjnj
8n 2 f. . . ;�1;0;1; . . .g, (43)

jsðnÞj � Zzkþn
8n 2 f0;1; . . .g. (44)

Additionally, sðnÞ ¼ 0 for no0 and Z � s2.
We focus on the selection of the forgetting factor l
such that (32) holds true. Simple calculations lead to

E½ðGl;n � E½Gl;n�Þ
2
� ¼

Xn

i¼1

Xn

j¼1

l2n�i�jE½x̄ix̄
>
i x̄jx̄

>
j �

0
@

1
A

�
Xn

i¼1

ln�i

 !2

C2, (45)

and by applying the well-known formula (see, for
example, [13]) that gives the expectation of the product
of four jointly Gaussian random variables in terms of their
first- and second-order moments, we obtain for all
i; j 2 f1; . . . ;ng:

trðE½x̄ix̄
>
i x̄jx̄

>
j �Þ

¼
Xk

p¼1

Xk

q¼1

E½yi�pyi�qyj�qyj�p� ¼
Xk

p¼1

Xk

q¼1

cðjp� qjÞ2 (46)

þ
Xk

p¼1

Xk

q¼1

cðji� j� ðp� qÞjÞcðji� jþ ðp� qÞjÞ (47)

þ
Xk

p¼1

Xk

q¼1

cðji� jjÞ2 (48)

¼ kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2 (49)

þ kcðji� jjÞ2 þ 2
Xk�1

r¼1

ðk� rÞcðji� j� rjÞcðji� jþ rjÞ (50)

þ k2cðji� jjÞ2. (51)

We note that Eqs. (46)–(48) are a particular case of Eqs.
(2.8)–(2.12) from [13]. Remark also that the matrix C is
Toeplitz and symmetric, thus it is fully defined by its first row
½cð0Þ cð1Þ � � � cðk� 1Þ�. By using (45) and (49)–(51), we get

trðE½ðGl;n � E½Gl;n�Þ
2
�Þ

¼
Xn

i¼1

ln�i

 !2

kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2
 !

þ
Xn

i¼1

l2n�2i kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2
 !

þ2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘

� kcð‘Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðj‘ � rjÞcðj‘ þ rjÞ

 !

þ
Xn

i¼1

l2n�2ik2cð0Þ2

þ2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘k2cð‘Þ2

�
Xn

i¼1

ln�i

 !2

kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2
 !

¼ cð0Þ2
1� l2n

1� l2
ðk2
þ kÞ

 !
(52)

þ
Xk�1

r¼1

cðrÞ2
1� l2n

1� l2
2ðk� rÞ þ

lr
� l2n�r

1� l2
2ðk2
þ kÞ

 !
(53)

þ
Xn�1

‘¼k

cð‘Þ2
l‘ � l2n�‘

1� l2
2ðk2
þ kÞ

 !
(54)

þ 4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk�1

r¼1

ðk� rÞcðj‘ � rjÞcðj‘ þ rjÞ. (55)
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We apply (43) to the term in (54),

Xn�1

‘¼k

cð‘Þ2
l‘ � l2n�‘

1� l2
2ðk2
þ kÞ

 !

�
2Z2z2k�2

ðk2
þ kÞ

1� l2

Xn�1

‘¼k

ðl‘ � l2n�‘
Þz2‘

¼
2Z2z2k�2

ðk2
þ kÞ

1� l2

lkz2k
� lnz2n

1� lz2
�
l2n�kz2k

� lnz2n

1� l�1z2

 !
,

and for n!1, we get

Xn�1

‘¼k

cð‘Þ2
l‘ � l2n�‘

1� l2
2ðk2
þ kÞ

 !
� 2

k2
þ k

1� l2

Z2

1� lz2
lkz4k�2.

(56)

Next we consider (43) and the term in (55):

4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk�1

r¼1

ðk� rÞcðj‘ � rjÞcðj‘ þ rjÞ

� 4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk�1

r¼1

ðk� rÞZ2z2k�2zj‘�rjþj‘þrj

� 4Z2z2k�2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk�1

r¼1

ðk� rÞz2‘ (57)

¼ 4Z2z2k�2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘z2‘
Xk�1

r¼1

ðk� rÞ

¼
2Z2z2k�2

ðk2
� kÞ

1� l2

Xn�1

‘¼1

ðl‘ � l2n�‘
Þz2‘

¼
2Z2z2k�2

ðk2
� kÞ

1� l2

lz2
� lnz2n

1� lz2
�
l2n�1z2

� lnz2n

1� l�1z2

 !
.(58)

All the derivations above are straightforward. The inequality
in (57) is a consequence of the following result: for all ‘ 2
f1; . . . ;n� 1g and r 2 f1; . . . ; k� 1g, 2‘ � j‘ � rj þ j‘ þ rj,
with equality if and only if r � ‘. By taking n!1 in (58),
we obtain

4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk�1

r¼1

ðk� rÞcðj‘ � rjÞcðj‘ þ rjÞ

� 2
k2
� k

1� l2

Z2

1� lz2
lz2k. (59)

By collecting the results from (52), (53), (56) and (59), the
following asymptotic inequality is proven:

ð1� lÞ2

k
trðE½ðGl;n � E½Gl;n�Þ

2
�Þ

� 2
1� l
1þ l

k

� �
cð0Þ2

kþ 1

2k
(60)

þ 2
1� l
1þ l

k

� �Xk�1

r¼1

cðrÞ2
k� r

k2
þ

kþ 1

k
lr

� �
(61)

þ 2
1� l
1þ l

k

� �
kþ 1

k

Z2

1=ðlz2
Þ � 1

ðlz4
Þ
k�1

 !
(62)

þ 2
1� l
1þ l

k

� �
k� 1

k

Z2

1=ðlz2
Þ � 1

z2ðk�1Þ

 !
. (63)
Moreover, we have the identity:

ð1� lÞ2

k
trððE½Gl;n�Þ

2
Þ ¼ cð0Þ2 þ

Xk�1

r¼1

cðrÞ2
2ðk� rÞ

k
. (64)

Because the coefficient of cð0Þ2 in (64) is one, we have forced
in (60)–(63) the common factor 2ðð1� lÞ=ð1þ lÞÞk such that
the coefficient of cð0Þ2 in (60), namely ðkþ 1Þ=ð2kÞ, does not
exceed one; it is obvious that ðkþ 1Þ=ð2kÞ � 1 for k � 1. By
comparing (60)–(63) with (64), we remark that (32) holds
under the condition 2ðð1� lÞ=ð1þ lÞÞk51 if the covariance
function of the AR process is rapidly decreasing. To be more
precise, let us compare the coefficient of cðrÞ2 from (61) with
the one from (64). It is evident that k41 and
r 2 f1; . . . ; k� 1g. Because l is close to one, the effect of lr

is marginal, and we ignore it. Then, it is elementary to
observe that

2ðk� rÞ

k
�

k� r

k2
þ

kþ 1

k

� �
� �1þ

1

k
�

1

k2

� �
4� 1.

Hence, for 2ðð1� lÞ=ð1þ lÞÞk51 we have

2
1� l
1þ l

k

� �
k� r

k2
þ

kþ 1

k
lr

� �
5

2ðk� rÞ

k
.

In (62) and (63), the smaller is z, the smaller are the
factors

kþ 1

k

Z2

1=ðlz2
Þ � 1

ðlz4
Þ
k�1

 !

and

k� 1

k

Z2

1=ðlz2
Þ � 1

z2ðk�1Þ

 !
.

Therefore, the approximation in (30) becomes sharper
when the covariance function of the AR process
decreases rapidly. We note also that, because l is close
to one, we have 2=ð1þ lÞ � 1. Thus, 2ðð1� lÞ=ð1þ lÞÞk51
is almost the same like the usual condition 1=ð1� lÞbk

[1,5].
Next we focus on (31) and we find conditions for l

such that the matrix Hl;n ¼
Pn

i¼1 l
n�ix̄ix̄

>
i �

2
i is quasi-

deterministic at steady-state. Remark that

E½ðHl;n � E½Hl;n�Þ
2
�

¼
Xn

i¼1

Xn

j¼1

l2n�i�jE½x̄ix̄
>
i �

2
i x̄jx̄

>
j �

2
j �

0
@

1
A� s4

Xn

i¼1

ln�i

 !2

C2,

tr
Xn

i¼1

Xn

j¼1

l2n�i�jE½x̄ix̄
>
i �

2
i x̄jx̄

>
j �

2
j �

0
@

1
A

¼
Xn

i;j¼1
i¼j

þ
Xn

i;j¼1
iaj

2
664

3
775� ½l2n�i�jtrðE½x̄ix̄

>
i �

2
i x̄jx̄

>
j �

2
j �Þ�.
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With some simple calculations, we obtain

Xn

i;j¼1
i¼j

l2n�i�jtrðE½x̄ix̄
>
i �

2
i x̄jx̄

>
j �

2
j �Þ

¼
Xn

i¼1

l2n�2iE½trððx̄ix̄
>
i �iÞ

2
Þ�

¼
Xn

i¼1

l2n�2iE
Xk

p¼1

Xk

q¼1

y2
i�py2

i�q�
4
i

" #

¼
Xn

i¼1

l2n�2iE½�4
i �
Xk

p¼1

Xk

q¼1

E½y2
i�py2

i�q�

¼ 3s4
Xn

i¼1

l2n�2i
Xk

p¼1

Xk

q¼1

ðcð0Þ2 þ 2cðjp� qjÞ2Þ

¼ 3s4 1� l2n

1� l2
k2cð0Þ2 þ 2 kcð0Þ2 þ 2

Xk�1

r¼1

ðk� rÞcðrÞ2
 ! !

¼ 3s4 1� l2n

1� l2
ðk2
þ 2kÞcð0Þ2 þ 4

Xk�1

r¼1

ðk� rÞcðrÞ2
 !

. (65)

For iaj and p; q 2 f1; . . . ; kg, the expectation formula for
the product of Gaussian random variables [16] leads to

E½yi�pyi�q�
2
i yj�qyj�p�

2
j �

¼ s4cðjp� qjÞ2

þ s4cðji� j� ðp� qÞjÞcðji� jþ ðp� qÞjÞ

þ s4cðji� jjÞ2 þ 2s2

� cðjp� qjÞsðji� jj � pÞsðji� jj � qÞUðji� jj �maxðp; qÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tði;j;p;qÞ

,

where Uð�Þ has value one whenever the argument is non-
negative, and otherwise it takes value zero. By using the
equation above together with (65) and some previous
results, we get

trðE½ðHl;n � E½Hl;n�Þ
2
�Þ

¼ 3s4 1� l2n

1� l2
ðk2
þ 2kÞcð0Þ2 þ 4

Xk�1

r¼1

ðk� rÞcðrÞ2
 !

þ s4
Xn

i¼1

ln�i

 !2

�
1� l2n

1� l2

0
@

1
A

� kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2
 !

þ 2s4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘

� kcð‘Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðj‘ � rjÞcðj‘ þ rjÞ

 !

þ 2s4
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘k2cð‘Þ2

þ 4s2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk

p¼1

Xk

q¼1

Tði; i� ‘; p; qÞ

� s4
Xn

i¼1

ln�i

 !2

kcð0Þ2 þ 2
Xk�1

r¼1

ðk� rÞcðrÞ2
 !

.

From (43) and (44), we have Tði; i� ‘; p; qÞ �

Z3z3k�1z2‘zjp�qj�ðpþqÞ, thus

4s2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk

p¼1

Xk

q¼1

Tði; i� ‘;p; qÞ

� 4s2Z3z3k�1
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘z2‘
Xk

p¼1

Xk

q¼1

zjp�qj�ðpþqÞ

�
4s2Z3zk�1k2

1� l2

lz2
� lnz2n

1� lz2
�
l2n�1z2

� lnz2n

1� l�1z2

 !
,

where the last inequality is obtained by observing that
�2k � jp� qj � ðpþ qÞo0 for all p;q 2 f1; . . . ; kg. By taking
n!1, we get

4s2
Xn�1

‘¼1

Xn

i¼‘þ1

l2n�2iþ‘
Xk

p¼1

Xk

q¼1

Tði; i� ‘;p; qÞ

� 4s2 k2

1� l2

Z3

1� lz2
lzkþ1,

and we readily obtain

ð1� lÞ2

ks4
trðE½ðHl;n � E½Hl;n�Þ

2
�Þ

� 8
1� l
1þ l

k

� �
cð0Þ2

3kþ 5

8k

(66)

þ 8
1� l
1þ l

k

� �Xk�1

r¼1

cðrÞ2
5ðk� rÞ

4k2
þ

kþ 1

4k
lr

� � (67)

þ 8
1� l
1þ l

k

� �
kþ 1

4k

Z2

1=ðlz2
Þ � 1

ðlz4
Þ
k�1

 ! (68)

þ 8
1� l
1þ l

k

� �
k� 1

4k

Z2

1=ðlz2
Þ � 1

z2ðk�1Þ

 ! (69)

þ 8
1� l
1þ l

k

� �
Z

2s2

Z2

1=ðlz2
Þ � 1

zk�1

 !
.

(70)

Similarly with (64), we have

ð1� lÞ2

ks4
trððE½Hl;n�Þ

2
Þ ¼ cð0Þ2 þ

Xk�1

r¼1

cðrÞ2
2ðk� rÞ

k
. (71)

In (66)–(70), the common factor 8ðð1� lÞ=ð1þ lÞÞk was
chosen such that the coefficient ð3kþ 5Þ=ð8kÞ that multi-
plies cð0Þ2 in (66) does not exceed one, the coefficient of
cð0Þ2 in (71). By comparing (66)–(70) with (71), we decide
that the inequality 8ðð1� lÞ=ð1þ lÞÞk51 must be satisfied
such that the matrix Hl;n is quasi-deterministic. Remark
that the condition is slightly stronger than the previously
found condition for Gl;n to be quasi-deterministic.
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A.2. Proof of Proposition 4.1

The most important ideas of the proof are inspired by
[14,30,31], where the analysis is restricted to the case
l ¼ 1. Because the case l 2 ð0;1Þ poses supplementary
difficulties, we first demonstrate some auxiliary results
that will be instrumental for the main proof given in
Section A.2.2.
A.2.1. Auxiliary results

Lemma A.1. The following identity holds:

PLSlðkÞ ¼
Xn

i¼mþ1

ln�ie2
l;i ¼ Rl;n þ

X3

j¼1

SðjÞl;n, (72)

where

Sð1Þl;n ¼
Xn

i¼mþ1

ln�idl;i�2
i ,

Sð2Þl;n ¼
Xn

i¼mþ1

ln�idl;i½ðâl;i�1 � aÞ>x̄i�
2,

Sð3Þl;n ¼ 2
Xn

i¼mþ1

ln�idl;i½ðâl;i�1 � aÞ>x̄i��i.

Proof. For each t 2 fmþ 1; . . . ;ng, we consider Eq. (20)
and we multiply it by ln�t. We sum together all the
resulting equalities, and the identity

Xn

i¼mþ1

ln�ie2
l;i ¼ Rl;n � ln�mRl;m þ

Xn

i¼mþ1

ln�idl;ie
2
l;i (73)

is obtained. As ln�mRl;m � 0 asymptotically, we ignore this
term from the identity above. This observation together
with (1) and (17) lead to (72). &

Lemma A.2. We have the following results:

lim
n!1

Xn

i¼mþ1

ln�idl;io1, (74)

lim
n!1

Sð1Þl;n ¼ lim
n!1

Xn

i¼mþ1

ln�idl;i�2
i o1 a.s. (75)

Proof. Based on (22), we get immediately

Xn

i¼mþ1

ln�idl;io
Xn

i¼mþ1

ln�i
¼
lmþ1

� lnþ1

1� l
,

and (74) is obtained by applying the comparison test for
convergence. The result (75) is a direct consequence of
(74) and Lemma 2(iii) from [14]. &

Lemma A.3. For n large, Sð2Þl;n þSð3Þl;n ¼ OðSð1Þl;nÞ a.s.
Proof. From (1) and (16), we have

½ðâl;i�1 � aÞ>x̄i�
2

¼ x̄>i �a� Vl;i�1

Xi�1

j¼1

li�1�jx̄jð�x̄>j aþ �jÞ

0
@

1
A

2
4

3
52

¼ x̄>i �aþ Vl;i�1

Xi�1

j¼1

li�1�jx̄jx̄
>
j

0
@

1
Aa

0
@

2
4

�Vl;i�1

Xi�1

j¼1

li�1�jx̄j�j

1
A
3
52

¼ x̄>i Vl;i�1

Xi�1

j¼1

li�1�jx̄j�j

2
4

3
52

. (76)

Next we introduce Dl;i, i 2 fm . . . ;ng, and we obtain a
recursive formula for it:

Dl;i ¼
Xi

j¼1

li�jx̄>j �j

2
4

3
5Vl;i

Xi

j¼1

li�jx̄j�j

2
4

3
5

¼
Xi�1

j¼1

li�jx̄>j �j

2
4

3
5Vl;i

Xi�1

j¼1

li�jx̄j�j

2
4

3
5þ x̄>i Vl;ix̄i�2

i

þ 2x̄>i Vl;i

Xi�1

j¼1

li�jx̄j�j

2
4

3
5�i

¼ lDl;i�1 �
Xi�1

j¼1

li�jx̄>j �j

2
4

3
5 1

l2

Vl;i�1x̄ix̄
>
i Vl;i�1

1þ cl;i

�
Xi�1

j¼1

li�jx̄j�j

2
4

3
5 (77)

þ x̄>i Vl;ix̄i�2
i þ 2

x̄>i Vl;i�1

lð1þ cl;iÞ

Xi�1

j¼1

li�jx̄j�j

2
4

3
5�i (78)

¼ lDl;i�1 �

x̄>i Vl;i�1

Pi�1

j¼1

li�1�jx̄j�j

" #2

1þ cl;i
þ dl;i�2

i

þ

2x̄>i Vl;i�1

Pi�1

j¼1

li�1�jx̄j�j

" #
�i

1þ cl;i
. (79)

In (77) and (78), we applied the following two identities
which are consequences of the matrix inversion lemma
[12]: for all i4m,

Vl;i ¼
1

l
Vl;i�1 �

1

l2

Vl;i�1x̄ix̄
>
i Vl;i�1

1þ cl;i

and

x̄>i Vl;i ¼
x̄>i Vl;i�1

lð1þ cl;iÞ
.

We multiply (79) by ln�i for each i 2 fmþ 1; . . . ;ng, and
after summing together all the resulting equalities, we get

Dl;n � ln�mDl;m þ
Xn

i¼mþ1

ln�i
½x̄>i Vl;i�1

Pi�1
j¼1 l

i�1�jx̄j�j�
2

1þ cl;i

¼
Xn

i¼mþ1

ln�idl;i�2
i þ 2

Xn

i¼mþ1

ln�ix̄>i Vl;i�1½
Pi�1

j¼1 l
i�1�jx̄j�j��i

1þ cl;i
. (80)
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Lemma 2(iii) from [14] leads to
Pn

i¼mþ1 ui�i ¼

oð
Pn

i¼mþ1 u2
i Þ þ Oð1Þ a.s., where

ui ¼
ln�ix̄>i Vl;i�1½

Pi�1
j¼1 l

i�1�jx̄j�j�

1þ cl;i

when i4m, and conventionally ui ¼ 0 for i � m. Because
ð1þ cl;iÞ=l

n�i
� 1 for all i4m, we also have

Xn

i¼mþ1

ui�i ¼ o
Xn

i¼mþ1

1þ cl;i

ln�i
u2

i

 !
þ Oð1Þ a.s. (81)

Based on (75), (80) and (81), we note that

lim
n!1

Xn

i¼mþ1

ln�i
½x̄>i Vl;i�1

Pi�1
j¼1 l

i�1�jx̄j�j�
2

1þ cl;i
o1 a.s.

Therefore, by using (76) and the identity 1=ð1þ cl;iÞ ¼

1� dl;i, Eqs. (80) and (81) can be re-written as

Xn

i¼mþ1

ln�i
ð1� dl;iÞ½ðâl;i�1 � aÞ>x̄i�

2

( )
ð1þ oð1ÞÞ

¼Sð1Þl;n þ Oð1Þ a.s.,

and by resorting to the definition of Sð2Þl;n, we readily

obtain Sð2Þl;n ¼ OðSð1Þl;nÞ a.s. We apply the Cauchy–Schwarz

inequality to get ½Sð3Þl;n=ð2S
ð1Þ
l;nÞ�

2 �Sð2Þl;n=S
ð1Þ
l;n, which con-

cludes the proof. &

Lemma A.4. For n large, Sð1Þl;n ¼ ks2 þ Oð1Þ.

Proof. Let us consider the usual norms for vectors and
matrices. Thus, kx̄k2 ¼ x̄>x̄ for an arbitrary x̄ 2 Rk�1. For
M 2 Rk�k, kMk2 equals the largest eigenvalue of M>M.
Eq. (30) guarantees for any d40 there exists i0 such that
for all i4i0 the following inequality is verified:
kVl;i � G�1

l k � d=kGlk. As Gl is positive definite, we also

have for all x̄ 2 Rk�1, kx̄k2=kGlk � x̄>G�1
l x̄. Simple calcu-

lations lead to ð1� dÞSð4Þl;n �
Pn

i¼i0þ1 l
n�idl;i�2

i �

ð1þ dÞSð4Þl;n, where Sð4Þl;n ¼
Pn

i¼i0þ1l
n�ix̄>i G�1

l x̄i�2
i . Taking

d! 0, we get
Pn

i¼i0þ1 l
n�idl;i�2

i ¼Sð4Þl;n. Without loss of

generality, we assume i04m, and by applying (31) and the
identity above, we obtain

lim
n!1

Sð1Þl;n ¼ lim
n!1

Xi0

i¼mþ1

þ
Xn

i¼i0þ1

" #
ln�idl;i�2

i

� �

¼ lim
n!1

Xn

i¼i0þ1

ln�ix̄>i G�1
l x̄i�2

i

� �
þ Oð1Þ

¼ lim
n!1

Xn

i¼1

�
Xi0

i¼1

" #
ðln�ix̄>i G�1

l x̄i�2
i Þ þ Oð1Þ

¼ lim
n!1

Xn

i¼1

ðln�ix̄>i G�1
l x̄i�2

i Þ þ Oð1Þ

¼ lim
n!1

trðG�1
l

Xn

i¼1

ln�ix̄ix̄
>
i �

2
i Þ þ Oð1Þ

¼ trðG�1
l HlÞ þ Oð1Þ

¼ ks2 þ Oð1Þ: &

Lemma A.5. The following results hold:
Xn

i¼mþ1

ln�iê
2
l;i ¼ Rl;n �Sð1Þl;nð1þ Oð1ÞÞ, (82)

ln
1

n1ef

Xn

i¼mþ1

ln�iê
2
l;i

 !
¼ ln

Rl;n

n1ef

�
k

n1ef

ð1þ Oð1ÞÞ. (83)

Proof. Because ê
2
l;i ¼ ð1� dl;iÞ

2e2
l;i for all i 2 fmþ 1; . . . ;ng

[12], Eq. (73) implies
Pn

i¼mþ1 l
n�iê

2
l;i ¼ Rl;n � ln�mRl;m�Pn

i¼mþ1 l
n�idl;ie

2
l;i þSð5Þl;n, where Sð5Þl;n ¼

Pn
i¼mþ1 l

n�id2
l;ie

2
l;i.

We know from Lemma A.1 that
Pn

i¼mþ1 l
n�idl;ie

2
l;i ¼P3

j¼1S
ðjÞ
l;n, and from Lemma A.3 we have Sð2Þl;n þSð3Þl;n ¼

OðSð1Þl;nÞ. The inequality in (22) leads to 0oSð5Þl;noPn
i¼mþ1 l

n�idl;ie
2
l;i. Additionally ln�mRl;m � 0, and the

result in (82) is proven. Then

ln
1

n1ef

Xn

i¼mþ1

ln�iê
2
l;i

 !
¼ ln

Rl;n

n1ef

 !
þ ln 1�

k

n1ef

s2

Rl;n

n1ef

ð1þ Oð1ÞÞ

0
BBB@

1
CCCA,

which is a consequence of (82) and Lemma A.4. To get

(83), we use Rl;n=n1ef � s2 and lnð1� xÞ � �x for jxj close

to zero. &

A.2.2. Main results

Remark in the proofs above that the assumption ðA1Þ
was needed for all lemmas, while ðA2Þ was used only for
Lemmas A.4 and A.5. Next we explain how the identities
(33)–(36) are derived:
	
 Eq. (33): is readily obtained from Lemmas A.1, A.3 and
A.4.

	
 Eq. (34): is a straightforward consequence of (24), (25)

and (33).

	
 Eq. (35): by using (26) and (30), we get asymptotically

the following expression for the penalty term of PDCl:

� ln
Yn

i¼mþ1

jV�1
i�1;lj

1=2

jV�1
i;l j

1=2
þ

1

2
ln n1ef

¼
1

2
ln
jV�1

n;lj

jV�1
m;lj
þ

1

2
ln n1ef

¼
kþ 1

2
ln n1ef þ

1

2
ln
jCj

jV�1
m;lj
þ oð1Þ, (84)

which leads to (35).

	
 Eq. (36): is obtained by applying (83) to the first term

in (28), and by using (84) to re-write the other two
terms in (28).

A.3. On the relationship between the asymptotic

approximations (13) and (33)

Based on the definitions from Lemma A.1, we note that

Sð1Þl;n becomes Sð1Þn ¼
Pn

i¼mþ1 di�2
i when l ¼ 1. The crucial

difference between Sð1Þl;n and Sð1Þn is that limn!1Sð1Þl;no1
a.s., 8l 2 ð0;1Þ, as we know from Lemma A.2, whereas

limn!1Sð1Þn ¼ 1 [31]. Moreover, we have shown in

Lemmas A.1–A.3 that PLSlðkÞ ¼ Rl;n þSð1Þl;nð1þ Oð1ÞÞ,
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whereas in Theorem 2.2 from [31], it is proven under mild

conditions that PLSðkÞ ¼ Rn þSð1Þn ð1þ oð1ÞÞ. To continue

the brief comparison between the two cases, we re-write
Eqs. (30) and (31) as

1

n1ef

Xn

i¼1

ln�ix̄ix̄
>
i � C

and

1

n1ef

Xn

i¼1

ln�ix̄ix̄
>
i �

2
i � s2C,

respectively. Observe in both equations that the normal-

ization factor, n1ef , depends on l and it is independent of n,

the number of terms in the two summations. According to

Lemma A.4, this property leads to limn!1Sð1Þl;n ¼

ks2 þ Oð1Þ. On the other hand, the ergodicity guarantees
that

lim
n!1

1

n

Xn

i¼1

x̄ix̄
>
i ¼ C

and

lim
n!1

1

n

Xn

i¼1

x̄ix̄
>
i �

2
i ¼ s2C,

which implies

lim
n!1

1

ln n
Sð1Þn ¼ s2k.

This result was previously obtained (see [31, p. 7]) by
applying the same methodology as the one used in
Lemma A.4, with the major difference that the normal-
ization factor in both

1

n

Xn

i¼1

x̄ix̄
>
i

and

1

n

Xn

i¼1

x̄ix̄
>
i �

2
i

is given by the number of terms within each summation,
and not by n1ef as it is the case for (30)–(31). This explains

the presence of the factor 1= ln n in

lim
n!1

1

ln n
Sð1Þn ¼ s2k.
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