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The use of the normalized maximum likelihood (NML) for model selection in Gaussian

linear regression poses troubles because the normalization coefficient is not finite.

The most elegant solution has been proposed by Rissanen and consists in applying

a particular constraint for the data space. In this paper, we demonstrate that the

methodology can be generalized, and we discuss two particular cases, namely the

rhomboidal and the ellipsoidal constraints. The new findings are used to derive

four NML-based criteria. For three of them which have been already introduced in

the previous literature, we provide a rigorous analysis. We also compare them

against five state-of-the-art selection rules by conducting Monte Carlo simulations for

families of models commonly used in signal processing. Additionally, for the eight

criteria which are tested, we report results on their predictive capabilities for real life

data sets.

& 2011 Elsevier B.V. All rights reserved.
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. Giurcăneanu), alireza.razavi@tut.fi (S.A. Razavi), antti.liski@tut.fi (A. Liski).

www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2011.03.015
mailto:ciprian.giurcaneanu@tut.fi
mailto:ciprian.giurcaneanu@tut.fi
mailto:alireza.razavi@tut.fi
mailto:antti.liski@tut.fi
dx.doi.org/10.1016/j.sigpro.2011.03.015
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1. Introductory remarks and problem formulation

One of the fundamental research topics addressed in
signal processing is the linear least-squares regression
problem. Let the measurements y 2 Rn�1 be modeled by

y¼Xbþe, ð1Þ

where X 2 Rn�m is the regressor matrix having more rows
than columns (n4m), b 2 Rm�1 is the vector of unknown
parameters, and the entries of e 2 Rn�1 are samples from
an independent and identically distributed (i.i.d.) Gaussian
process of zero-mean and variance t. Hereafter, we denote
vectors by boldface lowercase letters and matrices by
boldface uppercase letters. The identity matrix of appro-
priate dimension is denoted by I, while 0 denotes a null
vector/matrix of appropriate dimension.

Because in most of the practical applications, not all
the parameters b1, . . . ,bm are equally important in mod-
eling y, one wants to eliminate those that are deemed to
be irrelevant. This reduces to choose a subset of the
regressor variables indexed by gDf1, . . . ,mg. It is custom-
ary to select g by using either the Akaike Information
Criterion (AIC) [1], or the Bayesian Information Criterion
(BIC) [29]. Both AIC and BIC can be seen like particular
cases of a more general class of asymptotic criteria which
are expressed as the sum of two terms: the first one is
given by the minus maximum log-likelihood, and the
second one is a penalty coefficient that depends on the
number of parameters and, in some cases, on the sample
size [36, Appendix C].

It is widely recognized that BIC is equivalent with an
information theoretic criterion called MDL (minimum
description length) [23]. However, MDL is not only a
simple formula, but it is a principle [8].

To show how the most recent MDL-based develop-
ments can be applied to the linear regression problem, we
focus on the computation of the stochastic complexity
(SC) [25,26]. Let bg 2 R

k�1 be the vector of the unknown
regression coefficients within the g-subset. We denote the
cardinality of g by k, and we make the assumption that k

is strictly positive. The case k¼0 will be treated sepa-
rately. The matrix Xg is given by the columns of X that
correspond to the g-subset. Similarly with (1), we have

y¼Xgbgþeg, ð2Þ

where the entries of eg are Gaussian distributed with
zero-mean and unknown variance tg. Under the hypoth-
esis that Xg has full-rank, the maximum likelihood (ML)
estimates are [31]: b̂gðyÞ ¼ ðX

>
g XgÞ

�1X>g y and t̂gðyÞ ¼
Jy�Xgb̂gJ

2=n, where the superscripts ð�Þ> and ð�Þ�1 denote
the transpose and the matrix inverse, respectively. The
operator J � J is employed for the Euclidean norm. When-
ever it is clear from the context which measurements are
used for estimation, the simpler notation b̂g will be
preferred to b̂gðyÞ. The same applies for the use of t̂g
instead of t̂gðyÞ. To evaluate the SC for the data vector y,
given the g-structure, we have to compute

SCðy; gÞ ¼ Lðy; gÞþLða,bÞþ
n

2
lnðnpÞ, ð3Þ

Lðy; gÞ ¼ n�k

2
lnt̂gþ

k

2
ln

JXgb̂gJ
2

n
�lnG

n�k

2

� �
�lnG

k

2

� �
,

ð4Þ

Lða,bÞ ¼ 2lnln
b

a
, ð5Þ

where lnð�Þ denotes the natural logarithm and Gð�Þ is the
Euler integral of the second kind. Additionally, the real-
valued hyper-parameters a and b satisfy the condition:
b4a.

The complete formula includes also the description
length for the g-structure, LðgÞ, whose expression is given
in [26]. Because in many practical problems, the term LðgÞ
has a marginal effect, we will ignore it. Example 4 in
Section 4 will be the only case when we will consider the
contribution of this term. For clarifications on the role of
LðgÞ, see [27].

The case k¼0 is equivalent to g¼ |, and occurs when
the observations y are assumed to be pure Gaussian noise
with zero-mean and unknown variance. In this situation,
the stochastic complexity takes the particular form

SCðy; |Þ ¼ Lðy; |Þþ
1

2
Lða,bÞþ

n

2
lnðnpÞ, ð6Þ

Lðy; |Þ ¼
n

2
ln

JyJ2

n
�lnG

n

2

� �
, ð7Þ

where L(a,b) is defined in (5). In this work, we neglect the
terms given by L(a,b). We refer to [7,26, Section 9.3] for a
more elaborated discussion on the conditions when
2lnlnðb=aÞ and lnlnðb=aÞ can be dropped from (3) and (6),
respectively.

In line with the MDL principle, selection of the best
structure amounts to evaluate SCðy; gÞ for all gDf1, . . . ,mg,
and then to pick-up the subset that minimizes the
stochastic complexity. Another information theoretic cri-
terion which is akin to formulas in (3)–(5) and (6)–(7) has
been derived in [9,10] by using a universal mixture model.
More interestingly, Kay has proposed in [16] a selection
rule based on exponentially embedded families (EEF) of
probability density functions, and which is similar to the
one introduced by Rissanen in [25]. A comparison of the
criteria from [10,16,25], for the case when the noise
variance is assumed to be known, can be found in
[6, Section 3.3]. The minimum message length (MML)
principle was recently used in [28] to yield two new
model selection criteria, and it turned out that both of
them are closely related to SC.

The fact that formulas which are almost the same
with the expression of SC can be obtained by various
approaches is indeed an indicator for the practitioner that
the use of SC might be the right choice. However, for the
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work presented in this paper, the most important is not
the SC formula, but the methodology applied by Rissanen
for its derivation. The central role is played by the
normalized maximum likelihood (NML) density function:

f̂ ðy; gÞ ¼
f ðy; b̂gðyÞ,t̂gðyÞÞ

CðgÞ , ð8Þ

CðgÞ ¼
Z

f ðy; b̂gðyÞ,t̂gðyÞÞ dy, ð9Þ

where f ðy; b̂gðyÞ,t̂gðyÞÞ is the ML. In the equation above,
the domain of integration is the entire space of observa-
tions. Note also that (9) gives the definition of the
parametric complexity. It was shown in [25,26] that NML
has two important optimality properties which recom-
mend it to be used in the evaluation of SC. More precisely,
SC is computed as the code length associated with NML:
SCðy; gÞ ¼ �lnf̂ ðy; gÞ. The key point is that the parametric
complexity in the linear regression case is not finite, or
equivalently, the integral in (9) is not finite. To circum-
vent this difficulty, Rissanen proposed in [25] to constrain
the integration domain in the space of observations such
that the integral becomes finite, and this led to the
criterion given by the formulas in (3)–(5) and (6)–(7).

We note in passing that, according to Scopus, Ref. [25]
has been cited more than 50 times. Hence, the
SC-criterion is widely used, and one of the reasons is the
following. The criterion is independent of arbitrarily
selected hyper-parameters if the terms that involve
Lða,bÞ are neglected. Surprisingly, for about one decade,
it was totally ignored the important fact that the closed-
form expression of the criterion depends on the particular
constraint which has been involved in its derivation. Only
recently, it was shown in [18] that two other criteria can
be obtained by employing constraints which are different
of the one used in [25].

The most recent findings lead to the conclusion that
novel NML-based criteria can be devised by enforcing
various constraints. However, in the previous literature, it
was not investigated how the selection of the constraint
influences the performance of the resulting criterion. To
fill the gap, this paper provides the following results:
(i)
 We demonstrate in Section 2 that the methodology
introduced by Rissanen can be applied in a more
general framework, and not only for the ellipsoidal
constraints which have been considered in [18,25].
In the same section, we study the particular case of
rhomboidal constraint.
(ii)
 In Section 3, we conduct a rigorous analysis of the
relationship between Rissanen criterion and the two
criteria that have been introduced in [18].
(iii)
 Section 4 is devoted to numerical examples which
compare the capabilities of the NML-based selection
rules against other criteria. The experiments are
performed with simulated data as well as real life
data sets.
Conclusions are outlined in Section 5, where we also give
some guidance on the use of various criteria in model
selection.
2. Parametric complexity with constraints

2.1. General case

To simplify the notations, we drop the index g when
discussing the general case. Let us define YrðR,t0Þ ¼

fy : rðb̂ÞrR,t̂Zt0g, where R and t0 are strictly positive.
The mapping r : Rk-R is chosen such that, for all R40,
the set BrðRÞ ¼ fb̂ : rðb̂ÞrRg is convex and its volume
VrðRÞ ¼

R
BrðRÞ db̂ has the expression

VrðRÞ ¼ ZRzk: ð10Þ

The constant Z is strictly positive and, in some cases, it
might depend on the regressor matrix X. Additionally, the
constant z is also assumed to be strictly positive.

Hence, the definition of NML from (8)–(9) is trans-
formed to

f̂ rðy;R,t0Þ ¼
f ðy; b̂ðyÞ,t̂ðyÞÞ

CrðR,t0Þ
, ð11Þ

CrðR,t0Þ ¼

Z
YrðR,t0Þ

f ðy; b̂ðyÞ,t̂ðyÞÞ dy: ð12Þ

It is well known that the numerator in (11) is given by [31]

f ðy; b̂ðyÞ,t̂ðyÞÞ ¼ ½2pt̂expð1Þ��n=2: ð13Þ

For the denominator, we prove in Appendix A that

CrðR,t0Þ ¼ ð2An,k=kÞt�k=2
0 ZRzk, ð14Þ

where

An,k ¼
jX>Xj1=2

ðnpÞk=2

n
2expð1Þ

� �n=2

G n�k
2

� � : ð15Þ

The operator j � j denotes the determinant of the matrix in
the argument.

Remark in (14) that the normalizing constant CrðR,t0Þ

becomes smaller when R decreases. Because we want
to minimize the code length given by �lnf̂ rðy;R,t0Þ ¼

�lnf ðy; b̂ðyÞ,t̂ðyÞÞþ lnCrðR,t0Þ, we assign to R the smallest
possible value, namely R¼ ~R, where ~R ¼ rðb̂Þ. We choose
~t0 ¼ t̂ like in [26], and the expression from (11) becomes

f̂ rðy; ~R, ~t0Þ ¼
f ðy; b̂ðyÞ,t̂ðyÞÞ

Crð ~R, ~t0Þ
: ð16Þ

Then we perform the second normalization step. Let
YðR1,R2,t1,t2Þ ¼ fy : R1rrðb̂ðyÞÞrR2,t1r t̂ðyÞrt2g,
where R24R140 and t24t140. By using (16), we have

f̂ rðyÞ ¼
f̂ rðy; ~R, ~t0Þ

CrðR1,R2,t1,t2Þ
¼

f ðy; b̂ðyÞ,t̂ðyÞÞ=Crð ~R, ~t0Þ

CrðR1,R2,t1,t2Þ
: ð17Þ

The normalizing constant is given by

CrðR1,R2,t1,t2Þ ¼

Z
YðR1 ,R2 ,t1 ,t2Þ

f̂ rðy; ~R, ~t0Þ dy, ð18Þ
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and after some calculations which are outlined in
Appendix A, we obtain

CrðR1,R2,t1,t2Þ ¼
zk2

2
ln
t2

t1
ln

R2

R1
: ð19Þ

We collect the results from (13), (14), (17) and (19) to
get the expression of the negative logarithm of NML,
when the mapping rð�Þ is used to define the constraint
for the evaluation of the parametric complexity:

�lnf̂ rðyÞ ¼�lnf ðy; b̂,t̂Þþ lnCrðrðb̂Þ,t̂Þþ lnCrðR1,R2,t1,t2Þ

¼
n�k

2
lnt̂þzklnrðb̂Þ�lnG

n�k

2

� �
þ ln zk

ZjX>Xj1=2

ðnpÞk=2

" #

þ
n

2
lnðnpÞþ ln ln

t2

t1
ln

R2

R1

� �
: ð20Þ

It is obvious that, in the equations above, we have t̂ ¼ t̂g,
b̂ ¼ b̂g and X¼Xg. Conventionally we take t1 ¼ R1 ¼ a and
t2 ¼ R2 ¼ b, where b4a40. So,

�lnf̂ rðyÞ ¼ Lrðy; gÞþLða,bÞþ
n

2
lnðnpÞ, ð21Þ

Lrðy; gÞ ¼
n�k

2
lnt̂gþzklnrðb̂gÞ�lnG

n�k

2

� �
þ ln zk

ZjX>g Xgj
1=2

ðnpÞk=2

" #
,

ð22Þ

where Lða,bÞ is the same as in (5).
For the sake of completeness, we consider also an appro-

ximate formula for the negative logarithm of NML [24]:

�lnf̂ ðyÞ ¼ �lnf ðy; b̂,t̂Þþ kþ1

2
ln

n

2p þ ln

Z
jJ1ðb,tÞj1=2 db dtþoð1Þ,

ð23Þ

where

J1ðb,tÞ ¼ lim
n-1

Jnðb,tÞ, ð24Þ

Jnðb,tÞ ¼
ðX>XÞ=ðntÞ 0

0 1=ð2t2Þ

" #
: ð25Þ

Remark in (23)–(25) that we have dropped the index g. In
(25), we have used the expression (see, for example, [14]) of
the Fisher information matrix (FIM) for the linear model in
(2). Note that, for many models used in signal processing, the
right-hand side of (24) has a finite limit [36, Appendix C]. On
contrary, the value of the integral in (23) is not finite if the
domain of integration is the entire parameter space. This
problem is well known and some of the proposed solutions
involve arbitrarily chosen restrictions for the ranges of the
parameters. A comprehensive discussion on this issue can be
found in [11]. We demonstrate in Appendix A how the
difficulty can be circumvented by applying constraints simi-
lar with those employed to get (20).

2.2. Rissanen formula

The constraint used by Rissanen is r1ðb̂gÞrR, where

r1ðb̂gÞ ¼ JXgb̂gJ
2=n [26]. This makes the volume Vr1

ðRÞ to

be given by (10) with Z¼ ðnpÞk=2=½ðk=2ÞGðk=2ÞjX>g Xgj
1=2�

and z¼ 1=2. It is a simple exercise to show that, for

the particular case when rðb̂gÞ ¼ r1ðb̂gÞ, the formula
in (21)–(22) is identical with the one from (3)–(5). The
expression of SC can be further simplified by operating
the following modifications: (i) neglect the constant term

ðn=2ÞlnðnpÞ and the term Lða,bÞ; (ii) use the Stirling
approximation (see Appendix A and [26,27])

lnGðzÞ ¼ ðz�1
2 Þlnz�zþ1

2lnð2pÞ, ð26Þ

and then discard all terms which do not depend on the
g-structure; (iii) multiply by two the resulting criterion.
This leads to

SCr1
ðy; gÞ ¼ ðn�kÞln

t̂g
n�k
þkln

JXgb̂gJ
2=n

k
þ ln½kðn�kÞ�: ð27Þ

The above form of SC is the one which appeared most
frequently in the literature after it was introduced in [25].

2.3. Rhomboidal constraint

Consider the constraint r0ðb̂gÞrR, where r0ðb̂gÞ is

given by the 1-norm of b̂g, and we write r0ðb̂gÞ ¼ Jb̂gJ1.

The region defined by the constraint is a diamond when

k¼2, and it becomes a rhomboid when k42 [12]. The
volume Vr0

ðRÞ can be computed by observing that

Vr0
ðRÞ ¼ 2k

�

Z
b̂1 ,...,b̂k Z 0

b̂1 þ ��� þ b̂k r R

db̂

because of the symmetry. Then we get Vr0
ðRÞ ¼ ð2RÞk=k!.

The result is easily verified for k 2 f1,2g and is proven for

any k42 by mathematical induction. More importantly,
the formula which gives the volume Vr0

ðRÞ can be

obtained from the one in (10) by choosing Z¼ 2k=k! and

z¼ 1. Hence, we can get a new NML-based criterion by
using in (21)–(22) the definition of r0ð�Þ. For writing more

compactly the new selection rule, we multiply by two
the expression in (21), and we ignore the sum

2Lða,bÞþnlnðnpÞ. Some elementary calculations lead to

SCr0
ðy; gÞ ¼ ðn�kÞlnt̂gþkln

Jb̂gJ
2
1

n
�2lnG

n�k

2

� �
�2lnGðkÞ

þ ln
4k
jX>g Xgj

pk
:

We modify the formula above by applying the Stirling
approximation from (26), and by discarding the sum

ðn�2Þln2þn�2lnð2pÞ, which was also neglected in (27).
Thus, we have

SCr0
ðy; gÞ ¼ ðn�kÞln

t̂g
n�k
þkln

Jb̂gJ
2
1=n

k
þ ln½kðn�kÞ�

þkln
2expð1Þ

pk
þ lnð2jX>g XgjÞ: ð28Þ

From (27) and (28), it is obvious that the goodness-of-
fit term is the same for both SCr1

ðy; gÞ and SCr0
ðy; gÞ. We

want to check which is the relationship between the
penalty terms of the two criteria. For ease of comparison,
we assume that the columns of Xg are the first k columns
of the n�n identity matrix, which implies

PENr0
ðy; gÞ�PENr1

ðy; gÞ ¼ kln
2expð1Þcos2ðagÞ

p þ ln2, ð29Þ



C.D. Giurcăneanu et al. / Signal Processing 91 (2011) 1671–1692 1675
where cosag ¼ Jb̂gJ1=ð
ffiffiffi
k
p

Jb̂gJÞ. Equivalently, ag is the
angle between the vector ½jb̂1j, . . . ,jb̂kj�

>, which is
given by the magnitudes of the estimates, and the vector
½1, . . . ,1�>. Remark in (29) that PENr0

ðy; gÞ�PENr1
ðy; gÞ40

if and only if agoarccosðThkÞ, where Thk ¼

f½p=ð2expð1ÞÞ�ð1=21=k
Þg

1=2. For all kZ1, the inequality
Thk 2 ð0,1Þ is satisfied, and for kb1, we have
arccosðThkÞ � ð2pÞ=9.

To gain more insight, we assume that y�N ðb,tIÞ,
where N ðl,RÞ denotes the multivariate Gaussian distribu-
tion with mean l and covariance matrix R. The vector b is
chosen such that to have k entries equal to a non-zero
constant b, and all other entries are zeros. Additionally,
k5n, and the value of t is selected to guarantee a certain
signal-to-noise ratio. Let yð1Þ, . . . ,yðnÞ be the measurements
sorted in the decreasing order of their magnitudes.
For each k 2 f1, . . . ,n�2g, we define the structure gk ¼

fð1Þ, . . . ,ðkÞg such that b̂gk
¼ ½yð1Þ, . . . ,yðkÞ�

> and t̂gk
¼ ð1=nÞPn

i ¼ kþ1 y2
ðiÞ. When k4k, if k increases, then the angle agk

increases also, and PENr0
ðy; gkÞ becomes smaller than

PENr1
ðy; gkÞ. Hence, the criterion SCr0

penalizes less than
SCr1

when k is large, which makes to be more likely that
SCr1

selects a sparser solution, and not SCr0
.

This outcome is surprising because it is known from
the previous literature [12, Chapter 3] that the selection
rules which have as penalty term the 1-norm of the vector
of estimates are prone to pick-up the sparse solutions.

The formulas derived with the general methodology
described in Section 2.1 must be used with caution in
practice, and only after their properties are carefully
investigated. Next, we focus on two other NML-based
criteria, which have been introduced in [18] to cope with
the presence of collinearity.

3. Ellipsoidal constraint

3.1. Formulas from [18]

The solution proposed in [18] for the computation of
the parametric complexity relies on the following ellip-
soidal constraint: ðb̂

>

g Q b̂gÞ=nrR, where the matrix Q is
chosen to be symmetric and positive definite. By applying
the formula for the volume of an ellipsoid [30], it is easy
to verify for rðb̂gÞ ¼ b̂

>

g Q b̂g that VrðRÞ is a particular case
of (10) for which Z¼ ðnpÞk=2=½ðk=2ÞGðk=2ÞjQ j1=2� and
z¼ 1=2. By employing in (21)–(22) the expressions of Z
and z, we have

�lnf̂ rðyÞ ¼
n�k

2
lnt̂gþ

k

2
ln

b̂
>

g Q b̂g

n
�lnG

n�k

2

� �

�lnG
k

2

� �
þ

1

2
ln
jX>g Xgj

jQ j
, ð30Þ

which coincides with [18, Eq. (16)]. Remark in (30) that we
have neglected the terms Lða,bÞ and ðn=2ÞlnðnpÞ.

When Q ¼X>g Xg, the ellipsoidal constraint ðb̂
>

g Q b̂gÞ=nrR

is identical with the constraint used by Rissanen, namely
r1ðb̂gÞrR. Other two possible ways of selecting the
matrix Q have been considered in [18]: Q ¼ I and Q ¼
ðX>g XgÞ

2. In the case when Q ¼ I, the ellipsoidal constraint
becomes r2ðb̂gÞrR, where r2ðb̂gÞ ¼ Jb̂gJ

2=n. By operating
in (30) the same type of modifications which allowed to
transform (3)–(5) into (27), we get

SCr2
ðy; gÞ ¼ ðn�kÞln

t̂g
n�k
þkln

Jb̂gJ
2=n

k
þ ln½kðn�kÞ�þ lnjX>g Xgj:

ð31Þ

Similarly, for Q ¼ ðX>g XgÞ
2, the ellipsoidal constraint takes

the form r3ðb̂gÞrR with r3ðb̂gÞ ¼ ½b̂
>

g ðX
>
g XgÞ

2b̂g�=n, and
the corresponding model selection criterion is

SCr3
ðy; gÞ ¼ ðn�kÞln

t̂g
n�k
þkln

½b̂
>

g ðX
>
g XgÞ

2b̂g�=n

k
þ ln½kðn�kÞ��lnjX>g Xgj: ð32Þ

After discarding the term �nlnn from the formulas in
(27), (31) and (32), we can re-write them as follows. For
i 2 f1,2,3g,

SCri
ðy; gÞ ¼ ðn�kÞlnS2

gþklnDgðy;Q iÞþ ln
n�k

kk�1
, ð33Þ

Dgðy;Q iÞ ¼
y>XgðX

>
g XgÞ

�1Q iðX
>
g XgÞ

�1X>g y

ðjQ ij=jX
>
g XgjÞ

1=k
, ð34Þ

where S2
g ¼ ðnt̂gÞ=ðn�kÞ, Q 1 ¼X>g Xg, Q 2 ¼ I and Q 3 ¼ ðX

>
g XgÞ

2.
It is evident that all three selection rules have the same
goodness-of-fit term, and only Dgðy;Q iÞ makes their pen-
alty terms to be different.

3.2. Penalty terms

For better understanding the relationship between the
three criteria, we give the following result.

Proposition 3.1.
(a)
 The equalities

Dgðy;Q 1Þ ¼Dgðy;Q 2Þ ¼Dgðy;Q 3Þ ð35Þ

hold true for all y 2 Rn
\f0g if and only if there exists

q40 such that

Q 1 ¼ qI: ð36Þ
(b)
 If the condition in (36) is not satisfied, then for each pair

(i, j) with the property that 1r io jr3, the sign of the

difference

Dgðy;Q iÞ�Dgðy;Q jÞ

is not the same for all y 2 Rn
\f0g.
(c)
 For all y 2 Rn
\f0g, we have

maxfDgðy;Q 2Þ,Dgðy;Q 3ÞgZDgðy;Q 1Þ: ð37Þ
Proof is deferred to Appendix B.

From the proposition above, we see that the criteria

SCr1
ðy; gÞ, SCr2

ðy; gÞ and SCr3
ðy; gÞ are identical only when

the columns of the matrix Xg are orthogonal and the
2-norm is the same for all of them. In general, it is not
possible to claim that one criterion has a penalty term
which is stronger than the penalty terms of the others.
However, the inequality in (37) guarantees that at least
one of the criteria SCr2

ðy; gÞ and SCr3
ðy; gÞ has a penalty

term which is stronger than the penalty term of the
Rissanen criterion.
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Next we investigate the behavior of the three selection
rules for the case when the matrix Xg is rank deficient. Let
us use the notation Xk instead of Xg. Furthermore, we
partition the matrix into two blocks: Xk ¼ ½Xk-1 xk�. Note
that Xk-1 contains the first k�1 columns of Xk. We assume
that Xk-1 has full-rank, and the source of rank deficiency
for Xk is the fact that the linear subspaces /Xk-1S and
/xkS are ‘‘very close’’ to each other. For a full-rank matrix
M having more rows than columns, /MS is the column
space of M.

To measure the ‘‘closeness’’, we employ the principal

angle a 2 ½0,p=2� between /Xk-1S and /xkS [3]. If the
columns of Uk�1 form a unitary basis for /Xk-1S and uk is
a unitary basis for /xkS, then cosa is the singular value
of U>k�1uk. Eq. (13) from [3] guarantees that there exists
w 2 Rn�1 with JwJ¼ 1 such that

P?k-1xk ¼ sinðaÞJxkJw, ð38Þ

where P?k-1 ¼ I�Pk-1 and Pk-1 ¼Xk-1ðX
>
k-1Xk-1Þ

�1X>k-1 is the
orthogonal projection matrix onto the linear subspace
/Xk-1S. The following proposition clarifies which is the
effect of a-0 on the penalty terms.

Proposition 3.2. If rankðXk-1Þ ¼ k�1, JxkJa0, k41 and

y 2 Rn
\f0g, then:
(a)
 lima-0Dgðy;Q 1Þo1.

(b)
 lima-0Dgðy;Q 2Þ ¼1 when w>ya0. Note that w is

defined in (38).

(c)
 lima-0Dgðy;Q 3Þ ¼1 when X>k ya0.
See Appendix B for the proof.
Remark that, under the assumptions from Proposition 3.2,

SCr2
and SCr3

penalize the collinearity more severely than
SCr1

. The result has to be understood in connection with the
fact that variable selection aims to discard those columns of
X which are nearly collinear, and then to use the retained
columns for explaining the variation in y [19, Section 6.7].
This can be nicely formalized by using the coefficient of

determinations whose definitions are given below.

Definition 3.1. Assume that the sum of the entries of y is
zero and JyJ¼ 1. Additionally, each column of X is zero-
mean and has unitary Euclidean norm. For an arbitrary
g-structure with cardinality k40, we define

R2
y�Xg
¼ JPgyJ2, ð39Þ

where Pg is the orthogonal projection matrix onto the
linear subspace /XgS. Moreover, for i 2 f2, . . . ,kg, we have

R2
i�1,...,ði�1Þ ¼ JPi�1xiJ

2, ð40Þ

where Pi�1 denotes the orthogonal projection matrix onto
the linear subspace determined by the first ði�1Þ columns
of Xg, and xi is the i-th column of Xg.

It is clear that (39) and (40) are just particular cases of
the general definition that can be found in [19, Section 6.5.2;
31, p. 111]. We emphasize that R2

y�Xg
is a measure of how

much the variance of Xgb̂g represents from the total
variance of the data y. A similar interpretation can be given
for (40).
In the next proposition, we show how the dependence
of y on Xg, as well as the interdependence between the
columns of Xg, affect the terms Dgðy;Q 1Þ, Dgðy;Q 2Þ and
Dgðy;Q 3Þ.

Proposition 3.3. When Xg and y satisfy the conditions from

Definition3.1, the following identities hold true:

Dgðy;Q 1Þ ¼ R2
y�Xg

, ð41Þ

Dgðy;Q 2Þ ¼
Xk

i ¼ 1

aiðy,XgÞbiðXgÞ, ð42Þ

Dgðy;Q 3Þ ¼

Pk
i ¼ 1 r2

iyQk
i ¼ 2½1�R2

i�1,...,ði�1Þ�
1=k

, ð43Þ

where

aiðy,XgÞ ¼ R2
y�Xg
�R2

y�Xg\fig
,

biðXgÞ ¼

Qk�1
j ¼ 2½1�R2

BðjÞ�Bð1Þ,...,Bðj�1Þ�
1=k

½1�R2
BðkÞ�Bð1Þ,...,Bðk�1Þ�

ðk�1Þ=k
,

BðjÞ ¼
j, 1r jo i,

jþ1, ir jok,

i, j¼ k,

8><
>: ð44Þ

and riy is the correlation between the i-th column of Xg and y.

See Appendix B for the proof.
Eq. (41) confirms that the interdependence between

the columns of Xg does not have any impact on Dgðy;Q 1Þ.
This is not the case with Dgðy;Q 2Þ, where the factors biðXgÞ

measure the linear dependence between the columns
of Xg, and they are not affected by the relationship
between y and Xg. Whenever xi is a linear combination
of some of other columns from Xg, the denominator of
biðXgÞ becomes zero, whereas the numerator is strictly
positive. In this situation, the contribution of xi to
explaining the variance of y is marginal, which makes
aiðy,XgÞ to be also zero. From (43), it is evident how
multicollinearity affects Dgðy;Q 3Þ: the denominator goes
to zero and the nominator remains strictly positive.

Propositions 3.1 and 3.2 reveal the relationship
between the three criteria when the angle a takes
extreme values: a¼ p=2 and a-0. It remains open the
question on how SCr2

and SCr3
relate to SCr1

when
a 2 ð0,p=2Þ. In order to answer the question, we need to
make supplementary assumptions on the vector of obser-
vations y. This is why we consider next the case of two
nested models.

3.3. Comparison of the penalty terms when two nested

models are tested

Suppose that the model selection problem reduces to
deciding if the measurements y are outcomes from
N ðXk-1bk-1,tIÞ or from N ðXkbk,tIÞ, where Xk-1 and Xk are
the same as in Proposition 3.2. The entries of bk-1 2 R

k�1

and bk 2 R
k are assumed to be non-zero, and t40. After

estimating b̂k�1, b̂k and the noise variance from the
available data, one can apply an NML-based criterion to
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select between the structure gk�1 for which the regression
matrix is Xk-1, and the structure gk for which the regres-
sion matrix is Xk.

We know from Proposition 3.1 that, disregarding the
machinery which has produced y, we have SCr1

ðy; gk�1Þ ¼

SCr2
ðy; gk�1Þ ¼ SCr3

ðy; gk�1Þ if X>k-1Xk-1 ¼ I. Therefore, under
the hypothesis of orthonormality for the columns of Xk-1,
Dgk
ðy;Q iÞ, i 2 f1,2,3g, is the only term which can poten-

tially make SCr1
, SCr2

, SCr3
not to take the same decision

when choosing between gk�1 and gk. To gain more insight,
we compute the expectation of Dgk

ðy;Q iÞ for i 2 f1,2,3g.

Lemma 3.1. If y�N ðXk-1bk-1,tIÞ, X>k-1Xk-1 ¼ I, JxkJ¼ 1 and

k41, then

E½Dgk
ðy;Q 1Þ� ¼ Jbk-1J

2
þtk, ð45Þ

E½Dgk
ðy;Q 2Þ� ¼ ½Jbk-1J

2
þtðk�2þ2o�1Þ�o1=k, ð46Þ

E½Dgk
ðy;Q 3Þ� ¼ ½Jbk-1J

2
þtkþðx>k Xk-1bk-1Þ

2
�o�1=k, ð47Þ

where E½�� is the expectation operator and o¼ sin2 a.

The proof of Lemma 3.1 can be found in Appendix C,
where we outline also the proof of the proposition below.

Proposition 3.4. Let j0ðaÞ ¼ 2ð1�sin�2aÞ=ð1�sin�2=kaÞ�k,

j1ðaÞ ¼ ð2�sin2aÞsin�2=ka�1 and j2ðaÞ ¼ sin�2=ka�1.

Under the hypotheses of Lemma 3.1, we have:
(a)
E½Dg
E½Dgk
ðy;Q 2Þ�Dgk

ðy;Q 1Þ� is strictly positive if and only if

aoa�, where a� is the solution of the equation

j0ðaÞ ¼ Jbk-1J
2=t.
(b)
 E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ� takes only non-negative

values. Additionally,
k
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�rJbk-1J
2j1ðaÞþtkj2ðaÞ: ð48Þ
In Proposition 3.4, the Rissanen formula (27) is con-
sidered to be a reference, and the other two criteria are

compared with it. We see that SCr2

is likely to penalize
more than SCr1

the model with structure gk only when
the angle between /Xk-1S and /xkS is smaller than a
threshold. The value of the threshold is mainly given by
the ratio Jbk-1J

2=t, which in our case equals the energy-
to-noise ratio (ENR) because JXk-1bk-1J¼ Jbk-1J. Since
lima-0j0ðaÞ ¼1 and lima-p=2j0ðaÞ ¼ k, the solution a�
is guaranteed to exist when ENR4k. Moreover, if ENR is
larger than k, then E½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ� attains its

minimum when the principal angle takes value
amin ¼ arcsinðo1=2

minÞ, where omin ¼ 2ðk�1Þ=ðJbk-1J
2=tþ

ðk�2ÞÞ. The increase of ENR makes amin to decrease and
a� to be closer to zero such that SCr2

penalizes more
severely than SCr1

only when a� 0.
On contrary, SCr3

penalizes the gk-model more strin-
gently than SCr1

for all a 2 ð0,p=2Þ. Observe in (48) that
j1ðaÞ and j2ðaÞ are monotonically decreasing functions,
and the upper bound for E½Dgk

ðy;Q 3Þ�Dgk
ðy;Q 1Þ� goes

down from1 to zero when a increases from zero to p=2.
To complete the analysis, we provide the analogue of

Proposition 3.4 for the case when y�N ðXkbk,tIÞ. Let us
assume that the eigenvalues of X>k Xk are l1, . . . ,lk, and all
of them are strictly positive. To write more compactly the
results, we define: Al ¼ ð
Pk

i ¼ 1 liÞ=k (arithmetic mean),
Gl ¼ ð

Qk
i ¼ 1 liÞ

1=k (geometric mean) and Hl ¼ k=
Pk

i ¼ 1 l
�1
i

(harmonic mean). The expressions of E½Dgk
ðy;Q iÞ� for i 2

f1,2,3g are given in the lemma below.

Lemma 3.2. If y�N ðXkbk,tIÞ, X>k-1Xk-1 ¼ I, JxkJ¼ 1 and

k41, then

E½Dgk
ðy;Q 1Þ� ¼ JXkbkJ

2
þtk, ð49Þ

E½Dgk
ðy;Q 2Þ� ¼ JbkJ

2GlþtkðGl=HlÞ, ð50Þ

E½Dgk
ðy;Q 3Þ� ¼ ½b

>

k ðX
>
k XkÞ

2bk�=GlþtkðAl=GlÞ: ð51Þ

Proof. The results are easily obtained by applying
the formula of the expectation for quadratic forms
[30, p. 439]. &

Lemma 3.2 helps us to find bounds for E½Dgk
ðy;Q 2Þ�

Dgk
ðy;Q 1Þ� and E½Dgk

ðy;Q 3Þ�Dgk
ðy;Q 1Þ�, which are similar

with those given in Proposition 3.4.

Proposition 3.5. Under the hypotheses of Lemma 3.2, we

have
(a)
 Let c1ðaÞ ¼ sin2=ka�cosa�1, c2ðaÞ ¼ sin2=kaþcosa�1
and c3ðaÞ ¼ sin2=ka=ð1�cosaÞ�1. Then

JbkJ
2c1ðaÞrE½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ�

rJbkJ
2c2ðaÞþtkc3ðaÞ: ð52Þ
(b)
 Let c4ðaÞ ¼ �sin2=ka=4,
c5ðaÞ ¼ ð1�cosaÞ2=sin2=kaþcosa�1,
c6ðaÞ ¼ ð1þcosaÞ2=sin2=ka�cosa�1
and c7ðaÞ ¼ ð1þcosaÞ=sin2=ka�1. For a 2 ð0,p=2�,
JbkJ

2c4ðaÞrE½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�, ð53Þ
and for a 2 ½p=3,p=2�, the inequality becomes

JbkJ
2c4ðaÞrJbkJ

2c5ðaÞrE½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�: ð54Þ

Additionally,

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�rJbkJ
2c6ðaÞþtkc7ðaÞ, ð55Þ

for all a 2 ð0,p=2�.

Proof is deferred to Appendix C.
Note in (52) that the span of E½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ�

is given by JbkJ
2
½c2ðaÞ�c1ðaÞ� and tkc3ðaÞ. The second

term is the dominant one when a is close to zero, as
we can see from lima-0fJbkJ

2
½c2ðaÞ�c1ðaÞ�g ¼ 2JbkJ

2o1
and lima-0ftkc3ðaÞg ¼1. To monitor the decrease of
the two terms when a varies from zero to p=2, we
define Fc1 ,c2

ða1,a2Þ ¼ ðc2ða2Þ�c1ða2ÞÞ=ðc2ða1Þ�c1ða1ÞÞ and
Fc3
ða1, a2Þ ¼ c3ða2Þ=c3ða1Þ, where 0oa1oa2op=2. For

example, when k¼6, we get Fc1 ,c2
ðp=180,p=6Þ � 87%,

Fc1 ,c2
ðp=6,p=3Þ � 58% and Fc1 ,c2

ðp=3,p=2�p=180Þ � 3%,
whereas Fc3

ðp=180,p=6Þ � 0:3%, Fc3
ðp=6,p=3Þ � 18% and

Fc3
ðp=3,p=2�p=180Þ � 2%. Remark that the term given

by c3ð�Þ diminishes significantly when a increases from
p=180 to p=6. Another significant reduction occurs for
both terms in the interval ½p=6,p=2�p=180�. An important
observation is that the upper bound in (52) increases
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monotonically with t when Xk and bk are fixed. Therefore,
when the ENR lowers, there exists a higher chance
that SCr2

penalizes the gk-model more stringently than
SCr1

. This finding is of special interest because, in
Proposition 3.5, the model with structure gk is assumed
to be the ‘‘true’’ one.

A similar analysis can be done for E½Dgk
ðy;Q 3Þ�

Dgk
ðy;Q 1Þ�. In the vicinity of zero, the span of

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ� is given by JbkJ
2
½c6ðaÞ�c4ðaÞ�

and tkc7ðaÞ. Since lima-0fJbkJ
2
½c6ðaÞ�c4ðaÞ�g ¼ lima-0

ftkc7ðaÞg ¼1, the two terms are equally important, not
like in the case of E½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ�. It is also

interesting to point out for k¼6 that ðc6ðp =2�p=180 Þ�
c5ðp =2�p=180ÞÞ=ðc 6ðp=3Þ�c5ðp=3ÞÞ � c7ðp= 2�p=180Þ=
c7ðp=3Þ � 3%, which is similar with the result found
previously for E½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ�.

4. Experimental results

4.1. Model selection criteria used in experiments

We illustrate the performance of SCr1
, SCr2

and SCr3

against other criteria. For ease of comparison, we employ
for all the model selection rules the same notations like
those from (3)–(4). As already told in Section 1, BIC is
among the most popular criteria, and this is why we
include it in our experiments. The well-known expression
of BIC is [29]

BICðy; gÞ ¼ n

2
lnt̂gþ

k

2
lnn: ð56Þ

Another widely used criteria are AIC and its bias corrected
version which is called AICc [13]. Recently, Seghouane has
applied bootstrap-type techniques to obtain AICc3, a new
corrected version of AIC. The complete derivation can be
found in [32], where it was also shown experimentally that,
for small sample size, AICc3 outperforms AICc as well as two
other corrected criteria: AIC�c [33] and KICc [34]. Remark that
the small sample size case makes the difference between
various forms of AIC because asymptotically all of them are
equivalent. For the sake of comparison, we consider in our
simulations the criterion from [32]:

AICc3ðy; gÞ ¼
n

2
lnt̂gþ

ðkþ1Þðnþkþ2Þ

n�k�2
�

k

n�k
: ð57Þ

Following the suggestion of one of the reviewers, we
briefly discuss how SCr1

relates to BIC and AIC. The aim of
the discussion is to provide support for the interpretation
of the experimental results presented in this section. Note
that the formula of SCr1

from (27) can be re-written as
follows [7, Eq. (16)]:

1

2
SCr1
ðy; gÞ ¼ n

2
lnt̂gþ

k

2
lnFgþ

1

2
ln

k

ðn�kÞn�1
, ð58Þ

where Fg ¼ ðJXgb̂gJ
2=ðnkÞÞ=ðt̂g=ðn�kÞÞ. It is evident that the

goodness-of-fit term is the same for all the criteria in
(56)–(58). The key difference is that Fg from (58) depends
on the data vector y, while the penalty terms from (56) and
(57) depend only on n and k. Let us observe that Fg coincides
with the F-statistic which is used to test the hypothesis that
each entry of b̂g is zero [17, Section 5; 31, Chapter 4].
More importantly, by applying the settings from [4], it
was worked out in [10] an expression of Fg which leads to
the conclusion that, asymptotically, SCr1

combines the
strengths of both BIC and AIC. Similarly with BIC, SCr1

is
consistent: if the ‘‘true model’’ is finite-dimensional and is
included in the set of candidates, then the probability that
this model is selected goes to one as the sample size
increases [8]. However, if the ‘‘true model’’ is not finite-
dimensional, then SCr1

is asymptotically efficient in the
sense that selects the candidate model which minimizes
the one-step mean squared error of prediction. The same
property has been proved for AIC long time ago [35]. We
refer to [10] for the technical details concerning the
results outlined above.

The two-part MDL criterion, which is equivalent to BIC,
was refined in [22] such that its penalty term involves the
logarithm of determinant of the observed FIM. A similar
formula, which is not rooted in information theory, was
proposed by Kay [15]:

CMEðy; gÞ ¼ n�k�2

2
ln

nt̂g
n�k
þ

1

2
lnjX>g Xgjþ ln

½pðn�kÞ�ðn�kÞ=2

G n�k
2

� � :

ð59Þ

The significance of the acronym CME is conditional model
estimator.

In addition to BIC, AICc3 and CME, we include in our
tests the MMLg criterion from [28]:

MMLgðy; gÞ ¼
n�kþ2

2
ln

nt̂g
n�kþ2

þ1

� �

þ
k�2

2
ln

JXgb̂gJ
2

maxfk�2,1g
þ

1

2
ln½ðn�kÞk2�:

The formula above is applied whenever JXgb̂gJ
2= max

fk�2,1g4nt̂g=ðn�kþ2Þ and k40. Otherwise, it is used as
follows:

MMLgðy; |Þ ¼
n

2
ln

nt̂g
n�kþ2

þ1

� �
þ

1

2
lnðn�1Þþ

1

2
:

For completeness, we also consider a second criterion
from [28]:

MMLuðy; gÞ ¼
n�k

2
lnð2pÞþ n�k

2
ln

nt̂g
n�k
þ1

� �
þ

k

2
lnðpy>yÞ

�lnG
k

2
þ1

� �
þ

1

2
lnðkþ1Þ:

Remark that the expression above is for both k¼0 and
k40.

Next we conduct experiments for simulated and real
life data sets.

4.2. Numerical examples

Example 1 illustrates the case of two nested models,
which is akin to the model selection problem discussed in
Section 3.3. We generate randomly k vectors z1, . . . ,zk 2

Rn�1 such that z>i zj ¼ di,j for all i,j 2 f1, . . . ,kg, with the
convention that d�,� denotes the Kronecker operator. In our
settings, k¼6 and n¼50. Then we choose a 2 ð0,p=2�, and
define the matrices Xk-1 ¼ ½z1 � � � zk�1� and Xk ¼ ½Xk-1 xk�,



C.D. Giurcăneanu et al. / Signal Processing 91 (2011) 1671–1692 1679
where xk ¼ z1cosðaÞþzksinðaÞ. It is evident that

X>k-1Xk-1 ¼ I, ð60Þ

X>k Xk ¼

1 cosa
&

cosa 1

2
64

3
75: ð61Þ

More importantly, a is the principal angle between the
subspaces /Xk�1S and /xkS. Given a, we aim to test the
performance of various criteria in deciding if the observa-
tions are outcomes from N ðXk-1bk-1,tIÞ or from N ðXkbk,tIÞ.
Therefore, we simulate the measurements as follows:
	
 In the first scenario, we take y¼Xk-1bk-1þ
ffiffiffi
t
p

d, where
bk-1 ¼ ½1 . . .1�

>, t¼ ðk�1Þ=n and d�N ð0,IÞ.

	
 In the second scenario, we have y¼Xkbkþ

ffiffiffi
t
p

d, where
bk ¼ ½1 . . .1�

>, t¼ ðkþ2cosaÞ=n and d has the same
significance as above.

Based on (60), the signal-to-noise ratio in the first case is
given by SNR¼ JXk�1bk�1J

2=ðntÞ ¼ Jbk�1J
2=ðntÞ ¼ 1. Simi-

larly, by using (61) for the second case, we get

SNR¼
JXkbkJ

2

nt
¼

kþ2cosa
nt

¼ 1: ð62Þ

For each a 2 fp=180,2p=180, . . . ,p=2g, we generate ran-
domly 500 different realizations of the matrix Xk by apply-
ing the procedure described above. The first k�1 columns
of each Xk-matrix define the corresponding Xk-1-matrix.
Furthermore, every Xk-1-matrix is used to yield 500
y-vectors, according to the first scenario. Hence, for each
angle a, we have 25�104 data vectors which are outcomes
from N ðXk-1bk-1,tIÞ. Then we decide for each y if the best
model structure is gk�1 or gk by employing the eight criteria
whose performance is evaluated. In Fig. 1 is plotted the
empirical probability of correct estimation versus the angle
a. A similar experiment is done for 25�104 data vectors
simulated, for each a, according to the second scenario. The
estimation results are shown in Fig. 2.

In Figs. 1 and 2, we also plot the normalized condition
number for the matrix Xk: ncondðaÞ ¼ condðaÞ=condða0Þ,
where a0 ¼ p=180. For an arbitrary a, condðaÞ denotes the
2-norm condition number of Xk, and it equals ½lmaxðaÞ=
lminðaÞ�1=2, where lmaxðaÞ and lminðaÞ are the maximum
and the minimum eigenvalues of the matrix X>k Xk [30, p. 78].
It is clear that, for a close to zero, Xk is badly conditioned
numerically. For instance, condða0Þ � 115. However, condðaÞ
becomes rapidly smaller when a increases, and we mark in
Figs. 1 and 2 the point that corresponds to the value 10 of the
2-norm condition number.

Observe in Fig. 1 that, for all a, SCr1
selects the true

model with high probability. The fact that the perfor-
mance of SCr1

is not affected by the geometry of the linear
subspaces /Xk-1S and /xkS is in line with the results
from Section 3.3 (see, for example, Eq. (45) in Lemma 3.1).
We remark also in Fig. 1 that the behavior of MMLg,
MMLu, BIC and AICc3 is very similar with that of SCr1

.
The relationship between the performance of SCr2

and
SCr1

can be understood better by recalling that, according
to Proposition 3.4, the difference of the expectations of
penalty terms, E½Dgk

ðy;Q 2Þ��E½Dgk
ðy;Q 1Þ�, is positive only
for a 2 ð0,a�Þ, it decreases as long as aramin, and then
increases when a 2 ðamin,p=2Þ. This is very well reflected
by the graphs within Fig. 1, where SCr2

is slightly better
than SCr1

when a¼ p=180, but its performance declines
when a increases and, after reaching a minimum point,
SCr2

improves such that it becomes as good as SCr1
when

a¼ p=2.
From the identities (49) and (62), we get E½Dgk

ðy;Q 1Þ� ¼

ðkþ2cosaÞð1þk=nÞ. So, we expect that, with our experi-
mental settings, the criterion SCr1

penalizes less the
gk-model when a increases. This theoretical result, which
is based on Lemma 3.2, agrees perfectly with the empirical
results shown in Fig. 2.

By looking simultaneously at Figs. 1 and 2, we note
that SCr2

prefers the gk-model when the condition num-
ber takes large values, and this effect is undesirable. On
contrary, SCr3

selects the gk�1-model whenever the con-
dition number is high, which shows that SCr3

is prone to
choose the model whose explanatory variables are line-
arly independent, and not the ‘‘true’’ model. When
a¼ p=2, or equivalently the matrix Xk is orthonormal,
the criteria SCr1

, SCr2
and SCr3

reduce to one single
criterion, as we know from Proposition 3.1.

In Fig. 1, CME has the poorest results as it strongly
prefers the gk-model. This can be explained by noticing
in (59) that 1

2 lnjX>k-1Xk-1j is a penalty term for the
gk�1-model, and 1

2 lnjX>k Xkj is a penalty term for the
gk-model. In our settings, 1

2 lnjX>k-1Xk-1j ¼ 0, whereas
1
2 lnjX>k Xkj-�1 when a-0. It is worth mentioning that
lnjX>k Xkj is also a penalty term within SCr2

-formula
in (31). However, the significant decrease of lnjX>k Xkj when
a-0 is compensated in SCr2

-formula by the increase of the
term klnðJb̂kJ

2=n=kÞ. More interestingly, CME has difficul-
ties in correctly identifying the gk�1-model even when a
takes values close to p=2. The reason is that the logarithm
of determinant of the observed FIM is not guaranteed to be
a correct penalty term even if the columns of X are almost
orthogonal. We will investigate more carefully this aspect
in the next example.

Example 2 is taken from [16] and is focused on the
variable selection for the linear regression in (1), when
the matrix X has the particular form

X¼

cosð2pf1Þ � � � cosð2pf8Þ

^ & ^

cos½2pf1ðN�1Þ� � � � cos½2pf8ðN�1Þ�

2
64

3
75,

where fj ¼ ½0:10þðj�1Þ=100� for j 2 f1, . . . ,8g. With the
notations from (1), n¼N�1 and m¼8. The vector of linear
parameters b contains the unknown amplitudes, and the
variance of the additive Gaussian noise is assumed to be
unknown. The competitors are eight nested models with
structures g1, . . . ,g8, where gk ¼ f1, . . . ,kg. Equivalently, the
regressor matrix Xgk

for the model gk, k 2 f1, . . . ,8g, is given
by the first k columns of X. For simplicity, we use the
notation Xk instead of Xgk

, and bk instead of bgk
.

To mimic the experiments from [16], we simulate data
according to the structure g3 by tacking b3 ¼ ½1 1 1�>. In the
first experiment, the noise variance is t¼ 10 and the sample
size is varied by choosing N from the set {100,110,y,300}.
In the second experiment, the sample size is kept fixed
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Fig. 1. Example 1—the empirical probability of deciding correctly that the observations y 2 Rn are outcomes from N ðXk-1bk-1 ,tIÞ, and not from

N ðXkbk ,tIÞ. With the convention that Xk ¼ ½Xk-1 xk�, a denotes the principal angle between the linear subspaces /Xk-1S and /xkS. For an arbitrary a,

condðaÞ denotes the 2-norm condition number of Xk . The normalized condition number is ncondðaÞ ¼ condðaÞ=condða0Þ, where a0 ¼p=180. For the

simulated data, n¼ 50, k¼ 6, and t is chosen such that SNR¼ 0 dB.
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(N¼100), and the SNR is varied by modifying the noise
variance such that 1=t 2 f0:01,0:02, . . . ,0:2g. The empirical
probabilities of selecting correctly the number of sinusoids
are plotted in Fig. 3 for the first experiment, and in Fig. 4 for
the second experiment. Note that the probabilities shown
in Fig. 3 are obtained, for each value of N, from 104 runs.
Similarly, in the second experiment, the number of runs for
each value of 1=t is 104.

In both figures, the graphs for SCr1
, SCr2

and SCr3

almost coincide. This is because [5,16,14]

X>k Xk � ðn=2ÞI, 8k 2 f2, . . . ,8g, ð63Þ
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Fig. 2. Example 1—the empirical probability of deciding correctly that the observations y 2 Rn are outcomes from N ðXkbk ,tIÞ, and not from

N ðXk-1bk-1 ,tIÞ. All conventions are the same like in Fig. 1.
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which makes the condition within point (a) of Proposition 3.1
to be satisfied. Additionally, MMLg and MMLu perform
similarly with SCr1

, and they are both superior to SCr1
only

when N4200 as we can see in Fig. 3. We observe in the
same figure that AICc3 outperforms other criteria when
No150. The good estimation capabilities of AICc3 when
sample size is small can be noticed also in Fig. 4 where, for
N¼100, AICc3 is superior to SCr1
and BIC for almost all SNRs.

On contrary, when N4200, the estimation results of AICc3

are modest, and BIC improves significantly. The reason is
simple: AICc3 has been designed especially for the small
sample case [32], whereas the use of BIC is recommended for
large samples because its derivation relies on asymptotic
approximations [29]. It is remarkable that SCr1

is nearly as
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Fig. 3. Example 2—the empirical probability of estimating correctly the number of sinusoids versus the sample size. Note that the range of values being

presented along the vertical axes is different for the two plots.
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good as AICc3 when N is small, and it is only marginally
inferior to BIC when N is large.

The performance of CME is again very modest, and it
can be explained by re-writing, in a more convenient
form, the expression from (59). We approximate
lnGððn�kÞ=2Þ by (26), and then we neglect the sum
ðn=2Þln½2pnexpð1Þ�� 1

2 lnð4pn2Þ which does not depend
on k. So, we obtain the following formula when the
structure is gk:

CMEðy; gkÞ ¼
n

2
lnt̂kþ

1

2
ln
ðn�kÞ=n

2pexpð1Þt̂k
X>k Xk

				
				

� lnt̂kþ
n�3

2
lnðn�kÞ


 �
: ð64Þ
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Fig. 4. Example 2—the empirical probability of estimating correctly the number of sinusoids versus the inverse of the noise variance.
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It is obvious that t̂k ¼ JðI�PkÞyJ
2=n, where Pk is the

orthogonal projection matrix onto the linear subspace
/XkS. By using (63), we notice that the second term within
(64) is given by PENðy; gkÞ ¼ ðk=2Þln½ðn�kÞ=ð4p expð1Þt̂kÞ�.
For small n, PENðy; gkÞdoes not increase fast enough when
the model order k becomes larger. For comparison, note in
(56) that the BIC penalty term is ðk=2Þlnn. The fact that the
penalty of CME is possibly incorrect for small sample size
has been already analyzed in the case when the variance of
the Gaussian noise is a priori known (see [16]). However,
we show in the next example that CME is rather good in
estimating the order of a polynomial model.
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Example 3 is also taken from [16], and this time the
regressor matrix is given by

X¼

10 11
� � � 19

20 21
� � � 29

^ ^ & ^

ðN�1Þ0 ðN�1Þ1 � � � ðN�1Þ9

2
66664

3
77775:
20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Noise variance: τ = 100

Sample size (N)

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 e

st
im

at
io

n

SCρ
1

SCρ
2

SCρ
3

MMLg

MMLu

Fig. 5. Example 3—the empirical probability of estimating correctl
It is evident that n¼N�1 and m¼10. Similarly with the
previous example, the number of competing nested mod-
els equals m and their structures are such that gk ¼

f1, . . . ,kg for all k 2 f1, . . . ,mg. The variance of the additive
Gaussian noise is assumed to be unknown, and we use
again the notation Xk instead of Xgk

, and bk instead of bgk
.

The data are simulated according to the structure g3 such
that the linear parameters are b3 ¼ ½0 0:4 0:1�>. Hence, the
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observations represent a parabolic signal in noise. In the
first scenario, the noise variance is t¼ 100 and the sample
size is varied by choosing N from the set {20,25,y,100}.
Based on 104 trials for each value of N, we evaluate the
empirical probabilities of selecting the g3-structure, and we
plot them in Fig. 5. Then the sample size is kept fixed
(N¼40), and the SNR is varied by modifying the noise
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Fig. 6. Example 3—the empirical probability of estimating correctly the order of

the range of values being presented along the vertical axes is different for the
variance such that 1=t 2 f1=103,2=103, . . . ,10=103
g. The

number of runs for each value of 1=t is 104, and the results
are shown in Fig. 6.

Remark in Fig. 5 that the results of SCr1
, SCr2

, MMLg

and MMLu are very similar for all values of N, whereas
SCr3

fails to estimate properly the structure when Nr40.
Moreover, for N¼40, SCr3

is inferior to SCr1
, SCr2

, MMLg
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and MMLu for all values of SNR considered in Fig. 6. CME
performs extremely well in both figures, and SCr1

is
almost as good as CME. AICc3 confirms in Fig. 5 what we
have already seen in the previous example: it outperforms
other criteria when the sample size is small (Nr30), but
for large sample size its estimation capabilities are mod-
est. The accuracy of the BIC estimate is better and better
when N increases, but even for N¼100, BIC remains
inferior to CME. In Fig. 6, CME outperforms BIC for a large
span of SNR values.

The fact that, for the polynomial model, CME is super-
ior to BIC has been already pointed out in [15,16], and it
can be understood by resorting to the following asymp-
totic results from [5]:

X>k Xk �

N N2

2 � � � Nk

k

N2

2
N3

3 � � � Nkþ 1

kþ1

^ ^ & ^
Nk

k
Nkþ 1

kþ1 � � � N2k�1

2k�1

2
666664

3
777775, ð65Þ

jX>k Xkj ¼OðNk2
Þ: ð66Þ

Therefore, 1
2 lnjX>k Xkj which is the penalty term of CME

can be written as ½ðk2=2ÞlnnþOð1Þ�. This shows immedi-
ately that ðk=2Þlnn, the penalty term of BIC, is not the
correct one (see [5] for a more detailed discussion). More
interestingly, by combining (34) with the approximations
from (65)–(66), we have

Dgk
ðy;Q 1Þ ¼ b̂

>

k ðX
>
k XkÞb̂k ¼OðN2k�1Þ,

Dgk
ðy;Q 2Þ ¼

Jb̂kJ
2

jX>k Xkj
�1=k
¼OðNkÞ,

Dgk
ðy;Q 3Þ ¼

b̂
>

k ðX
>
k XkÞ

2b̂k

jX>k Xkj
1=k

¼OðN3k�2Þ:
Table 1
Guidance on the use of the eight criteria for the estimation problems in Exam

recommended. For each example, the information about the experimental co

Figs. 1 to 6.

Experimental conditions SCr1
SCr2

SCr3

Example 1—Select the variables which are linearly independent

n¼50; SNR¼0 dB B C A

Example 2—Estimate correctly the number of sinusoids embedded in Gauss

N 2 ½100,150Þ; t�1 ¼ 0:10 B B B

N 2 ½150,200�; t�1 ¼ 0:10 B B B

N 2 ð200,300�; t�1 ¼ 0:10 B B B

N¼100; t�1 2 ½0:01,0:07� C C C

N¼100; t�1 2 ð0:07,0:10Þ C C C

N¼100; t�1 2 ½0:10,0:12Þ B B B

N¼100; t�1 2 ð0:12,0:20� B B B

Example 3—Estimate correctly the order of a polynomial in Gaussian noise

N 2 ½20,25�; t�1 ¼ 0:01 C C D

N 2 ð25,40Þ; t�1 ¼ 0:01 B B D

N¼40; t�1 ¼ 0:01 A A C

N 2 ð40,100�; t�1 ¼ 0:01 A A A

N¼40; t�1 2 ½0:001,0:004Þ B B D

N¼40; t�1 2 ½0:004,0:01Þ A A D
According to (33), the penalty term of SCri
ðy; gkÞ is given

by klnDgk
ðy;Q iÞ, where i 2 f1,2,3g. Thus, we can express as

follows the penalty terms of the criteria listed below:

SCr1
: ð2k2�kÞlnnþOð1Þ,

SCr2
: k2lnnþOð1Þ,

SCr3
: ð3k2�2kÞlnnþOð1Þ:

Recall that the formula in (33) was multiplied by two for
writing the equations in a more compact form. Consequently,
the above results must be divided by two before comparing
them with the penalty term of CME. Note that only SCr2

penalizes the complexity of the model as CME does. SCr3
is

the criterion that deviates the most from the recommended
penalty which is ½ðk2=2ÞlnnþOð1Þ�, and this explains why, in
Figs. 5 and 6, the performance of SCr3

is modest.
The experimental results obtained for Examples 1–3

lead to some guidance on the application of various model
selection criteria to the estimation problems which have
been investigated. We summarize the recommendations
in Table 1.

Example 4 is focused on the predictive capabilities of
the model selection criteria which are investigated. Given
a data set that contains, for n different instances, the
measurements of m input attributes along with the
measurements of the response variable, we randomly
choose ntr samples to be the training set. Based on the
linear regression model, each criterion uses the training
set to choose the most relevant input attributes. The
model learned by each criterion is applied to the remain-
ing n�ntr samples, which constitute the test set, and the
squared prediction error is computed.

The data sets used in our experiments are listed below.
For each of them, we indicate the values of n and m, as
well as the repository where they are publicly available:
1.
ple

ndit

M

B

ian

B

B

A

C

C

B

B

C

B

A

A

B

A

Housing data set: n¼506, m¼13, http://archive.ics.uci.
edu/ml/datasets/Housing.
s 1–3: A—recommended; B—acceptable; C—unsatisfactory; D—not

ions (sample size and SNR) is provided with the conventions from

MLg MMLu CME BIC AICc3

B D B B

noise

C D C B

B D B B

A D A C

C D C C

C D C B

C D C B

B D B B

C C C C

B B B B

A A C C

A A C D

B B B B

A A C C

http://archive.ics.uci.edu/ml/datasets/Housing
http://archive.ics.uci.edu/ml/datasets/Housing


C.D. Giurcăneanu et al. / Signal Processing 91 (2011) 1671–1692 1687
2.
Tab
Exa

D

H

D

C

Diabetes data set (standardized): n¼442, m¼10,
http://www-stat.stanford.edu/�hastie/Papers/LARS.
3.
 Concrete compressive strength data set: n¼1030, m¼8,
http://archive.ics.uci.edu/ml/datasets/Concreteþ
CompressiveþStrength.
At the addresses outlined above, the interested reader can
find the data tables, an accurate description of their content,
along with references to previous works where they have
been utilized. For instance, all three data sets have been also
used for the experimental part of [28]. We note that, in [28],
the Housing data set has been altered as follows: the
measurements corresponding to the attribute CHAS (Charles
River dummy variable) have been removed, the values of the
attribute NOX (nitric oxides concentration—parts per 10
million) have been multiplied by 100, and the y-vector for
the response variable has been transformed such that to have
zero-mean. Similarly, the vector for the response variable
within Concrete compressive strength data set has been
modified to have zero-mean. Because we want our settings
to be like in [28], we apply the same changes. Moreover, the
model selection during the training step is slightly different
than how it was performed in Examples 1–3:
	
 One modification is that we select the best model among
all g-structures which are subsets of {1,y,m}, including
the case g¼ |. Therefore, the tested models are not
nested, and we cannot any longer apply the recursive
least-squares algorithm [14, p. 237] to estimate the linear
parameters, as it was done in Examples 1–3. Like in [28],
we use the Moore–Penrose pseudoinverse.

	
 Another modification is that we do not neglect the

term LðgÞ which quantifies the complexity of the
structure. To be in line with [28], we do not apply
the formula from [26], but the following one:

L0ðgÞ ¼ ln
m

k

� �
þ lnðmþ1Þ,

where k denotes the cardinality of g. Obviously, 2L0ðgÞ
is added to SCr1

, SCr2
, SCr3

, and L0ðgÞ is added to the
other criteria.
le 2
mple 4—squared prediction errors obtained for real life measurements. For

ata set ntr SCr1
SCr2

SCr3
MM

ousing 25 69.976 52.529 53.249 6

50 36.933 35.265 37.268 3

100 29.323 30.210 30.523 2

200 26.023 27.711 27.657 2

400 24.315 25.998 26.225 2

iabetes 25 4824.3 4362.9 4553.0 444

50 3855.3 3645.3 3902.0 385

100 3355.2 3259.9 3410.1 338

200 3165.9 3099.7 3210.7 319

400 3046.9 3060.5 3053.4 305

oncrete 25 225.18 257.71 245.86 22
50 148.67 148.57 147.11 14

100 123.82 121.56 121.59 12

200 114.56 113.89 114.05 11

400 111.67 111.12 111.46 11
The predictive accuracy is evaluated for five different
values of ntr, and the results are shown in Table 2. Note
that each entry within Table 2 is calculated as an average
of the prediction errors obtained from 103 random parti-
tions of the data sets into training/test subsets. The results
for MMLg and MMLu are identical with those from [28].
Because in [28], it was not used the Stirling approxima-
tion (26) when evaluating SCr1

, for this criterion, there
exist small differences between the results from Table 2
and the results reported in [28].

Based on the empirical evidence, it is not possible to
decide that one particular criterion has stronger predic-
tion capabilities than the others. It is interesting to
remark in Table 2 that it does not exist any combination
of experimental settings for which BIC yields the smallest
prediction error. The same is true for SCr1

. Overall, SCr2
is

slightly superior to SCr1
. CME performs surprisingly well

for the Diabetes data set, but for the other two data sets,
its results are moderate.

5. Conclusions

In the case of the Gaussian linear regression, the para-
metric complexity is not finite and the only possibility for
obtaining NML-based selection rules is to constrain the data
space. Even if this was recognized long time ago, the
solutions proposed so far are only punctual results which
treat some particular constraints. In this paper, we have
introduced a general methodology for addressing the pro-
blem. Based on the new findings, we demonstrated how the
rhomboidal constraint yields a new NML-based formula.
Additionally, we used the ellipsoidal constraint to re-derive
three criteria that have been introduced in the previous
literature: SCr1

[25] and SCr2
and SCr3

[18]. They have been
compared against BIC [29], AICc3 [32], CME [15] and MMLg

and MMLu [28].
The theoretical analysis and the Monte Carlo simulations

led to the following outcomes: (a) SCr3
has the strongest

tendency to select the variables which are linearly indepen-
dent; (b) SCr1

, SCr2
and SCr3

reduce to one single criterion
when the regression matrix is orthonormal; (c) MMLg and
all data sets, it is written in bold the best result for each ntr .

Lg MMLu CME BIC AICc3

1.922 71.509 85.282 70.326 59.463

6.340 36.635 36.147 36.511 36.577

9.624 29.383 29.079 29.516 28.343
6.424 26.162 26.897 26.535 25.271
4.304 24.299 24.645 24.365 24.321

5.0 4819.2 5386.5 4647.5 4506.3

1.2 3843.8 3722.5 3819.5 3743.1

5.3 3364.2 3237.2 3368.4 3301.5

9.6 3173.3 3069.5 3195.4 3073.4

2.8 3052.7 3026.9 3055.7 3026.9

1.2 227.41 279.27 235.07 245.40

7.46 149.25 162.36 150.06 148.78

2.90 123.65 124.00 123.29 124.11

4.37 114.50 114.17 114.31 114.89

1.59 111.64 111.22 111.56 111.70

http://www-stat.stanford.edu/&sim;hastie/Papers/LARS
http://www-stat.stanford.edu/&sim;hastie/Papers/LARS
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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MMLu perform similarly with SCr1
and they are superior to

SCr1
for some particular experimental settings; (d) AICc3 is

very good when the sample size is small, but it has modest
results when the sample size is large; (e) BIC has a behavior
which is opposite to that of AICc3, and the performance of
SCr1

is an excellent compromise between BIC and AICc3; (f)
CME poses troubles for some models, but in the case of the
polynomial model, it is ranked the first for a large range of
sample sizes; (g) SCr1

, SCr2
, MMLg and MMLu are nearly as

good as CME for the polynomial model, while SCr3
has

difficulties in this case.
Acknowledgments
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Appendix A. Evaluation of the normalized
maximum likelihood

The techniques that we apply in this section are very
similar with those used in [17,18,25–27].

Computation of CrðR,t0Þ. First we note that the esti-

mated parameter vector ½b̂
>

t̂�> is a sufficient statistic,

and the density f ðy;b,tÞ can be factored as follows:

f ðy;b,tÞ ¼ f ðyjb̂,t̂Þgðb,t; b̂,t̂Þ, ðA:1Þ

where f ðyjb̂,t̂Þ does not depend on the unknowns b and t.

According to [31, Theorem 3.5], the estimates b̂ and t̂ are
statistically independent, and we have

gðb,t; b̂,t̂Þ ¼ g1ðb̂;b,tÞg2ðt̂; tÞ,

g1ðb̂;b,tÞ ¼ jX
>Xj1=2

ð2ptÞk=2
exp �

JXðb̂�bÞJ2

2t

 !
,

g2ðt̂; tÞ ¼
nðn�kÞ=2

G n�k
2

� �
2ðn�kÞ=2

t̂
t

� �ðn�kÞ=2 1

t̂ exp �
nt̂
2t

� �
:

By employing (15), we obtain

gðb̂,t̂; b̂,t̂Þ ¼ An,kt̂
�k=2�1: ðA:2Þ

Then we define PðR,t0Þ ¼ f½b̂
>

t̂�> : rðb̂ÞrR,t̂Zt0g and

Yðb̂,t̂Þ ¼ fy : b̂ðyÞ ¼ b̂,t̂ðyÞ ¼ t̂g. After these preparations,
we evaluate the integral in (12):

CrðR,t0Þ ¼

Z
PðR,t0Þ

Z
Yðb̂ ,t̂Þ

f ðyjb̂,t̂Þ dy


 �
gðb̂,t̂; b̂,t̂Þ db̂ dt̂

ðA:3Þ

¼ An,k

Z 1
t0

t̂�k=2�1 dt̂
Z
BðRÞ

db̂ ¼ ð2An,k=kÞt�k=2
0 VrðRÞ:

ðA:4Þ
Remark in (A.3) that the inner integral gives unity [26].
The use of (A.2) and some simple manipulations yield
(A.4). Additionally, (10) and (A.4) lead to (14).

Computation of CrðR1,R2,t1,t2Þ. For evaluating the nor-

malizing constant in (18), we define PðR1,R2,t1,t2Þ ¼

f½b̂
>

t̂�> : R1rrðb̂ÞrR2,t1r t̂rt2g and BðR1,R2Þ ¼ fb̂ :

R1rrðb̂ÞrR2g. So,

CrðR1,R2,t1,t2Þ ¼

Z
YðR1 ,R2 ,t1 ,t2Þ

f̂ ðy; ~R, ~t0Þ dy

¼

Z
YðR1 ,R2 ,t1 ,t2Þ

f ðyjb̂,t̂Þgðb̂,t̂; b̂,t̂Þ
Crð ~R, ~t0Þ

dy ðA:5Þ

¼

Z
PðR1 ,R2 ,t1 ,t2Þ

gðb̂,t̂; b̂,t̂Þ
Crð ~R, ~t0Þ

Z
Yðb̂ ,t̂Þ

f ðyjb̂,t̂Þ dy


 �
db̂ dt̂

ðA:6Þ

¼

Z
PðR1 ,R2 ,t1 ,t2Þ

An,kt̂
�k=2�1

An,kð2=kÞt̂�k=2Vrð ~RÞ
db̂ dt̂ ðA:7Þ

¼
k

2

Z t2

t1

1

t̂
dt̂
Z
BðR1 ,R2Þ

Z�1½rðb̂Þ��zk db̂ ðA:8Þ

¼
k

2
ln
t2

t1

Z R2

R1

ðZzkÞRzk�1

ZRzk
dR

¼
zk2

2
ln
t2

t1
ln

R2

R1
:

Note that in (A.5) we use again the factorization from (A.1).
Similarly with (A.3), the inner integral in (A.6) gives unity.
The identity in (A.7) is derived straightforwardly from (A.2),
(A.4) and (A.6). For the calculation of the second integral in
(A.8), we apply the same technique as in [25,26] and, based
on (10), we take the element of volume to be

dVr ¼ ZzkRzk�1 dR. After some simple algebra, we get the

result in (19).
Evaluation of the approximate formula (23). Note that

the approximation from (23) can be applied for a much
more general class of models, and not only for the model
in (2). The proof given in [24] treats the general case and
is based on sophisticated mathematical derivations. How-
ever, it was already pointed out in [26, Section 5.2.2] that
the proof can be simplified if the analyzed model satisfies
a particular condition. With our notations, the condition is
as follows:

lim
n-1

gðb̂,t̂; b̂,t̂Þ
½n=ð2pÞ�ðkþ1Þ=2jJnðb̂,t̂Þj1=2

¼ 1: ðA:9Þ

Observe that Eq. (25) leads to

n

2p

� �ðkþ1Þ=2

jJnðb̂,t̂Þj1=2 ¼ �An,kt̂
�k=2�1,

�An,k ¼
jX>Xj1=2

ffiffiffi
n
p

ð2pÞðkþ1Þ=2
ffiffiffi
2
p :

By using (15) and (A.2), we get

lim
n-1

gðb̂,t̂; b̂,t̂Þ
½n=ð2pÞ�ðkþ1Þ=2jJnðb̂,t̂Þj1=2

¼ lim
n-1

An,k

�An,k
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¼ lim
n-1

nðn�k�1Þ=2
ffiffiffiffiffiffi
2p
p

2ðn�k�1Þ=2exp n
2

� �
G n�k

2

� �
¼ lim

n-1

1�k
n

� �ðkþ1Þ=2

1�k=2
n=2

� �n=2
exp k

2

� � ¼ 1: ðA:10Þ

The identity in (A.10) was obtained by taking
z¼ ðn�kÞ=2 in the well-known expression of the Gamma
function:

GðzÞ ¼ zz�1=2expð�zÞexp½mðzÞ�
ffiffiffiffiffiffi
2p
p

, ðA:11Þ

where mðzÞ ¼ m=ð12zÞ and m 2 ð0,1Þ. Remark that the Stir-
ling approximation in (26) is a straightforward conse-
quence of (A.11).

Our approach is slightly different than the one from
[26, Section 5.2.2] where the condition (A.9) was employed
to prove (23). More precisely, we consider the following
asymptotic approximation:

gðb̂,t̂; b̂,t̂Þ � n

2p

� �ðkþ1Þ=2

jJ1ðb̂,t̂Þj1=2 ¼ �A1,kt̂
�k=2�1, ðA:12Þ

where

�A1,k ¼
n

2p

� �ðkþ1Þ=2 jG1j

2

� �1=2

,

G1 ¼ lim
n-1

Gn, ðA:13Þ

Gn ¼
X>X

n
: ðA:14Þ

Because we want to apply the same techniques like in
the evaluation of f̂ rðyÞ, we use in (A.3) the approximation
from (A.12), which leads to

CFIM
r ðR,t0Þ ¼ ð2 �A1,k=kÞt�k=2

0 VrðRÞ: ðA:15Þ

It is important to remark that the expression of
CrðR1,R2,t1,t2Þ remains unchanged when (A.5) is modified
as follows: (i) gðb̂,t̂; b̂,t̂Þ is replaced by the approximation
given in (A.12); (ii) Crð ~R, ~t0Þ is replaced by CFIM

r ð
~R, ~t0Þ.

Consequently, the approximate formula of SC is

�lnf̂
FIM

r ðyÞ ¼�lnf ðy; b̂,t̂Þþ lnCFIM
r ðrðb̂Þ,t̂Þþ lnCrðR1,R2,t1,t2Þ:

Furthermore, we compare this result with the one
from (20):

�ln
f̂ rðyÞ

f̂
FIM

r ðyÞ
¼ ln

Crðrðb̂Þ,t̂Þ
CFIM
r ðrðb̂Þ,t̂Þ

¼ ln
An,k

�A1,k

¼
1

2
ln
jGnj

jG1j
þ

n�k�1

2
ln

n

2
�lnG

n�k

2

� �
þ

1

2
lnð2pÞ�n

2

ðA:16Þ

�
1

2
ln
jGnj

jG1j
�

n�k�1

2
ln

n�k

n
�

k

2
: ðA:17Þ

Eq. (A.16) shows clearly that the difference ½�lnf̂ rðyÞ��

½�lnf̂
FIM

r ðyÞ� does not depend on the constraint rð�Þwhich is

used for computing the integral. Moreover, based on (A.10),

(A.13), (A.14), (A.17), it is easy to conclude that f̂ rðyÞ and
f̂
FIM

r ðyÞ are the same when n is large. Note that the derivation

of (A.17) involves the Stirling approximation (26).

Appendix B. Proofs of the main results within Section 3.2

Proof of Proposition 3.1.
(a)
 We consider the singular value decomposition (SVD)

of the matrix Xg. Let Xg ¼ ½U U0�½K
> 0>�>V>, where

the matrix ½U U0� has orthonormal columns, U 2 Rn�k

and U0 2 R
n�ðn�kÞ. The diagonal matrix K 2 Rk�k is

non-singular, and V 2 Rk�k is such that V�1
¼V>. For

i 2 f1,2,3g, we have Q i ¼VL2
i V> and

Dgðy;Q iÞ ¼ y>U
L2

i

jL2
i j

1=k
M�1U>y,

where L1 ¼K, L2 ¼ I, L3 ¼K2 and M¼K2=jK2
j1=k. The

equalities in (35) can be re-written as

JU>yJ2
¼ JM�1=2U>yJ2

¼ JM1=2U>yJ2,

and they are satisfied for all y 2 Rn
\f0g if and only if

M¼ I. This is equivalent with the fact that K2 has
one eigenvalue with multiplicity k. We denote q this
eigenvalue, and the condition in (36) is immediately
obtained.
(b)
 We use the notations introduced in the proof of the
point (a), and we focus on the properties of the matrix
M. Observe that the diagonal entries of M are strictly
positive, and their product is equal to one. If MaI,
then some of the eigenvalues of M�1 are larger than
one, while the others are smaller than one. Therefore,
the matrix I�M�1 has both positive and negative
eigenvalues. This observation together with the iden-
tity Dgðy;Q 1Þ�Dgðy;Q 2Þ ¼ y>UðI�M�1

ÞU>y show that,
depending on y, the difference Dgðy;Q 1Þ�Dgðy;Q 2Þ

can be either positive or negative. The proof is similar
for Dgðy;Q 2Þ�Dgðy;Q 3Þ and Dgðy;Q 1Þ�Dgðy;Q 3Þ.
(c)
 It is easy to verify that Dgðy;Q 2Þ � Dgðy;Q 3Þ ¼ Jb̂gJ
2
�

JX>g yJ2 and Dgðy;Q 1Þ
2
¼ ½b̂

>

g ðX
>
g yÞ�2. The Cauchy–

Schwarz inequality [30, p. 258] written for the vectors

b̂g and X>g y leads to Dgðy;Q 2Þ � Dgðy;Q 3ÞZDgðy;Q 1Þ
2,

which proves the inequality in (37). &
Proof of Proposition 3.2. The main idea is to write the
expressions of Dgðy;Q iÞ, i 2 f1,2,3g, in a form which allows
us to see immediately if, for a-0, the result is finite or
not. We introduce the following supplementary nota-
tions: g¼ P?k-1xk, Pk ¼XkðX

>
k XkÞ

�1X>k , Pxk
¼ ðxkx>k Þ=JxkJ

2

and P?xk
¼ I�Pxk

. The symbol # is used for the Moore–
Penrose pseudoinverse.
(a)
 Some simple manipulations combined with the
identity from [14, Eq. (8.34)] lead to

Dgðy;Q 1Þ ¼ JPkyJ2
¼ Pk-1þ

g

JgJ

g>

JgJ

� �
y

����
����

2

¼ JðPk-1þww>ÞyJ2: ðB:1Þ
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To compute Dgðy;Q 2Þ, we use the formula [20,
(b)

Eq. (2.17)]:

ðX>k XkÞ
�1
¼
ðX>k-1P?xk

Xk-1Þ
�1 F

F> ðx>k P?k-1xkÞ
�1

2
4

3
5, ðB:2Þ

where F¼�X#
k-1xkðx

>
k P?k-1xkÞ

�1. Simple calculations
produce the following outcome:

ðX>k XkÞ
�1X>k ¼

P?xk
Xk-1

� �#
1
JgJ

g>

JgJ

2
64

3
75: ðB:3Þ

Then we employ the identity from [2, Eq. (17)] to get

ðP?xk
Xk-1Þ

#
¼ ðX>k-1P?xk

Xk-1Þ
�1X>k-1P?xk

¼ ðX#
k-1Xk-1ÞðX

>
k-1P?xk

Xk-1Þ
�1X>k-1P?xk

¼X#
k-1Pk-1½I�xkðx

>
k P?k-1xkÞ

�1x>k P?k-1�

¼
X#

k-1

JgJ
JgJI�xk

g>

JgJ

� �
:

The result above together with (B.3) show that

XkðX
>
k XkÞ

�2X>k ¼
1

JgJ2
JgJI�xk

g>

JgJ

� �>
ðX#

k-1Þ
>

�X#
k-1 JgJI�xk

g>

JgJ

� �
þ

1

JgJ2

g

JgJ

g>

JgJ
:

ðB:4Þ

Additionally, it is known that [16]

jX>k Xkj ¼ JgJ2
jX>k-1Xk-1j: ðB:5Þ

So,

Dgðy;Q 2Þ ¼
jX>k-1Xk-1j

1=k

JgJ2ð1�1=kÞ
X#

k-1 JgJI�xk
g>

JgJ

� �
y

����
����

2
"

þ
g>

JgJ
y

� �2
#
¼

jX>k-1Xk-1j
1=k

½sinðaÞJxkJ�
2ð1�1=kÞ

�½JX#
k-1ðsinðaÞJxkJI�xkw>ÞyJ2

þðw>yÞ2�:

ðB:6Þ
(c)
 It is obvious that Dgðy;Q 3Þ ¼ JX>k yJ2=jX>k Xkj
1=k. Then

we apply (B.5) to get

Dgðy;Q 3Þ ¼
1

JgJ2=k

JX>k yJ2

jX>k-1Xk-1j
1=k

¼
1

½sinðaÞJxkJ�
2=k

JX>k yJ2

jX>k-1Xk-1j
1=k

: ðB:7Þ
Proposition 3.2 is a straightforward consequence of
(B.1), (B.6) and (B.7). &

Proof of Proposition 3.3. The equality in (41) is readily
obtained from (34) and (39). We also have from (34) that

Dgðy;Q 2Þ ¼ Jb̂gJ
2
� jX>g Xgj

1=k: ðB:8Þ

Let b̂k be the last entry of the vector b̂g. With the
notations from the proof of Proposition 3.2, we have

b̂
2

k ¼
g>y

JgJ2

 !2

ðB:9Þ
¼
y>½ðgg>Þ=JgJ2

�y

JgJ2
¼

y>ðPk�Pk-1Þy

JP?k xkJ
2

ðB:10Þ

¼
JPkyJ2

�JPk-1yJ2

1�JPk-1xkJ
2
¼

R2
y�Xg
�R2

y�Xg\fkg

1�R2
k�1,...,ðk�1Þ

:

Note that (B.9) is obtained from (B.3), and (B.10) is based
on (B.1). The result can be extended to all entries of b̂g,
and we get

Jb̂gJ
2
¼
Xk

i ¼ 1

R2
y�Xg
�R2

y�Xg\fig

1�R2
BðkÞ�Bð1Þ,...,Bðk�1Þ

, ðB:11Þ

where Bð�Þ is defined in (44). Next we use recursively the
identity from (B.5) to obtain

jX>g Xgj ¼
Yk

i ¼ 2

JP?i�1xiJ
2
¼
Yk

i ¼ 2

½1�R2
i�1,...,ði�1Þ�: ðB:12Þ

For an arbitrary i 2 f1, . . . ,k�1g, we consider the matrix
~Xg ¼ ½x1 � � � xi�1 xiþ1 � � �xk xi�, which is obtained by per-

muting the columns of Xg. For computing j ~X
>

g
~Xgj, we

apply the same technique like in (B.12). The fact that

j ~X
>

g
~Xgj ¼ jX

>
g Xgj leads to

jX>g Xgj ¼ ½1�R2
BðkÞ�Bð1Þ,...,Bðk�1Þ�

Yk�1

j ¼ 2

½1�R2
BðjÞ�Bð1Þ,...,Bðj�1Þ�: ðB:13Þ

The identity in (42) is proven by combining (B.8), (B.11)

and (B.13). We notice from (34) that Dgðy;Q 3Þ ¼ JX>g yJ2=

jX>g Xgj
1=k, and by using (B.12), we get (43). &

Appendix C. Proofs of the main results within Section 3.3
Proof of Lemma 3.1. For i 2 f1,2,3g, we define Mi ¼

XkðX
>
k XkÞ

�1Q iðX
>
k XkÞ

�1X>k =ðjQ ij=jX
>
k XkjÞ

1=k, and by apply-
ing a well-known result [30, p. 439], we have

E½Dgk
ðy;Q iÞ� ¼ E½y>�MiE½y�þtTr½Mi�

¼ b>k-1X>k-1MiXk-1bk-1þt
Tr½ðX>k XkÞ

�1Q i�

ðjQ ij=jX
>
k XkjÞ

1=k
,

ðC:1Þ

where Tr½�� denotes the trace operator. When Q ¼Q 1, we
compute (C.1) by making use of techniques similar with
those employed to derive (B.1):

E½Dgk
ðy;Q 1Þ� ¼ JPkXk-1bk-1J

2
þtTr½I�

¼ JðPk-1þo�1P?k-1xkx>k P?k-1ÞXk-1bk-1J
2
þtk

¼ Jbk�1J
2
þtk:

Hence, the identity in (45) is proven. Next we focus on
some results that will be useful when evaluating (C.1)
for Q ¼Q 2 and Q ¼Q 3. First notice from (B.5) that
jX>k Xkj ¼o. Moreover, we have from (B.2) that

Tr½ðX>k XkÞ
�1
� ¼ Tr½ðX>k-1P?xk

Xk-1Þ
�1
�þðx>k P?k-1xkÞ

�1

¼ Tr½ðX>k-1P?xk
Xk-1Þ

�1
�þo�1 ¼ k�2þ2o�1:

ðC:2Þ

The identity above is deduced by taking into account that
the eigenvalues of ðX>k-1P?xk

Xk-1Þ
�1 are 1 and o�1. The
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eigenvalue 1 has multiplicity k�2, while the eigenvalue
o�1 has multiplicity 1 [2, Eq. (25)]. These results together
with (C.1) and some algebra yield (46) and (47):

E½Dgk
ðy;Q 2Þ� ¼ ½JX#

k Xk-1bk-1J
2
þtTr½ðX>k XkÞ

�1
��jX>k Xkj

1=k

¼ ½Jbk-1J
2
þtðk�2þ2o�1Þ�o1=k,

E½Dgk
ðy;Q 3Þ� ¼ ½JX>k Xk-1bk-1J

2
þtTr½ðX>k XkÞ��jX

>
k Xkj

�1=k

¼ ½Jbk-1J
2
þtkþðx>k Xk-1bk-1Þ

2
�o�1=k: &

Proof of Proposition 3.4.
(a)
 It follows from (45) and (46) that

E½Dgk
ðy;Q 2Þ�Dgk

ðy;Q 1Þ�

¼ Jbk-1J
2
½o1=k�1�þt½kðo1=k�1Þ�2o1=k�1ðo�1Þ�

¼ tðo1=k�1Þ
Jbk-1J

2

t þk�2o1=k�1 o�1

o1=k�1

" #

¼ tðo1=k�1Þ
Jbk-1J

2

t � 2
1�o�1

1�o�1=k
�k


 �( )
:

We can now infer the conclusion within point (a) of
Proposition 3.4 by noticing that o1=k�1o0 for a 2
ð0,p=2Þ and, additionally, 2ð1�o�1Þ=ð1�o�1=kÞ�k is a
decreasing function of a.
(b)
 The identities in (45) and (47) prove that

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�

¼ E½Dgk
ðy;Q 1Þ�ðo�1=k�1Þþðx>k Xk-1bk-1Þ

2o�1=k

ðC:3Þ

r ðJbk-1J
2
þtkÞðo�1=k�1ÞþJbk-1J

2
ð1�oÞo�1=k

ðC:4Þ

It is evident from (C.3) that E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�

cannot be negative because both E½Dgk
ðy;Q 1Þ�

ðo�1=k�1Þ and ðx>k Xk-1bk-1Þ
2o�1=k are non-negative.

Note that (C.4) is obtained by applying the Cauchy–
Schwarz inequality [30, p. 258]:

ðx>k Xk-1bk-1Þ
2rJx>k Xk-1J

2Jbk-1J
2
¼ ð1�oÞJbk-1J

2:

The inequality in (48) is a straightforward conse-
quence of (C.4). &
Proof of Proposition 3.5. First we give three auxiliary
results which will be instrumental for the main proof.
	
 Result #1 [36, p. 348]. Let N 2 Rk�k be a symmetric
matrix whose eigenvalues are n1, . . . ,nk. Also, let
h 2 Rk

\f0g. Then

nminJhJ
2rh>NhrnmaxJhJ

2, ðC:5Þ

where nmin ¼min1r irkni and nmax ¼max1r irkni.

	
 Result #2. The arithmetic–geometric–harmonic mean

inequalities [21, p. 27] applied to the eigenvalues
of X>k Xk:

lminrHlrGlrAlrlmax, ðC:6Þ

where lmin ¼min1r irkli and lmax ¼max1r irkli.

	
 Result #3. If X>k-1Xk-1 ¼ I, JxkJ¼ 1 and a 2 ð0,p=2� is the

principal angle between /Xk-1S and /xkS, then the
eigenvalues of X>k Xk satisfy the inequalities

1�cosarlminrlmaxr1þcosa: ðC:7Þ

Proof: Let b¼X>k-1xk and B¼ ½ 0
b>

b
0�. The equality

B¼X>k Xk�I is evident, and it implies that the eigenvalues

of B are l1�1, . . . ,lk�1. For i 2 f1, . . . ,kg, if vi is the

eigenvector of X>k Xk associated with li, then vi is also the

eigenvector of B associated with li�1. With the conven-

tion that b¼ ½b1, . . . ,bk�1�
> and vi ¼ ½v1,i, . . . ,vk,i�

>, we

have

ðli�1Þvi ¼
0 b

b> 0


 �
vi ¼

b1vk,i

^

bk�1vk,iXk�1

j ¼ 1

bjvj,i

2
66666664

3
77777775
:

The identities JviJ
2
¼ 1 and JbJ2

¼ cos2 a together with
the Cauchy–Schwarz inequality [30, p. 258] yield

ðli�1Þ2 ¼ v2
k,iJbJ2

þ
Xk�1

j ¼ 1

bjvj,i

0
@

1
A

2

rv2
k,iJbJ2

þJbJ2
Xk�1

j ¼ 1

v2
j,i ¼ cos2a,

which implies 1�cosarlir1þcosa for all i 2

f1, . . . ,kg. &

Main inequalities:
(a)
 From (49) and (50), we get

E½Dgk
ðy;Q 2Þ�Dgk

ðy;Q 1Þ� ¼ b>k LbkþtkðGl=Hl�1Þ,

where L¼ GlI�X>k Xk. Observe that the smallest
eigenvalue of L is

‘min ¼ Gl�lmax, ðC:8Þ

and the largest eigenvalue of L is

‘max ¼ Gl�lmin: ðC:9Þ

By making use of (B.5), it is easy to check that

Gl ¼ sin2=ka: ðC:10Þ

The steps of the proof for the inequalities in (52) are
outlined below. At each step, we indicate which
result is used in demonstration.

E½Dgk
ðy;Q 2Þ�Dgk

ðy;Q 1Þ�Z
ðC:6Þ

b>k Lbk

Z

ðC:5Þ
JbkJ

2‘min

¼
ðC:8Þ

JbkJ
2
ðGl�lmaxÞ

¼
ðC:10Þ

JbkJ
2
ðsin2=ka�lmaxÞ

Z

ðC:7Þ
JbkJ

2
ðsin2=ka�cosa�1Þ,

E½Dgk
ðy;Q 2Þ�Dgk

ðy;Q 1Þ�r
ðC:6Þ

b>k LbkþtkðGl=lmin�1Þ

r
ðC:5Þ

JbkJ
2‘maxþtkðGl=lmin�1Þ

¼
ðC:9Þ

JbkJ
2
ðGl�lminÞþtkðGl=lmin�1Þ

r
ðC:7Þ

JbkJ
2
ðGlþcosa�1Þþtk½Gl=ð1�cosaÞ�1�
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¼
ðC:10Þ

JbkJ
2
ðsin2=kaþcosa�1Þþtk

sin2=ka
1�cosa

�1

 !
:

(b)
 By subtracting (49) from (51), we obtain

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ� ¼ b>k MbkþtkðAl=Gl�1Þ,

where M¼ ðX>k XkÞ
2=Gl�X>k Xk. Let us consider the

mapping fðzÞ ¼ z2=Gl�z, which is defined for
all z 2 R. The eigenvalues of M are mi ¼fðliÞ,
i 2 f1, . . . ,kg. The inequalities in (C.7), together with
the well-known properties of fð�Þ, guarantee that
mmax, the maximum eigenvalue of M, has the prop-
erty: mmaxrmaxffð1�cosaÞ,fð1þcosaÞg. Because
fð1þcosaÞ�fð1�cosaÞ ¼ 2cosað2sin�2=ka�1Þ40,
the following inequality holds true:

mmaxrfð1þcosaÞ: ðC:11Þ

Since the parabola defined by fð�Þ attains its mini-
mum when z¼ Gl=2, it is obvious that mmin, the
minimum eigenvalue of M, cannot be smaller than
fðGl=2Þ. So,

mminZfðGl=2Þ: ðC:12Þ

The inequality above can be improved by observing for
aZp=3 that 1�cosaZGl=2 for all kZ2. In this case,

mminZfð1�cosaÞ: ðC:13Þ

Similarly with the chain of inequalities for
E½Dgk

ðy;Q 2Þ�Dgk
ðy;Q 1Þ�, we write

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�Z
ðC:6Þ

b>k Mbk Z

ðC:5Þ
JbkJ

2mmin:

From the inequality above we get (53) and (54) by
employing (C.12) and (C.13). Then we focus on the
proof of (55):

E½Dgk
ðy;Q 3Þ�Dgk

ðy;Q 1Þ�r
ðC:6Þ

b>k Mbkþtkðlmax=Gl�1Þ

r
ðC:5Þ

JbkJ
2mmaxþtkðlmax=Gl�1Þ

r
ðC:7Þ

JbkJ
2mmaxþtk½ð1þcosaÞ=Gl�1�

r
ðC:11Þ

JbkJ
2fð1þcosaÞþtk½ð1þcosaÞ=Gl�1�

¼
ðC:10Þ

JbkJ
2 ð1þcosaÞ2

sin2=ka
�ð1þcosaÞ

" #
þtk

1þcosa
sin2=ka

�1

� �
: &
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