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ABSTRACT

In a recent series of papers, it was shown how the periodogram can
be smoothed by thresholding the estimated cepstral coefficients ei-
ther with a carefully designed uniformly most powerful unbiased test
(UMPUT), or with the Bayesian information criterion (BIC). In this
paper, we devise a fully automatic scheme that selects the threshold
by using the Kolmogorov structure function (KSF). For the numeri-
cal examples taken from the previous literature, the newly proposed
method compares favorably with the existing schemes.

Index Terms— Kolmogorov structure function, periodogram
smoothing, total-variance reduction, thresholding, cepstral statistics.

1. INTRODUCTION AND PRELIMINARIES

One of the classical problems in signal processing is to estimate
the spectrum Φ(ω) of a stationary, discrete time, real-valued sig-
nal from the measurements y0, . . . ,yN−1. With the convention that
ωp = (2π p)/N, p ∈ {0, . . . ,N− 1}, are the Fourier frequency grid
points, we use the notation Φp for Φ(ωp). The estimate of the spec-

trum at point ωp is Φ̂p =
1
N

∣∣∣∣∣
N−1

∑
t=0

yt exp(−iωpt)

∣∣∣∣∣
2

, where i =
√−1

[1]. Because the main drawback is the high variance of Φ̂p, various
methods for smoothing the periodogram have been proposed in the
previous literature. In a recent series of papers (see [2, 3] and the
references therein), it was introduced a novel approach that is based
on thresholding the estimated cepstral coefficients.

We assume that N, the number of samples, is even and we take
M = N/2+1. Under the hypothesis that min(Φp,Φ̂p) > 0 for all p,
the first M cepstral coefficients and their estimates are given by c j =

1
N

N−1

∑
p=0

ln(Φp)exp(iω j p), ĉ j =
1
N

N−1

∑
p=0

ln(Φ̂p)exp(iω j p) + γδ j,0,

where j ∈ {0, . . . ,M − 1} and γ = 0.577216 . . . is the Euler con-
stant [3]. The Kronecker indicator δ j,0 takes value one if j = 0,
and otherwise takes value zero. The rest of the coefficients can be
obtained without difficulties because cN− j = c j and ĉN− j = ĉ j for
j ∈ {1, . . . ,M−2}. In [3], it was shown that

1
N

N−1

∑
p=0

E
[
(ln Φ̂p− lnΦp)

2
]

=
N−1

∑
j=0

E
[
(ĉ j−c j)

2
]
, (1)

where E[·] denotes the expectation operator. The mirror symmetry
of the cepstral coefficients implies for a given c = [c0 . . .cM−1]

� that
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the total variance (TV) term in (1) depends only on the entries of
ĉ = [ĉ0 . . . ĉM−1]

�. To emphasis this aspect, we write

TV(ĉ) =
N−1

∑
j=0

E
[
(ĉ j−c j)

2
]
. (2)

More importantly, the identity in (1) can be exploited to smooth the
periodogram. For instance, if one transforms the vector of coeffi-
cients ĉ to č = [č0 . . . čM−1]

� such that č j = 0 whenever c j is small
and č j = ĉ j otherwise, then it is likely that the total variance

TV(č) =
N−1

∑
j=0

E
[
(č j−c j)

2
]

(3)

is smaller than TV(ĉ). This makes also the average variance of
ln(Φ̌p) = ∑

N−1
j=0 č j exp(−iωp j) to be smaller than that of ln(Φ̂p) for

p ∈ {0, . . . ,N−1}. The following result is instrumental in deciding
which are the coefficients ĉ j that must be turned to zero.

Theorem 1.1. When N � 1, the normalized vector of estimation
errors

√
N(ĉ−c) converges in distribution to the normal distribution

of mean zero and covariance matrix C = π2

6

⎡
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2 0
1

. . .
1

0 2

⎤
⎥⎥⎥⎥⎥⎦ .

The interested reader can find in [2] a simplified proof of Theo-
rem 1.1 along with some historical notes and a list of papers contain-
ing proofs for the same result. Based on the distributional properties
of the estimated ĉ, a thresholding procedure was proposed in [3]:

č j =

{
0, |ĉ j|< μ [C( j +1, j +1)/N]1/2 ,
ĉ j, otherwise,

(4)

where j ∈ {0, . . . ,M−1} and C( j +1, j +1) is the ( j +1)-th diag-
onal element of C. Two different formulas have been used for μ .
The first one was derived by combining a uniformly most powerful
unbiased test (UMPUT) [4] with some empirical evidence, and has
the expression:

μUMPUT = (5− Ist)+
N−128

1920
. (5)

Its application is restricted to data sets for which N is an integer
power of two and 128 ≤ N ≤ 2048. The value of Ist depends on the
type of the signal and is chosen as follows: Ist = 1 for broadband
signal with small dynamic range, Ist = 2 for broadband signal with
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medium dynamic range, and Ist = 3 for narrowband signal with large
dynamic range. The second μ-formula was inspired by the Bayesian
information criterion (BIC) from [5], and is given by:

μBIC = 1+(ln M)1/2. (6)

In this paper, we show how μ can be selected by using the Kol-
mogorov structure function (KSF) [6]. To this end, we derive in
Section 2 the expression of the KSF for the considered problem by
following closely the approach from [7]. After giving in Section 2
the algorithmic steps for finding μKSF, we compare in Section 3, for
simulated data, the performance of various thresholding schemes.

2. KSF AND SELECTION OF THE PARAMETER μ

We note that turning to zero some of the coefficients {ĉ j}M−1
j=0 is

similar to a quantization process. This observation makes the con-
nection between the thresholding procedure defined in (4) and the
KSF whose expression contains two terms. The first one is given
by the code length for the quantized values of {ĉ j}M−1

j=0 , while the
second one accounts for the distortion produced by the quantization
process. We aim to select the threshold value μKSF which minimizes
the KSF.

The first step is to partition the space of the cepstral coefficients.
Theorem 1.1 allows us to perform this task by applying the proce-
dure introduced in [7], where Rissanen has considered the follow-
ing general framework. Let the entries of θ be the true values of
the parameters, and θ̂ the vector of their estimates obtained from
N observations. It is assumed that the number of parameters is not
greater than the number of samples. Additionally, for N � 1, the
random vector

√
N(θ̂ − θ ) converges in distribution to the normal

distribution of mean zero and covariance J−1(θ), where J(θ ) is the
Fisher information matrix [1] divided by N. We choose an arbitrary
point, θ̄ , in the parameter space such that J(θ̄) is non-singular. A
box centered at θ̄ is defined as follows: (i) consider the ellipsoid
(θ− θ̄ )�J(θ̄ )(θ − θ̄ ) = d/N, where d > 0 is a parameter; (ii) select
the largest box within the ellipsoid. The motivation is straightfor-
ward: it is possible to partition the parameter space by using boxes,
but not by using ellipsoids.

Inspired by the approach from [7], we assign to an arbitrary
point, say c̄, from the cepstral coefficients space the ellipsoid given
by:

(c− c̄)�C−1(c− c̄) = d/N. (7)

For j ∈ {0, . . . ,M−1}, we define x j = c j [N/C( j +1, j +1)]1/2 and

x̄ j = c̄ j [N/C( j +1, j +1)]1/2, where C( j+1, j+1) is the ( j+1)-th
diagonal entry of C. Conventionally we take x = [x0 . . .xM−1]

� and
x̄ = [x̄0 . . . x̄M−1]

� such that to re-write (7) in the simpler form:

(x− x̄)�(x− x̄) = d. (8)

Remark that (8) is the equation of a sphere centered at x̄. Hence,
the largest box within it is the hyper-cube with side length 2�, where
� =

√
d/M. A simple comparison of the equations (7) and (8) leads

immediately to the conclusion that is more convenient to partition
the x-space instead of c-space. Another great simplification comes
from the fact that the side length of the hyper-cube centered at x̄
and defined as described above is independent of x̄. Thus, one can
construct the partition as follows. Firstly choose a point x0 ∈R

M and
demarcate the hyper-cube centered at x0. Secondly fix the centers
of its neighbors which are hyper-cubes with side length 2�. Then

the construction continues similarly until the complete set of hyper-
cubes is settled.

The only problem which remains to be solved is how to select the
point x0. We briefly explain the selection methodology by consider-
ing the j-axis of the cartesian system in the x-space. It was already
shown in [3] that the TV of the cepstral coefficients can be reduced
by turning to zero the estimate ĉ j whenever c2

j ≤ C( j +1, j +1)/N.

Because c2
j = C( j + 1, j + 1)/N is equivalent to x j ∈ {−1,1}, we

begin the construction by considering the two intervals of length 2�
centered at the points −1 and +1, respectively. The smallest zero-
centered interval which comprises the two intervals centered at −1
and +1 is (−1− �,1 + �). Once the ends of this interval have been
fixed, we choose its neighbors to be the intervals (−1− 3�,−1− �]
and [1+�,1+3�). The procedure continues without difficulties until
the entire space is partitioned.

Let Q(·) be the operator which gives for and arbitrary x ∈ R
M

the centroid of the hyper-cube to which x belongs. It is easy to prove
that Q(x) = [q(x0) . . .q(xM−1)]

�, where

q(x j) =

{
0, |x j|< 1+ �

sgn(x j)
(

1+2�+2�
⌊ |x j|−1−�

2�

⌋)
, otherwise

for all j ∈ {0, . . . ,M− 1}. The signum function is denoted sgn(·).
We also use the notation �u� for the largest integer less than or equal
to the real-valued number u.

Now we have to evaluate the code length for the quantized values
{q(x j)}M−1

j=0 . We define η = { j : j ∈ [0,M−1],q(x j) 	= 0}, which is
called structure. Furthermore, we denote k the cardinality of η , and
we assume that 0 < k < M. Let η = { j0, . . . , jk−1},

z = [x j0 , . . . ,x jk−1 ]
�, (9)

and z̃ = [q(x j0), . . . ,q(x jk−1 )]
�. In other words, we collect in z̃ all

quantized entries of x which are non-zero. It is evident that the de-
coder will have full information on the quantized x if the encoder
transmits the structure η and the entries of z̃. Next we calculate the
code length for η and z̃, and we also compute the distortion produced
by quantizing x to Q(x). After these preparations, we give the ex-
pression of the KSF, and we show how it can be used to choose auto-
matically the value of μKSF for thresholding-based cepstral analysis.
Kolmogorov structure function
Code length for η According to [7], the description length for η is
given by

Lη (�) = min

{
M,

[
ln

(
M
k

)
+ lnk + log2(1+ ln M)

]}
. (10)

We assume the decoder has a priori information on the number of
samples used in estimation, or equivalently, the decoder knows the
value of M. It is obvious how Lη depends on the value of �: if one
increases �, then is likely that k decreases. To reduce the compu-
tational burden, we apply the Stirling approximation (see equation
(6.28) in [7]) together with some simple manipulations, and we get

ln

(
M
k

)
≈ (M +

1
2
) lnM− (k +

1
2
) lnk

−(M−k +
1
2
) ln(M−k)− 1

2
ln(2π). (11)

Code length for z̃ Based on Theorem 1.1 and the definition (9), we
can write z = ζ +ε, where the entries of ζ are unknown, and the ran-
dom vector ε is sampled from a normal distribution with mean zero
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and covariance matrix equal to the identity matrix. Hence, we have
the likelihood function f (z;ζ ) = 1

(2π)k/2 exp
(− 1

2 ||z−ζ ||2), and the

maximum likelihood estimator of ζ is ζ̂ (z) = z. We also have ẑ = z.
The partition that we have defined for the x-space induces a par-

tition of the z-space, and we denote Bk(0),Bk(1), . . . its equivalence
classes. Each such equivalence class is given by the interior of a
hyper-cube. Like in [7], we conventionally assign to the centroid of
the j-th equivalence class ( j ≥ 0) the value of the integral defined

by Qk( j) =
∫

ζ̂(z)∈Bk( j)
f (z; ζ̂ (z))dz. This helps us to define for the

equivalence classes a discrete prior whose expression is given by

wk( j) =
Qk( j)

∑ j′≥0 Qk( j′)
. Because there exists a unique j∗ ≥ 0 such

that z ∈ Bk( j∗), and z̃ is the centroid of Bk( j∗), the code length for z̃
is [7]:

Lz̃(�) =− lnwk( j∗) =− ln
Qk( j∗)

Ck
, (12)

where Ck = ∑ j′≥0 Qk( j′). In general, Ck is not finite, and this poses
troubles. In Appendix, we show how such difficulties can be circum-
vented, and we also compute Qk( j∗). The following approximate
formula is obtained:

Lz̃(�)≈ k
2

ln

[ ||z̃||2/k
�2

π exp(1)

2

]
+

1
2

lnk. (13)

By definition, the magnitude of each entry of z is not smaller than
1+2�, which guarantees that Lz̃(�) is strictly positive.
Distortion We compute the distortion with the customary formula,

Dx(�) =
1
2

M−1

∑
j=0

[
x j−q(x j)

]2
. (14)

Furthermore, we use (10)-(11) and (13)-(14) to evaluate the KSF [7]:

hc(�) = Lη (�)+Lz̃(�)+Dx(�). (15)

Next, KSF is employed as an yardstick to select the optimum �∗
from a pre-defined set of possible values of �. More precisely, �∗ =
argmin� hc(�). This is equivalent to selecting for the parameter d

in (7)-(8) the optimal value d∗ =
(

M1/2�∗
)2

. Consequently, the

threshold to be applied in TV reduction is:

μKSF = 1+ �∗. (16)

3. EXPERIMENTAL RESULTS

The figure of merit for evaluating the performance of the thresholding-
based scheme defined in (4) is the ratio ρ = TV(ĉ)/TV(č). It is clear
that a large value of ρ means a significant reduction of the TV, which
will improve the estimate of the log-spectrum as we can see from
(1). Like in [3], we calculate TV(ĉ) and TV(č) by replacing in
(2)-(3) the expectation operator with an average over 1000 Monte
Carlo simulations.

For N ∈ {128,256,512,1024,2048}, we generate data accord-
ing to the same models that have been considered also in [3]: (i)
broadband moving average (MA) with a small dynamic range of the
log-spectrum yt = et +0.55et−1 +0.15et−2; (ii) broadband MA with
a medium dynamic range of the log-spectrum yt = et +0.4574et−1 +
0.2157et−2 +0.3951et−3 +0.1383et−4; (iii) narrowband autoregres-
sive moving average (ARMA) with a large dynamic range of the

log-spectrum yt = 1.55yt−1 − 0.95yt−2 + et + 0.75et−1 + 0.35et−2,
where t ∈ {0, . . . ,N− 1} and et is zero-mean white Gaussian noise
with variance one. A plot with the log-spectra of the three models
can be found in [3] at page 70.

The thresholds μUMPUT, μBIC and μKSF are computed with for-
mulas from (5), (6) and (16), respectively. The value of �∗ in (16)
is chosen from the set {0.0,0.1, . . . ,8.9,9.0} such that to minimize
the KSF in (15). For the sake of comparison, we evaluate ρ also
for the case when one knows the values of the true cepstral coeffi-
cients and selects μ ∈ {1.0,1.1, . . . ,9.9,10.0} such that to minimize
TV(č). The outcome of this procedure is named μgenie because we
have assumed knowledge of the ground truth. Remark that, for a
given model, μKSF changes from one realization to another, whereas
μUMPUT, μBIC and μgenie are the same for all realizations.

The results of the experiments are displayed in Fig. 1. For
clarity of plots we do not include the values of ρ obtained with
the EbayesThresh method [8] because it was already shown in
[3] that thresholding with (4) when μ = μUMPUT is better than
EbayesThresh. In Fig. 1(a) , the performance obtained with μBIC is
modest, whereas both μUMPUT and μKSF perform as well as μgenie.
We can notice from Fig. 1(b) that, in the case of the second model,
all methods for threshold selection lead to very similar results. In
Fig. 1(c), the ratio ρ obtained with μBIC almost coincides in all
points with that obtained with μgenie. The ρ-curve corresponding
to μUMPUT is slightly inferior to that of μBIC. The performance of
μKSF is in between those of μUMPUT and μBIC. Remark also how
the maximum value of ρ varies from one model to another: is about
500 in Fig. 1(a), becomes about 50 in Fig. 1(b), and is as small as 7
in Fig. 1(c).

4. CONCLUSION

In this paper, we focused on a thresholding-based method for TV-
reduction. The main contribution was to show how the KSF can
be used for selecting the threshold μ . In the framework of cepstral
analysis, we compared the newly proposed method with other two
schemes that are considered state-of-the-art: the first one chooses μ
with a carefully designed UMPUT, while the second one relies on
BIC for the selection of μ . It was shown experimentally that it is
better to use KSF than BIC. Even if KSF and UMPUT have sim-
ilar performance, it is more advantageous to apply the KSF-based
scheme because is fully automatic, whereas UMPUT requires a pri-
ori information on the type of the observed signal. Let us also note
that KSF can be applied to any TV-reduction problem for which ex-
ists a theoretical result similar with Theorem 1.1.

APPENDIX

To evaluate Ck , we apply a method that was originally pro-
posed in [9], and further used in [7, 10, 11]. We note that Ck =∫

f (z; ζ̂ (z))dz, where the domain of integration is the whole region

of R
k in which z can lie. Because the domain is not upper bounded,

the integral is not finite. To solve the problem, we restrict the do-
main of integration to Z (R) = {z : ||ẑ||2 ≤ kR}, where R > 0 is a

hyper-parameter, and we evaluate Ck(R) =
∫
Z (R)

f (z; ζ̂ (z))dz =

∫
Z (R)

1

(2π)k/2
dz =

[(kR)/2]k/2

Γ(k/2+1)
, where Γ(·) is the Euler inte-

gral of the second kind. In the calculations above, we applied
the formula for the volume of the sphere in the k-dimensional
Euclidean space. More importantly, we have from the obtained
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identity that limR→∞Ck(R) = ∞, which makes necessary to con-
sider a second step in the computation of Ck, as it was suggested
by Rissanen. Remark also that the code length given by (12) in-
creases when R becomes bigger. Hence, we choose R to be the
smallest possible value allowed by the definition of Z (R), which

leads to R̂ = ||ẑ||2/k and Ck(R̂) =
(||ẑ||2/2)k/2

Γ(k/2+1) . Then we define

Z (R1,R2) = {z : kR1 ≤ ||ẑ||2 ≤ kR2}, where R1 < R2 are strictly
positive hyper-parameters, and we integrate again:

Ck(R1,R2)

=
∫
Z (R1,R2)

f (z; ζ̂ (z))
Ck(R̂)

dz =
∫
Z (R1,R2)

1/(2π)k/2

(||z||2/2)k/2

Γ(k/2+1)

dz (17)

=
Γ(k/2+1)

πk/2

∫ kR2

kR1

1

rk/2

πk/2

Γ(k/2+1)

k
2

rk/2−1dr (18)

=
k
2

∫ kR2

kR1

1
r

dr =
k
2

ln
R2

R1
. (19)

All the calculations above are straightforward except (17), where

we take ||z||2 = r such that the volume is V = πk/2

Γ(k/2+1)
rk/2 and

the volume element is dV = πk/2

Γ(k/2+1)
k
2 rk/2−1dr. Then we get (18)

without difficulties. By collecting the previous results, we have

Ck = Ck(R)Ck(R1,R2) = (||ẑ||2/2)k/2

Γ(k/2)
ln R2

R1
, which implies

lnCk =
k
2

ln ||ẑ||2− k
2

ln2− ln Γ

(
k
2

)
+ ln ln

R2

R1
(20)

≈ k
2

ln
||ẑ||2

k
+

1
2

lnk +
k
2

+ct, (21)

where ct = ln ln(R2/R1)− 1/2ln(4π). Note that (21) was derived
from (20) by applying the Stirling approximation for lnΓ(k/2). Ad-
ditionally, R1 and R2 are nuisance parameters, but for our prob-
lem it might be natural to take R1 = (1 + �)2. Unfortunately this
choice leads to numerical difficulties when one wants to compute
lnln(1/R1) because R1 > 1. On contrary, ln ln(R2/R1) is well de-
fined because we assume 0 < R1 < R2. Moreover, for � small, the
value of ||z||2/k is about the same for all z ∈ Bk( j∗), which allows
us to replace ||ẑ||2/k by ||z̃||2/k in (21). So,

lnCk ≈
k
2

ln
||z̃||2

k
+

1
2

lnk +
k
2
. (22)

Because in the k-dimensional space Bk( j∗) is a hyper-cube with side

length 2�, we readily obtain: Qk( j∗) =

∫
ζ̂(z)∈Bk( j∗)

f (z; ζ̂ (z))dz =

1

(2π)k/2

∫
z∈Bk( j∗)

dz =

(
2�2

π

)k/2

. This identity together with (12)

and (22) lead to (13).
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