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Abstract

This paper proves the monotonicity of the sequenceCn/
√

n, whereCn denotes the normalization coefficient in the univer
Normalized Maximum Likelihood (NML) model for the Bernoulli class. The main result is used to find a non-asym
estimation of logCn.
 2003 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Combinatorial problems; Monotonicity; Bounds; Non-asymptotic estimation

1. Introduction

The universal NML model [1–3] for the Bernoulli class{P(xn; θ) = θn0(1− θ)n−n0: θ ∈ (0,1)} is

P̂ (xn)

=
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)n0
(
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n

)n−n0
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m

)(
m
n

)m(n−m
n

)n−m
, (1)

where the entries of the observed sequencexn = (x1, x2, . . . , xn) are independently generated as outcomes
Bernoulli process with parameterθ = Pr(0), andn0 denotes the number of 0’s in the stringxn. It solves Shtarkov’s
minimax problem [3]

min
q

max
xn

log
P(xn; (θ̂(xn))

q(xn)
,

whereq ranges over the set of all nonsingular distributions andθ̂ (xn) is the maximum likelihood estimate o
parameterθ . It is proven in [4] that the NML distribution solves also the problem

inf
q

sup
g

Eg log
P(xn; θ̂ (xn))

q(xn)
,
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whereq andg range over all nonsingular distributions. The importance of the normalization coefficient, defined
by
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was emphasized in [4] by showing that logCn is the amount of information in the data which can be lear
with the agreed model class. The problem studied in this paper is the monotonicity of the sequenc
by Cn√

n
, and the main result is used to find a non-asymptotic estimation of the normalization coefficieCn.

An asymptotic approximation is deduced in [5] logCn = 1
2 log n3

n0(n−n0)
− log

√
2π + O(1/n), and another on

logCn = log
√

πn
2 + o(1) in [2].

2. Main results

The main result of this note is to show thatCn√
n
, n � 1, is a monotone decreasing sequence.

Lemma 1. The sequence an

= n!en

nn
√

n
, n � 1, is monotone decreasing.

This property of the sequence(an)n�1 is sometimes included in the demonstration for Stirling’s approxima
The complete proof can be found in [6].

Lemma 2. The sequence bn

= 1

en

∑n
k=0

nk

k! , n � 1, is monotone decreasing.

The proof is deferred to Appendix A.

Theorem 3. The sequence Cn√
n
, n � 1, is monotone decreasing.

Proof. We use the identityCn = n!
nn

∑n
k=0

nk

k! , which was proven in [7]. It follows that
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√
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× 1

en
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and the monotonicity property results from Lemmas 1 and 2.✷
2.1. Relation to prior work

The expression forCn plays an important role in coding theory, average case analysis of algori
combinatorics, which is the reason for the interest in its properties. We briefly review in this section some re
asymptotic expansion ofCn. In general, these results have been obtained by applying non-elementary tech
while the proof of Theorem 3 is elementary. The monotonicity property of the sequence with the general ter
by Cn√

n
is seen to not be a direct consequence of the previously known bounds and asymptotic expansions
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We note the relationship of the sum ofCn to a famous conjecture of Ramanujan, namely, that ifn is a positive

integer then1en =∑n−1 ni + nn

τ (n), whereτ (n) lies between 1/2 and 1/3. There are different proofs of this

s
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is a monotone decreasing function from 1/2 to 1/3, whenn increases from 1 to+∞ [8]. The result of Ramanujan’
conjecture is used in [9] to prove that√
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whereα = (e1/12 − 1)
√

π
2 . Moreover, in [9] an asymptotic expansion forCn is conjectured and the followin

enhanced version of this conjecture is proved in [10]:
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By applying the definition offn (3) we can write

Cn√
n

=
[

1√
n

+ 1

2

n!en

nn
√

n

]
− fn√

n
, (4)

which is the difference of two monotone decreasing sequences, but this does not prove the monotonici
sequenceCn√

n
. After some elementary calculations, we can rewrite (3) asbn = 1

2 + nn

n!en [1−fn]. Since the sequenc

with the general term given byn
n

n!en is monotone decreasing, while the sequence 1− fn is positive and monoton
increasing, the equation does not prove the monotonicity of the sequencebn.

We show how the result of Theorem 3 can be used to find bounds for logCn.

Corollary 4. For any n � 1, logCn satisfies

log

√
πn

2
< logCn � log2

√
n.

Proof. Theorem 3 implies thatCn√
n

� C1√
1

= 2 for anyn � 1. Now the upper bound for logCn results from the

observation logCn � log2
√

n. Since the monotone decreasing sequenceCn√
n
, n � 1, is positive limn→∞ Cn√

n
is

finite and nonnegative. The identity (4) implies limn→∞ Cn√
n

= 1
2 limn→∞ an. The lower bound results from th

limit of the sequence in Lemma 1 limn→∞ an = √
2π , [6]. ✷

For n greater than any fixed positive integerN , the upper bound can be sharpened as logCN√
N

√
n. Also, since

log Cn√
n

= logCn − 1
2 logn, we see that the distance from logCn to the usual approximation12 logn decreases

monotonely inn.

Appendix A. Proof of Lemma 2

Consider the difference
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With the notation

T (r) =
(
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1

s!

)
+ 1

(n − r)! − e, r ∈ {0,1, . . . , n},

we see that forr = n, T (n) = 2− e< 0. For e we have from [6], for anyr ∈ {0,1, . . . , n − 1}, the identity

e= 1+ 1
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Since the constantτ (n− r) is upper bounded by 1 we get the inequalityT (r) > 0 for r ∈ {0,1, . . . , n−1}. Observe
that the sequencen

r
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t=n+2

= −n + 1

en+1

nn−1

(n − 1)!
∞∑

t=n+2

1

t ! < 0. (A.1)

This inequality concludes the proof of the monotone decreasing property of the sequence(bn)n�1. Note that in
(A.1) the sum
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