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ABSTRACT
During recent years the advances in stochastic complexity (SC) have
led to new exact formulae or to sharper approximations for large
classes of models. We focus on the use of the SC to estimate the
structure for the model of sine-waves in Gaussian autoregressive
noise. Since the evaluation of SC relies on the determinant of the
Fisher information matrix (FIM), the computation of FIM is revis-
ited. It is shown for small and moderate sample sizes that SC com-
pares favorably with other well-known criteria such as: BIC, KICc
and GAIC.

Index Terms— Minimum Description Length principle, sinu-
soidal regression, autoregressive processes, structure selection, Fisher
information matrix.

1. INTRODUCTION AND PRELIMINARIES

We address the estimation of the number of sinusoidals observed in
additive noise with unknown correlation structure. To formulate the
problem, we consider the data model

yt = xt + et, t ∈ {0, . . . , N − 1},

xt =
K�

k=1

αk cos(ωkt+ φk), (1)

where yt denotes the measurements, xt is the noise-free signal and
et is the colored Gaussian noise.

To ensure the identi ability of the parameters, we assume as
usual that the amplitudes αk are strict positive and the frequencies
ωk belong to the interval (0, π). The frequencies are distinct and,
without loss of generality, ω1 < · · · < ωK . Both the amplitudes and
the frequencies are non-random parameters that will be estimated
from the available measurements.

Two different hypotheses will be considered for modeling the
phases φk ∈ [−π, π): Hdp - the phases are unknown deterministic
constants; Hrp - the phases are independent and uniformly distrib-
uted random variables that are also independent of et. For both as-
sumptions, the statistical properties of yt have been investigated in
previous studies, and more details can be found, for example, in [1].

In line with the approach from [1][2][3] and the references therein,
we model the noise et as a stable autoregressive (AR) process with
orderM :

et = −
M�

m=1

amet−m + wt, (2)
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where wt is a sequence of independent and identically distributed
Gaussian random variables with zero mean and variance τ . Since
we consider only the case of real sinusoidals in real AR noise, we
emphasize that the white random processwt and the coef cients am,
1 ≤ m ≤M , are real-valued.

Recall the de nition of the local SNR for the k-th sinusoid,

SNRk =
α2

k/2

τ/|A(ωk)|2 , whereA(ωk) = 1+
�M

m=1 am exp(−jmωk)

and j =
√−1 [4].

Based on (1) and (2), we note that the parameters of the model
are τ and θ = (ξ, a), where ξ = (ξ1, . . . , ξK) with the conven-
tion ξk = (αk, ωk, φk) for the k-th sine-wave. The notation a is
employed for the set of the AR coef cients (a1, . . . , aM ).

Because the model structure γ = (K,M) is not known a pri-
ori, we resort to the traditional model selection procedure that com-
prises two steps: (a) for all pairs of integers γ = (K,M) that satisfy
0 ≤ K ≤ Kmax and 0 ≤M ≤Mmax, estimate the model parame-
ters θ̂γ from the observations yN = y0, . . . , yN−1 ; (b) evaluate an
information theoretic criterion for all γs considered at the rst step,
and choose the model structure γ̂ that minimizes the criterion.

The most popular information theoretic rules for order selection
can be reduced to a common form with two terms, where the rst one
is given by the minus maximum log-likelihood. The second term is
a penalty coef cient that depends on the number of parameters of
the model and, for some criteria, also on the sample size N [5]. In
general, the selection rules used in practical applications are derived
for N → ∞, and the asymptotic approximations could potentially
yield false conclusions when the sample size is small or moderate.

During recent years, the advances in stochastic complexity (SC)
have led to new exact formulae or to sharper approximations for
large classes of models [6][7][8], but the use of the new results in
signal processing is scarce. We illustrate next how SC can be applied
to estimate the structure for the model of sine-waves in Gaussian AR
noise.

The rest of the paper is organized as follows. Section 2 is fo-
cused on the SC formula for sinusoids in AR noise. Because the
evaluation of SC relies on the determinant of the Fisher informa-
tion matrix (FIM), the computation of FIM is revisited in Section 3.
SC and three other well-known criteria are compared in Section 4
to evaluate their performances in estimating the number of sinusoids
from simulated data.

2. SC FOR SINE-WAVES IN AR NOISE

Under mild assumptions on the maximum likelihood (ML) estimates
θ̂ = θ̂(yN ) and τ̂ = τ̂(yN ), we can use the expression of SC given
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in [6]. We employ the notation f(yN ; θ, τ) for the likelihood func-
tion of yN , thus ln f(yN ; θ̂, τ̂) is the maximum log-likelihood. Θ

denotes the parameter space and JN (θ) = E
�
− ∂2 ln f(yN ;θ,τ)

∂θ∂θ�

�
is

the Fisher information matrix (FIM).
It is well-known that the SC derivation is grounded in informa-

tion theory. The predictive approach treats the white noise variance
τ as a nuisance parameter in the sense that the code length to de-
scribe it is not included in the SC formula. In our application, we
noticed that considering the cost for transmitting τ in the evaluation
of the code length has a small in uence on the estimation results,
and for brevity we discuss in this study only the predictive approach.

To apply the SC formula from [6] we have to compute the term

ln

�
Θ

|JN (θ)|1/2dθ for which it is dif cult to nd a closed-form

expression. For the simpler AR case, the integral was evaluated with
Monte Carlo techniques in [9]. In our application, a supplementary
dif culty is due to the amplitudes αk, for which the domain does
not have an upper bound. This makes us to prefer the SC formula
derived in [8]:

SC(yN ;K,M) = − ln f(yN ; θ̂, τ̂) + ln |JN (θ̂)|1/2

+

3K+M�
i=1

ln(|θ̂i|+N−1/4) (3)

We check in Appendix how the conditions for the derivations from
[8] are ful lled for the model of sinusoids in Gaussian AR noise. In
Appendix we also give more details on the accuracy of the approxi-
mation in formula (3).

To gain more insight, we brie y analyze what SC formula (3)
becomes for N → ∞. Based on the results from the Appendix, we
get the well-known asymptotic identity limN→∞ ln |JN (θ̂)|1/2 =
5K+M

2
lnN , and it is easy to notice that the sum of the rst two

terms in SC is equivalent with the Bayesian information criterion
(BIC):

BIC(yN ;K,M) = − ln f(yN ; θ̂, τ̂) +
5K +M

2
lnN. (4)

More details on the derivation of BIC can be found in [5] and the ref-
erences therein. The formula (4) was also obtained in [2] as a crude
version of the Minimum Description Length criterion. In [10], the
use of the maximum a posteriori probability methodology in con-
junction with asymptotic approximations led also to (4) for the par-
ticular case of white noise.

We focus on the last term in (3), and for simplicity we assume
M = 0 (white noise). The two-step encoding procedure adopted
in [8] employs rst a uniform quantization of Θ that is performed
with the same precision for all the parameters. The term N−1/4 in
(3) is due to the option from [8] to select this precision based on the
minimum eigenvalue of FIM. If zero does not belong to the domain
of the parameter θi, then θ̂i �= 0 and ln(|θ̂i| + N−1/4) is much
smaller than 1

2
lnN [8]. Hence the term ln(|θ̂i|+N−1/4) becomes

important only when θ̂i = 0. Since among the ξ parameters only
the phases can be equal to zero, asymptotically the penalty term in
SC formula takes values between 9K

4
lnN and 5K

2
lnN . Based on

this observation, it is easy to show that the necessary conditions for
consistency from [11] are veri ed.

3. COMPUTATIONAL ISSUES

The use of (3) is very appealing from computational viewpoint, but
it was already pointed out in [8] that (3) is not invariant under re-

SC Hypothesis JN (ξ) JN (g)
SCp Hrp exact exact
SCa Hrp/Hdp asymptotic asymptotic
SCe Hdp exact exact

Table 1. Nomenclature for SC when various formulae for FIM are
used in calculations.

parametrization. Due to this reason, we prefer to use as parameters
for the AR noise the magnitudes and angles of the poles instead of
the coef cients.

More precisely, let us assume that the poles of the AR noise are
g1, . . . , gM : if the poles g1, . . . , gM1 are real-valued, then the pure
complex poles gM1+1, . . . , gM occur in complex conjugate pairs be-
cause the coef cients a are real-valued. Instead of θ = (ξ, a), we
will apply the parametrization η = (ξ, g), where
g = (g1, . . . , gM1 , |gM1+1|, ψgM1+1 , . . . , |gM−1)|, ψgM−1) and for
a complex pole gi, the symbol ψgi denotes its angle. Remark the
range of the entries of g: we have gi ∈ (−1, 1) for 1 ≤ i ≤ M1,
and for the rest of the parameters |gi| ∈ (0, 1) and ψgi ∈ (0, π).

In [1], it is proven that |JN (η)| can be factorized as |JN (ξ)| ×
|JN (g)|, where the block JN (ξ) corresponds to the signal parame-
ters, and the block JN (g) corresponds to the noise parameters. The
reference [1] gives also fast algorithms for the evaluation of JN (ξ).
JN (g) has the same expression as in the pure AR case, and for its
calculation we resort to the exact and asymptotic formulae from [12].
We note that the formulae are given for the a parameters and their
change to g parameters is straightforward [13].

Applying the exact or asymptotic formulae for JN (ξ) and JN (g)
leads to various expressions for SC. In Table 1, we explain the nomen-
clature for SC when FIM in (3) is evaluated with various formulae.

4. EXPERIMENTAL RESULTS

In all the examples presented next, we resort to the RELAX algo-
rithm that performs a decoupled parameter estimation for the sinu-
soids and the AR noise [3]. In our simulations we have used for
the implementation of RELAX Matlab functions that are publicly
available at http://www.uni-kassel.de/fb16/hfk/neu/toolbox.

Asymptotically both RELAX and ML yield statistically ef cient
estimates, and the use of RELAX is recommended due to its lower
computational burden [3][4].

For γ = (K,M), let ξ̂k be the parameters of the k-th sinusoid
estimated with RELAX. We denote êt = yt −�K

k=1 α̂k cos(ω̂kt+

φ̂k), and let â be the coef cients of the AR noise determined from
the sequence ê0, . . . , êN−1. We further de ne the residual sum of

squares as RSSγ =
�N−1

t=0

�
êt +

�M
m=1 âmêt−m

�2
, with the con-

vention that êt = 0 for t < 0.
In SC formula (3) and the BIC formula (4), − ln f(yN ; θ̂, τ̂) is

evaluated as N
2

ln RSSγ after discarding the terms that do not de-
pend on γ. The performances of SC and BIC are compared in our
simulations with two other criteria: KICc and GAIC. KICc was de-
rived in [14] as a unbiased Kullback Information Criterion for linear
regression models with i.i.d Gaussian noise. Since then its applica-
tion was extended also to other classes of models, see for example
[15] and the references therein. GAIC is a generalized Akaike Infor-
mation Criterion that was traditionally used in conjunction with the
RELAX algorithm [3].
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Example 1 (K = 2) Example 2 (K = 2)
SNR2=-3.00 dB SNR2=1.00 dB

N 30 40 50 60 70 80 90 100 N 30 40 50 60 70 80 90 100
SCp 37 69 76 85 98 98 98 95 SCp 36 52 73 73 76 85 85 94
SCa 36 68 73 84 95 95 97 95 SCa 34 45 71 68 75 84 85 94
SCe 31 62 64 77 89 85 90 84 SCe 27 28 68 73 74 85 85 94
BIC 33 50 58 66 83 90 93 96 BIC 6 28 67 67 78 89 89 97
KICc 61 74 77 48 52 51 37 40 KICc 21 23 35 36 32 39 35 44
GAIC 3 1 19 23 44 62 68 80 GAIC 6 8 32 43 61 74 84 97

SNR2=-1.00 dB SNR2=3.00 dB
N 30 35 40 45 50 60 80 100 N 30 35 40 45 50 60 80 100
SCp 72 86 91 95 97 98 99 99 SCp 57 54 74 83 94 89 95 96
SCa 72 83 84 90 91 98 97 98 SCa 56 52 63 75 90 89 94 96
SCe 58 64 76 77 77 86 89 92 SCe 48 42 17 29 87 85 94 96
BIC 50 65 72 81 82 89 97 99 BIC 31 32 44 59 84 84 97 98
KICc 83 89 81 79 74 74 48 44 KICc 38 39 30 38 54 35 44 43
GAIC 5 23 32 48 61 75 88 100 GAIC 11 7 15 21 51 66 96 98

SNR2=0.00 dB SNR2=5.00 dB
N 25 30 35 40 45 50 75 100 N 25 30 35 40 45 50 75 100
SCp 78 82 90 93 96 98 98 97 SCp 49 63 72 76 88 88 93 98
SCa 70 80 78 85 84 90 95 97 SCa 47 62 68 61 74 87 92 98
SCe 56 67 72 74 75 73 87 89 SCe 38 54 45 14 15 83 93 98
BIC 52 54 70 75 87 88 93 100 BIC 23 25 51 47 81 83 98 100
KICc 79 81 91 87 81 76 55 33 KICc 38 32 44 30 42 50 49 43
GAIC 10 24 36 46 65 79 98 100 GAIC 13 18 27 31 62 77 100 100

Example 3 (K = 2) Example 4 (K = 3)
SNR1=1.00 dB SNR1=-5.00 dB

N 30 40 50 60 70 80 90 100 N 30 40 50 60 70 80 90 100
SCp 74 74 88 89 80 79 81 91 SCp 21 75 76 71 76 76 85 85
SCa 71 65 81 85 77 77 81 87 SCa 21 75 77 71 77 76 85 84
SCe 64 69 80 89 80 79 80 91 SCe 35 66 72 68 72 76 84 83
BIC 42 56 70 77 73 73 72 82 BIC 19 60 72 67 73 67 79 76
KICc 60 68 70 61 58 51 48 51 KICc 52 68 61 56 56 47 53 39
GAIC 13 41 63 68 74 71 72 80 GAIC 0 7 25 44 65 62 72 71

SNR1=3.00 SNR1=-3.00 dB
N 30 35 40 45 50 60 80 100 N 30 40 50 60 70 80 90 100
SCp 84 89 93 82 88 87 85 82 SCp 35 85 82 91 88 90 96 90
SCa 74 82 85 74 85 88 82 80 SCa 35 86 82 91 88 89 96 88
SCe 72 77 81 76 85 86 85 82 SCe 52 78 75 85 84 85 93 86
BIC 49 64 77 68 77 82 79 87 BIC 27 80 77 83 84 83 92 90
KICc 74 79 83 72 71 69 59 40 KICc 69 84 71 71 58 56 55 48
GAIC 49 52 74 78 83 86 80 91 GAIC 0 29 57 61 72 65 80 82

SNR1=5.00 dB SNR1=-1.00 dB
N 25 30 35 40 45 50 75 100 N 30 35 40 45 50 60 80 100
SCp 90 93 90 91 97 95 90 90 SCp 41 85 93 89 93 93 94 86
SCa 85 87 84 77 81 92 86 90 SCa 40 85 92 89 91 91 90 82
SCe 79 78 74 83 90 93 88 88 SCe 50 65 86 71 79 82 86 85
BIC 52 60 67 77 86 84 87 94 BIC 33 75 89 86 87 90 96 96
KICc 89 93 84 80 88 80 58 41 KICc 72 82 90 77 76 78 62 45
GAIC 51 82 88 89 96 94 94 95 GAIC 3 31 50 65 76 76 93 99

Table 2. The counts indicate for 100 runs the number of times the number of sinusoids was correctly estimated by each criterion. The best
result for each sample size N is represented with bold font.

In our settings, the maximum number of sinusoids isKmax = 8,
and the maximum order of the AR process depends on the number
of the available measurements: Mmax =

�
ln2N

�−1. The formula
for Mmax is derived from the condition used in [2] to ensure the
consistency of the BIC criterion. Supplementarily, each pair (K,M)
must verify the inequality 3K +M < N − 2 to be a candidate for
the model structure.

Examples 1-3 are taken from [2], where the estimation results
are reported only for N ≥ 128. Since our main interest is on small
and moderate sample sizes, we evaluate the performances of the in-
formation theoretic criteria for N ∈ {25, . . . , 100} and various lev-
els of the local SNR. In Examples 1-3, we considerK = 2 sinusoids
whose parameters are ξ1 = (21/2, 1, 0) and ξ2 = (2−1/2, 2, 0). The
additive noise is generated as follows:
Example 1: et = εt (white noise),
Example 2: et = −0.81et−2 + εt (autoregressive noise),
Example 3: et = εt + 1.6εt−1 + 0.64εt−2 (moving average noise),
where εt is a sequence of i.i.d Gaussian random variables with zero
mean and variance σ2, which is chosen such that the local SNR’s
take the desired values.
Example 4 is taken from [3] and modi ed such that the observa-

tions yN are real-valued. The number of sinusoids is K = 3 and
their parameters are ξ1 = (2, 0.10π, 0), ξ2 = (2, 0.80π, 0) and
ξ3 = (2, 0.84π, 0). The noise is simulated by the autoregressive
process et = 0.85et−1 +εt, where the signi cance of εt is the same
as above.

We focus on the capabilities of the tested criteria to estimate
correctly the number of sinusoids K. For the Examples 1-4, we

count the number of correct estimates for 100 runs when the local
SNR’s and the sample size N take various values. The results are
reported in Table 2.

Remark that SCp is the best among the SC formulae and its per-
formances are closely followed by SCa. For both SCp and SCa, FIM
of the sinusoidal components are decoupled [1], which is a serious
computational advantage. From the results reported in [1], we can
draw the conclusion that the shape of the noise spectrum has more
in uence on SCp than on SCa, and this explains the superiority of
the SCp criterion. The performances of SCe are very modest because
FIM used in SCe can be ill-conditioned for small and moderate sam-
ple size when the number of sinusoids is two or larger [1].

When the sample size N is smaller than 80, SCa is superior to
BIC and GAIC. This is a straightforward consequence of the asymp-
totic approximations applied in the derivations of the BIC and GAIC
criteria. KICc estimates for the number of sinusoids are remarkably
correct whenN ≤ 40, but the number of correct estimations yield by
KICc declines when N increases such that for N ≥ 80 the reported
results are very modest.

We extend our analysis by counting the Type I and Type II errors.
Let fk = ωk/(2π) and similarly f̂k = ω̂k/(2π). SinceK and K̂ are
not necessarily equal, we take K = min(K, K̂). We select the in-
dices {i1, . . . , iK} ⊆ {1, . . . ,K} and {j1, . . . , jK} ⊆ {1, . . . , K̂}
such that |fi1 − f̂j1 |, . . . , |fiK − f̂jK | are the smallest entries of the
set {|fi−f̂j | : 1 ≤ i ≤ K, 1 ≤ j ≤ K̂}. For each k ∈ {1, . . . ,K},
f̂jk is deemed to be the estimate for fik . As usual, a Type I error is
counted in connection with the frequency fk if none of the estimated
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frequencies are assigned to fk, and a Type II error is counted when-
ever K̂ > K. We compute also the mean-squared errors (MSE) for
the frequency estimates.

For brevity, we report in Table 3 the Type I and Type II errors
together with the MSE only for the experiments conducted in Exam-
ple 2 when SNR2=3.00 dB. In our comparisons, we consider SCp
and the asymptotic criteria BIC and GAIC.

We note that only GAIC has dif culties in recovering the rst
harmonic whenN < 50, and recovering the second harmonic whose
local SNR is smaller posses problems to all the criteria. Remark for
SCp that the number of Type I errors connected with f2 decreases
very fast with the increase of the sample size. For GAIC, the num-
ber of Type II errors is always small, but many Type I errors occur
even forN = 60. This is a clear sign that, for smallN , GAIC under-
estimates the number of sinusoids. The computed MSE is almost the
same for all the investigated criteria and this is natural because the
evaluation of SCp, BIC and GAIC is based on the estimates provided
by the RELAX algorithm.
Conclusion The use of approximations for SC that are sharper than
BIC improves the estimation results for small and moderate sample
size. The results encourage us to extend the application of SC to
other classes of models like 1-D damped harmonics in colored noise,
or 2-D sinusoids in white noise.

Appendix:On the derivation of SC formula (3)
To check the conditions for the applicability of the SC formula of
Qian and Künsch in the particular case of the model given by the
equations (1) and (2), we resort to a closed-form expression of JN (θ)
that was derived for large sample size [4]. When N is large, un-
der both Hdp and Hrp, JN (θ) is block-diagonal such that the block

JN (ξk) corresponds to the parameters of the k-th sine-wave and
the block JN (a) corresponds to the parameters of the AR noise [1].
More precisely, we have JN (ξk) = QNG(ξk, a)QN , where QN =

diag(N1/2N3/2N1/2) and G(ξk, a) = SNRk

�
1/α2

k 0 0
0 1/3 1/2
0 1/2 1

�
.

Here SNRk denotes the local SNR for the k-th sinusoidal compo-
nent. The entries of JN (a) are not in uenced by the parameters
ξ, hence JN (a) is the same as in the pure AR case. Based on re-
sults from [12] we can write JN (a) = N

τ
R(a), where R(a) is the

M ×M covariance matrix of the AR process de ned in (2).
After these preliminaries, we outline the conditions as they are

given in [8]: (C1) JN (θ) is positive de nite; (C2) The minimum
eigenvalue of JN (θ) is of order O(N) as N →∞;
(C3) |JN (θ1)|−1||JN (θ1)|−|JN (θ2)|| ≤ c||θ1−θ2||, ∀θ1, θ2 ∈ Θ,
where c is a nite constant; (C4) ln |JN (θ)| = o(N).

It is easy to check that all the eigenvalues of JN (ξk) are strict
positive. The covariance matrix R(a) is positive de nite for anyM ,
therefore JN (a) is also positive de nite, and the condition C1 is ver-
i ed. Two of the eigenvalues of JN (ξk) are O(N) and the third one
is O(N3). As each eigenvalue of JN (a) is O(N), we conclude that
C2 is satis ed. A longer discussion is necessary for C3, but we only
remark here that |JN (θ)| = N5K+M |R(a)|

τM

�K
k=1 |G(ξk, a)| ∀θ,

thus the left-hand-side term in the inequality C3 is nite and does
not depend onN . Using the expression above for |JN (θ)|, we read-
ily obtain limN→∞

ln |JN (θ)|
N

= 0, thus C4 is veri ed.
We can apply next the SC formula from [8]. For simplicity we

ignore the terms that do not depend onN , and the formula becomes:
− log f(yN ; θ̂, τ̂) + log |J̃N (θ̂, yN )|1/2

+
�3K+M

i=1 log(|θ̂i|+N−1/4)+
�3K+M

i=1 r∗(N1/4|θ̂i|+1)+O(N−1/4),

where log(·) is the logarithm base 2, θ̂ denotes the ML estimates, and

J̃N (θ̂, yN ) = − ∂2 ln f(yN ;θ,τ)

∂θ∂θ� |θ=θ̂ is the observed FIM.

Frequency f1 : Err. I
N 30 35 40 45 50 60 80 100
SCp 2 5 5 0 0 0 0 0
BIC 3 12 15 5 0 0 0 0

GAIC 28 31 42 26 11 8 0 0
Frequency f1 : MSE

N 30 35 40 45 50 60 80 100
SCp -59.49 -59.08 -62.82 -63.87 -64.23 -66.57 -75.42 -80.15
BIC -59.78 -59.15 -62.03 -64.57 -64.02 -66.99 -75.42 -80.15

GAIC -59.07 -59.96 -62.60 -64.88 -63.58 -67.88 -75.42 -80.15
Frequency f2 : Err. I

N 30 35 40 45 50 60 80 100
SCp 29 23 12 4 1 0 0 0
BIC 28 29 28 23 4 6 0 0

GAIC 86 82 79 75 48 32 2 0
Frequency f2 : MSE

N 30 35 40 45 50 60 80 100
SCp -50.29 -52.24 -56.82 -55.97 -57.89 -60.81 -63.64 -67.16
BIC -50.67 -39.02 -57.57 -57.70 -57.82 -41.61 -63.56 -67.16

GAIC -51.31 -50.60 -58.75 -57.40 -57.28 -40.22 -63.96 -67.16
Err. II

N 30 35 40 45 50 60 80 100
SCp 14 23 14 13 5 11 5 4
BIC 41 39 28 18 12 10 3 2

GAIC 3 11 6 4 1 2 2 2

Table 3. Type I and Type II errors for Example 2 when SNR2=3.00
dB. MSE is computed for the estimates of the frequencies and it is
expressed in dB. The results are reported for 100 runs.

For any x > 0, r∗(x) = log(log x) + log(log(log x)) + · · · ,
where the sum continues as long as the iterated logarithms are strict
positive.

The approximative formula (3) is obtained from the expression
above after replacing J̃N (θ̂, yN ) with JN (θ̂), discarding an
O ((3K +M) log logN) term, and changing log(·) to ln(·).

It is recommended in [8] to consider in the SC expression also
the term given by the number of parameters divided by two and mul-
tiplied by log ρ, where ρ is the largest eigenvalue of
JN (θ̂)−1/2J̃N (θ̂, yN )JN (θ̂)−1/2. It can be readily veri ed that un-
der mild conditions ρ does not depend on N , hence we ignore the
log ρ term in (3).
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