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ABSTRACT

The problem we address in this study is to decide, based on the
available measurements, if a particular gene exhibits a periodic
behavior. To this end we propose a principled method relying on
the Stochastic Complexity (SC) whose computation is discussed
for the generalized Gaussian distribution. We also investigate the
relationship between SC, the well-known Minimum Description
Length (MDL) formula, and the Bayesian Information Criterion
(BIC). The performances of the SC-based approach are com-
pared for simulated and real data with methods that are widely
accepted in the bioinformatics community.

1. INTRODUCTION

The majority of the methods applied to investigate the periodic-
ity of gene expression data either assume the frequency to be a
priori known, or resort to finding the peaks of the periodogram.
In [1], after identifying the peak of the periodogram computed
from the time series available for a particular gene, its statistical
significance is evaluated with the Fisher g-test. The final deci-
sion on the periodicity of the analyzed gene involves also the
g-statistics of all other genes measured during the same exper-
iment. It is important to mention that the expressions of thou-
sands of genes are simultaneously measured, and only a very
small subset of them are periodically expressed. The reference
[2] proposes the use of the same test in conjunction with a ro-
bust spectral estimator that utilizes in the correlogram formula
the correlations of the sample ranks instead of the usual esti-
mates for the autocorellations. For simplicity, we will refer to
the method from [1] as the Fisher Test (FT), and to the one from
[2] as the Robust Method (RM). Remark that in TF and RM,
drawing a conclusion on the cyclicity of a gene involves nec-
essarily the measurements recorded for other genes during the
same experiment.

In some of the previous studies, model-based methods have
been applied for the detection of periodicity in gene expression
data. For example, [3] relies on a linear combination of cubic
B-spline basis to model the measurements. The shape of the
function that describes the model is estimated from a training
data set and further employed to analyze genes whose periodicity
is not a priori known.

Since the training step prevents the use of such methods for
poorly characterized organisms, a learning-free approach based
on the Bayesian Information Criterion (BIC) was introduced in
[4]. The derivation of the detection algorithm from [4] is done
under the Gaussian hypothesis.

For gene expression data, it is of special interest to investi-
gate the case when the distribution function of the noise has tails
heavier than the Gaussian distribution with the same variance
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[2]. In this study, we propose a new method for the detection of
the periodic signals in generalized Gaussian distribution (GGD).
Note that GGD accommodates both the Gaussian and the heavy-
tailed distributions [5]. The newly proposed method relies on
the stochastic complexity (SC) [6] to decide if a data sequence is
pure noise or periodic. For the particular Gaussian case, BIC is
an asymptotic approximation of SC. As the analyzed data have
small sample sizes, the non-asymptotic SC formula yields better
results than BIC.

The rest of the paper is organized as follows. In Section 2 we
briefly revisit the models for periodic gene expression data. Sec-
tion 3 is focused on the computation of SC. The model selection
performances of SC are evaluated in Section 4 with simulated
and real data.

2. PROBLEM FORMULATION

The problem we address here is to decide if a gene is periodically
expressed or not, based on the available measurements yN =
[yt1 . . . ytN ]�. Similarly with the approaches from [1][2][4][7],
the decision is recast as the problem of selection between the
following two models:

M0 : yt = µ + ut,
M1 : yt = µ + α cos(ωtn + φ) + ut,

(1)

where t ∈ {t1, . . . , tN}, and µ, α, ω, φ are non-random para-
meters that will be estimated from yN . The amplitude α is strict
positive, the angular frequency ω belongs to the interval (0, π),
and the phase φ ∈ [−π, π).

In line with most of the studies on the periodicity of the gene
expressions, we assume that the noise samples ut are indepen-
dent and identically distributed (i.i.d.). Hereafter the entries of
the stochastic sequence uN = [ut1 . . . utN ]� are modeled with
the GGD having zero mean, variance τ > 0, and shape parame-
ter ν > 1/2:

p(u; τ, ν) =
1

2Γ(1 + 1/ν)cν
exp

�
−
���� u

cν

����
ν�

, u ∈ R, (2)

where cν = (τΓ(1/ν)/Γ(3/ν))1/2 and Γ(·) denotes the Gamma
function [5].

GGD models a large family of symmetric distributions. For
ν = 2, GGD reduces to the Gaussian distribution, and it is easy
to verify that GGD with ν = 1 coincides with the Laplacian
distribution, whereas GGD tends to the Uniform distribution for
ν → ∞ [5]. Observe that the values of the shape parameter
smaller than two correspond to peaked distributions that have
tails heavier than the Gaussian distribution.

Assuming GGD for the additive noise ut extends the Gaussian
model from [4] and [7]. In [4], the proposed Bayesian detector
was also tested for Laplacian and Uniform noise distributions,
although it was designed under the Gaussian hypothesis.



Without loss of generality, we consider the re-parametrization
A = α cos φ, B = −α sin φ, C = µ, and (1) can be written
equivalently as

M0 : yt = C + ut,
M1 : yt = A cos ωtn + B sin ωtn + C + ut,

(3)

where t ∈ {t1, . . . , tN}. Additionally we define β = (2− ν)/ν
[8], which allows to map the domain of the shape parameter from
(1/2,∞) to (−1, 3). The notations η = [C τ β] and θ =
[A B C ω τ β] will be useful for the following discussion.

3. MODEL SELECTION WITH SC

Relying on the Minimum Description Length (MDL) principle,
we select the model that minimizes the SC of the observations
yN [6]. SC is defined as the negative logarithm of the Normal-
ized Maximum Likelihood, and it is recommended to be evalu-
ated with the sharp formula from [9], especially when the sample
size is small. The formula involves the integral of the squared
root of the determinant of Fisher information matrix (FIM) over
the parameter space. For the model selection problem (3), we do
not have a priori bounds for all the parameters, and this posses
troubles with the computation of the integral. Instead of using
arbitrary bounds, we apply the results from [10], which leads to
the following formulae

SC(yN ;M0) = − ln p(yN ; η̂ ,M0) + ln |JN (η̂ ,M0)|1/2

+

3�
i=1

ln(|η̂ i|+ N−1/4),

SC(yN ;M1) = − ln p(yN ; θ̂ ,M1) + ln |JN (θ̂ ,M1)|1/2

+
6�

i=1

ln(|θ̂ i|+ N−1/4),

where p(yN ; η̂ ,M0) is the maximum likelihood (ML) under
M0, and p(yN ; θ̂ ,M1) is the ML underM1. JN (η ,M0) is
the FIM whose expression is given by the celebrated formula

JN (η ,M0) = E
�
− ∂2 ln p(yN ;η ,M0)

∂η ∂η �

�
. The definition of

JN (θ ,M1) can be written similarly. We refer to [5] for results
on the ML regularity conditions in various regions of the shape
parameter space.

A discussion on the relationship between SC and other well-
known selection rules is deferred to the Appendix.
Computation of the FIM We briefly investigate next how
|JN (θ ,M1)| can be calculated. Since the signal parameters
(ω, A, B, C) are independent of the noise parameters (τ, β),
FIM is block diagonal and |JN (θ ,M1)| = |JN (ω, A, B, C)|×
|JN (τ, β)|. Based on the results from [11] and [12], we write

JN (ω, A, B, C) =
γβ

τ

tN�
t=t1

Gt(ω, A, B, C), where

γβ = 4
(1+β)2

Γ( 3+3β
2 )Γ( 3−β

2 )
Γ2( 1+β

2 )
, and the entries of Gt(ω, A, B, C)

are given by the equations (24)-(33) from [13]. Remark that
JN (ω, A, B, C) depends on the shape of the noise distribution
only through the factor γβ . It was proven in [11] that γβ ≥ 1 and
attains its minimum for the Gaussian distribution (β = 0). The
entries of JN (τ, β) can be easily calculated by resorting to the
equations (19), (27) and (29) from [5]. Moreover, JN (η ,M0)
can be evaluated with the equations (15) and (28) from [5].
Estimation of the unknown parameters Obtaining the ML es-
timates for the parameters of a signal in GGD noise is difficult,
especially when β ∈ (1, 3), or equivalently ν ∈ (1/2, 1) [5].
Since we do not known a priori the value of β, we have also
to estimate the shape parameter from the available data, which
makes the task even more difficult.

Input: The measurements yN , and β1, . . . , βM , a set
of non-zero values for the shape parameter.
1. Estimate ω̂ with a nonparametric method;

H←
�
�

cos ω̂t1 sin ω̂t1 1

.

.

.
. . .

.

.

.
cos ω̂tN sin ω̂tN 1

�
	;

2. Least squares (LS) estimation
x̂← 


H�H
�−1

H�yN ;
û← yN −Hx̂;
U← diag(|û|);
τ̂ ← (û�û)/N ;
θ̂ [0]← [x̂� ω̂ τ̂ 0];
p[0]← p(yN ; θ̂ [0],M1);

3. Weighted least squares (WLS) estimation
For m = 1 : M ,

Υ ← U−2βm/(1+βm);
ˆ̂x← 


H�Υ H
�−1

H�Υ yN ;
ˆ̂u← yN −Hˆ̂x;

ˆ̂τ ← Γ( 3+3βm
2 )

Γ( 1+βm
2 )

�
2
�N

n=1|ˆ̂un|2/(1+βm)

N(1+βm)

�1+βm

;

θ̂ [m]← [ˆ̂x
�

ω̂ ˆ̂τ βm];
p[m]← p(yN ; θ̂ [m],M1);

End
4. Estimation results

m∗ ← arg max0≤m≤M p[m];
θ̂ ← θ̂ [m∗];
ln p(yN ; θ̂ ,M1)← ln p(yN ; θ̂ [m∗],M1);

Figure 1. One sine-wave in noise with incompletely character-
ized GGD: algorithm for the estimation of the signal and noise
parameters.

We outline in Figure 1 the estimation algorithm proposed for
the model M1. The pseudo-code aims to describe clearly the
procedure, and it does not emphasize on the efficient numerical
implementation. Some details are given below.

For estimating the frequency ω̂ at Step 1, one can pick the
peak of the discrete Fourier transform of yN . Unfortunately, the
gene expression data are unevenly sampled in most of the ex-
periments, and when they are uniformly sampled, some data are
occasionally missing. As the available data are not equidistantly
spaced on the time-axis, it is recommended to use the CLEAN
algorithm instead of the periodogram [14]. In our experiments
we have applied both CLEAN and the frequency estimator uti-
lized in the RM, and we noticed their similar performances. For
sake of comparison, all the results reported in this study are ob-
tained with the frequency estimator available with the implemen-
tation of the RM.

For the maximization of the likelihood function, we resort
to a 1-D grid search in the space of the shape parameter. The
number of grid points M is, as usual, a tradeoff between the esti-
mation accuracy and the computational burden of the algorithm.
In our experiments, we use in the space of the ν parameter a grid
whose points are 0.6, 0.7, . . . , 5.0. The equivalent β values can
be easily computed.

Once ω̂ is estimated and β is chosen to be a particular point
of the grid, the estimation of x = [A B C]� reduces to an op-
timization problem that it is convex only for β ≤ 1. We can-
not restrict the search only to the values of the shape parameter
that are smaller than one, because we are especially interested
in heavy-tailed distributions that correspond to β ∈ [1, 3). To
circumvent the difficulties without resorting to computationally
expensive methods, we apply a fast algorithm that was originally



introduced in [15]. Steps 2 and 3 implement the algorithm for
our particular case: firstly the crude estimates x̂ are computed
as the LS solution that maximizes the likelihood function for the
Gaussian case (β = 0). The estimates are further refined for
each point in the grid by solving a WLS problem whose weights
depend on β.

The procedure described in Figure 1 returns both the esti-
mated parameters and the maximum of the log-likelihood func-
tion. Remark that the algorithm can be easily modified to make
use of prior knowledge. For example, in some studies on the
periodicity of the gene expressions it is assumed that the fre-
quency ω is known. To exploit this information, we can simply
skip the first Step of the algorithm. Furthermore, when evalu-
ating SC we remove the row and the column of FIM that cor-
respond to the frequency parameter, and we also drop the term
ln(|ω̂|+ N−1/4).

As η parameters are a subset of θ , the estimation algorithm
for model M0 can be immediately obtained from the pseudo-
code listed in Figure 1. There exist one important difference
in our implementation: Ĉ = median(yN )∀β ∈ [1, 3). More
details on this estimator for C can be found in [5].

4. EXPERIMENTAL RESULTS

4.1. Simulated data

We illustrate the performances of the newly proposed method
with an example inspired from [1] and [2]. We prefer to use in
the description of the experiment the parametrization (1) because
is more intuitive than (3). Due to the same reason, we employ
for GGD the parameter ν and not β.

We investigate the model selection performances when the
noise is GGD with unitary variance and ν ∈ {0.6, 1.0, 2.0}. In
our experimental settings, the parameter µ is zero. The synthetic
data are assumed to be sampled at the time moments 1, 2, . . . , N ′,
where N ′ ∈ {30, 40, 50, 60, 70}.

For each value of N ′ and for each shape parameter ν, we
generate 104 realizations. Half of them are non-periodic (model
M0), and the rest are periodic with amplitude α =

√
2 (model

M1). To mimic the real case, for each periodic time series, the
frequency ω/(2π) is chosen as an outcome of the Uniform dis-
tribution on (0.08, 0.12), and the phase φ is an outcome of the
Uniform distribution on (−π, π). All the frequencies ω and the
phases φ are statistically independent.

Since we are concerned with the influence of the missing
points on the detection results, we remove 	N ′/4
 measure-
ments from each time series with length N ′; the locations of
the eliminated measurements are randomly chosen such that all
the entries of {1, . . . , N ′} have equal probability to be selected.
The positions of the missing points are decided independently
for each time series. Note that, for both the periodic and the
non-periodic data sequences, the number of observations is de-
creased from N ′ to N . For completeness, we indicate between
parentheses the value of N corresponding to each N ′: 30(22),
40(30), 50(37), 60(45), 70(52).

We use the synthetic data to test the model selection perfor-
mances of the SC and of the crude MDL criterion given in the
Appendix. When SC is applied in conjunction with the algo-
rithm outlined in Figure 1, the resulting method is dubbed SCts
because the core of the estimation algorithm is a two-step LS. If
the model is selected with the MDL criterion, then the method is
named MDLts.

Relying on the Gaussian hypothesis is equivalent with skip-
ping the Step 3 of the algorithm in Figure 1. The estimates ob-
tained under this hypothesis are further used in combination with
either SC or MDL, and the resulting methods are named SCg and
MDLg, respectively.

The model selection criteria are generally evaluated based
on the probability of choosing the correct model when the ground
truth is known. Therefore we are interested for all the methods
on the empirical probability of choosingM1 when the simulated
data are periodic. This probability is named PD (detection prob-
ability), which is a term widely used in the engineering literature
[11]. For the pure noise data we dot report the probability of se-
lecting M0, and we prefer an equivalent measure, namely the
probability of decidingM1 when the test data are non-periodic.
This is named PFA (probability of false alarm) with a term bor-
rowed from the detection theory. The interested reader can find
in [11] the equivalence between this nomenclature and the one
used in the statistics literature.

We plot in Figure 2 the values of PD and PFA versus the
number of available measurements N when the shape parameter
of the noise takes three different values. We have also considered
in our comparisons the RM and the FT. For clarity of the graphs,
we do not plot the results yielded by the FT because they are
significantly worse than those produced by the RM. For the RM,
we pick the largest PFA for each graph in the right-hand-side
column to be the significance level α. Observe that a horizontal
line is drawn for the value of α in all the graphs within the right
column. For each ν and N , α is used together with the 5000
synthetic time series that are pure noise in order to “calibrate”
the RM. After this step, RM is applied to the rest of 5000 peri-
odic time series for estimating PD plotted in the left-hand-side
columns. Since we employ the same notation for both the am-
plitude and the significance level, the interpretation of α will be
clear from the context.

As PFA is small for all the tested methods, the difference
in performances is given by PD . Observe for ν = 0.6 that PD

is larger for the MDLts than for the MDLg, but the difference
decreases when ν = 1, and the PD becomes smaller for the
MDLts than for the MDLg when ν = 2. A similar trend can
be observed when comparing the PD of the SCts and the SCg
for ν increasing from 0.6 to 2. Thus the use of the the two-
step algorithm is recommended only when the distribution of
the noise is heavy-tailed. SC compares favorably with the MDL
in all the experimental situations, with the remarkable exception
of the case when ν = 0.6 and N = 22. We can conclude that
applying SC instead of MDL for model selection has a positive
impact on the results. It is interesting to note that RM is superior
to both MDLg and MDLts for almost all sample sizes when the
noise is Gaussian (ν = 2).

4.2. Molecular data

In the experiment Thy-Thy 3 from [16] the epithelial cell line
Hela S3 is measured during 46 hours with a uniform sampling
period of 1 hour. After discarding the clones that have more
than 30% missing values [2], we analyze the rest of the 41508
clones with the four methods that have been already tested with
synthetic data. We mention that 1134 clones have been labeled
as periodic in [16].

We report for each tested method the number of clones iden-
tified as periodic, and also how many of them can be found in
the list with 1134 entries provided by the supplemental mater-
ial at http://genome-www.stanford.edu/Human-CellCycle/Hela/.
For example, the number of periodically expressed clones found
by SCts was 2481. As 533 of them are also in the aforemen-
tioned list, we write for conciseness SCts (2481;533). With the
same notation, we give the results for the other three methods:
MDLts (2568;552), SCg (2535;551) and MDLg (2451;556).

The analysis of the entire data set was performed with our
Matlab implementation on a Pentium IV at 3.2 GHz. The execu-
tion time was 17.5 min. when applying the two-step algorithm
and only 3 min. when the parameter estimation was performed
under the Gaussian hypothesis.
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Figure 2. PD and PFA versus the sample size for five detection
methods: SCts (continuous red line with a triangle), SCg (dottted
red line with a triangle), MDLts (continuous blue line with a cir-
cle), MDLg (dotted blue line with a circle) and RM (continuous
green line).

APPENDIX: MODEL SELECTION RULES

For simplicity, we consider only the case when the noise dis-
tribution is Gaussian, and consequently we do not account the
contribution of β to the SC expression. Relying on results from
[17], we can readily prove the asymptotic equivalence between
SC and a crude MDL formula that amounts to the selection of
the index k ∈ {0, 1} to minimize

MDL(yN ;Mk) = − ln p(yN ; ζ̂ (k),Mk) +
5k + 2

2
ln N,

where ζ̂ (0) = [Ĉ τ̂ ]� and ζ̂ (1) = [ω̂ Â B̂ Ĉ τ̂ ]�. The term
5k+2

2
ln N has the following significance: the penalty for the

unknown frequency ω is 3
2

ln N , and the penalty for each addi-
tional unknown parameter is 1

2
ln N [18].

It is well-known the equivalence between BIC and MDL,
namely BIC(yN ;Mk) = −MDL(yN ;Mk) [17]. Therefore,
BIC decides that a gene is periodic whenever BIC(yN ;M1)−
BIC(yN ;M0) > 0. A similar selection rule was applied in [4]
to assign a gene as periodic: BIC′(yN ;M1)− BIC′(yN ;M0) >
ρ, where the difference between the expressions of BIC′ and BIC
is due to the penalty term. In BIC′, a penalty of 1

2
ln N is ac-

counted for each parameter including the unknown frequency.
We mention that previous studies have already shown the supe-
riority of BIC in comparison with BIC′ [18]. To clarify the role
of ρ, we quote from [4]: “Choice of detection threshold is arbi-
trary and must be decided by the investigator. Classical p-values
for this test statistic may always be generated by means of re-
sampling techniques but this is not a topic covered in this work.”

MDL principle selects the model that leads to the shortest
description length for the available data, thus a detection thresh-
old is not needed, and we decide that a gene is periodic when
SC(yN ;M1) < SC(yN ;M0).

In the end of this Section, we mention that the similarities
found in [19] between the Akaike’s Information Criterion [17]
and the Generalized Likelihood Ratio Test [11] can be extended
to all the information theoretic criteria for which the penalty term
depends only on the number of parameters and the number of
the available measurements. A more elaborated discussion can
be found in [6].
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