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Abstract

Stochastic complexity (SC), or equivalently, the negative logarithm of the NML (Normal-
ized Maximum Likelihood) was proven to be successful for the estimation of model structure
in the linear quadratic regression problem. Recently, the results have been extended to au-
toregressive (AR) and autoregressive moving average (ARMA) models, whereas most of the
information theoretic methods currently applied for determining the number of sine-waves
in additive Gaussian noise still rely on asymptotic two-terms formulae where the first term
is given by the minus maximum log-likelihood, and the second one is a penalty coefficient
that depends on the number of parameters and the sample size. Additionally, the noise is
assumed to be white, which is not realistic in most of the practical applications. Our main
purpose is to apply sharper approximations of SC for estimating the number of sinusoidal
terms in a time series contaminated by AR noise. This is known to be challenging because we
have to solve a mixed-spectrum estimation problem. We elaborate on two different SC cri-
teria that involve the Fisher information matrix (FIM) of the investigated model. For small
and moderate sample sizes, the experimental results show that SC compares favorably with
other well-known criteria such as: Bayesian information criterion (BIC), corrected Kullback
information criterion (KICc) and the generalized Akaike information criterion (GAIC).

1 Introduction and preliminaries

We address the estimation of the number of sinusoids observed in additive noise with unknown
correlation structure. To formulate the problem, we consider the data model

yt = xt + et, t ∈ {0, . . . , N − 1},

xt =
K

∑

k=1

αk cos(ωkt+ φk), (1)
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where yt denotes the measurements, xt is the noise-free signal and et is the colored Gaussian
noise.

To ensure the identifiability of the parameters, we assume as usual that the amplitudes αk

are strictly positive and the frequencies ωk belong to the interval (0, π) [1]. The frequencies are
distinct and, without loss of generality, ω1 < · · · < ωK . Both the amplitudes and the frequencies
are non-random parameters that will be estimated from the available measurements.

Two different hypotheses will be considered for modeling the phases φk ∈ [−π, π): Hdp - the
phases are unknown deterministic constants; Hrp - the phases are independent and uniformly
distributed random variables that are also independent of et. For both assumptions, the statis-
tical properties of yt have been investigated in previous studies, and more details can be found,
for example, in [2].

In line with the approach from [2][3][4] and the references therein, we model the noise et as
a stable autoregressive (AR) process with order M :

et = −
M
∑

m=1

amet−m + wt, (2)

where wt is a sequence of independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance τ . Since we consider only the case of real sinusoids in real
AR noise, we emphasize that the white random process wt and the coefficients am, 1 ≤ m ≤M ,
are real-valued.

When the noise is white, or equivalently M = 0, it is well-known the definition of the local

SNR for the k-th sinusoid: SNRk =
α2

k/2

τ
. An extension of this definition, namely SNRk =

α2
k/2

|H(exp(jωk))|2
, was also introduced in the literature [5] for the case when the additive noise is

modeled as the output of an exponentially stable and invertible linear filter H(q−1) whose input
is a sequence of i.i.d. Gaussian random variables with zero mean and variance τ . We note that
q−1 is the unit delay operator and j =

√
−1. For the AR noise defined in equation (2), we get

immediately

SNRk =
α2

k/2

τ/|A(ωk)|2
, (3)

where A(ωk) = 1+
∑M

m=1 am exp(−jmωk). A similar formula can be written without difficulties
for the case when the additive noise is a moving average process.

Based on (1) and (2), we observe that the parameters of the model are θ = [ξ a τ ]⊤, where
ξ = [ξ⊤1 · · · ξ⊤K ]⊤ with the convention ξk = [αk ωk φk]

⊤ for the k-th sine-wave. The notation a

is employed for the vector of the AR coefficients [a1 · · · aM ]⊤.
Because the model structure γ = (K,M) is not known a priori, we resort to the traditional

model selection procedure that comprises two steps:

(a) for all pairs of integers γ = (K,M) that satisfy 0 ≤ K ≤ Kmax and 0 ≤ M ≤ Mmax,
estimate the model parameters θ̂γ from the observations yN = y0, . . . , yN−1 ;



(b) evaluate an information theoretic criterion for all γ’s considered at the first step, and
choose the model structure γ̂ that minimizes the criterion.

The most popular rules for model selection can be reduced to a common form with two terms:
the first one is the minus maximum log-likelihood, and the second one is a penalty coefficient
that depends on the number of parameters of the model and, for some criteria, also on the
sample size N [6]. In general, the criteria used in practical applications are derived for N → ∞,
and the asymptotic approximations could potentially yield false conclusions when the sample
size is small or moderate.

During recent years, the advances in stochastic complexity (SC) have led to new exact
formulae or to sharper approximations for large classes of models [7][8][9], but the use of the
new results in signal processing is scarce. We illustrate next how SC can be applied to estimate
the structure for the model of sine-waves in Gaussian AR noise.

The rest of the paper is organized as follows. In Section 2, two different approximative
formulae for SC are revisited: one proposed by Rissanen in [8], and another one introduced by
Qian and Künsch in [7]. As the computation of the Rissanen sharp approximation is difficult for
the sinusoidal regression model, we focus on the Qian and Künsch formula, and we investigate
its properties in Section 3. Because the SC expression involves the determinant of the Fisher
information matrix (FIM), the calculation of FIM is addressed in Section 4. SC and three other
well-known model selection criteria are compared in Section 5 to evaluate their performances in
estimating the number of sinusoids from simulated data.

2 SC for sine-waves in AR noise

We focus on the expression of SC for the class of the density functions {f(yN ; θ)} defined
by the equations (1) and (2). For the maximum likelihood (ML) estimates we employ the
notation θ̂(yN ) whenever it is necessary to emphasize on the data set. If it is clear from the
context which measurements are used for estimation, then the simpler notation θ̂ is preferred
to θ̂(yN ). Therefore ln f(yN ; θ̂) = ln f(yN ; θ̂(yN )) is the maximum log-likelihood, Θ denotes

the parameter space, and JN (θ) = E

[

−∂
2 ln f(yN ; θ)

∂θ∂θ⊤

]

is the Fisher information matrix (FIM).

The Normalized Maximum Likelihood (NML) density function is given by [10][8],

f̂(yN ;K,M) =
f(yN ; θ̂(yN ))

∫

xN :θ̂(xN )∈Θ f(xN ; θ̂(xN ))dxN
,

and the stochastic complexity is defined as

SC(yN ;K,M) = ln
(

1/f̂(yN ;K,M)
)

.

The NML criterion has two important optimality properties [11] that recommend it to be used
as a yardstick in model selection. The application of the NML criterion is appealing, but its
computation is not very easy for all classes of models. Under mild assumptions on ML estimates,
SC is approximated in [8] with a formula that involves the integral of the squared root of the



FIM determinant. The approximation is valid only if FIM divided by N , the number of samples,
has a finite limit as N → ∞. The condition is verified for most of the models used in signal
processing, but not for the sinusoidal regression model [6]. We show next how the results from
[8] can be extended to the sinusoidal regression model, and we also point out the difficulties
with evaluating the integral term. Due to the troubles with the integral, we resort to another
SC approximation that was introduced by Qian and Künsch in [7].

2.1 Sharp approximations of SC

As the Rissanen formula involves the asymptotic FIM, the following result is very useful for
our application: when N is large, under both Hdp and Hrp, JN (θ) is block-diagonal such that

the block JN (ξk) corresponds to the parameters of the k-th sine-wave and the block JN (a, τ)
corresponds to the parameters of the AR noise [2][5]. More precisely, we have

JN (θ) =











JN (ξ1)
. . .

JN (ξK)
JN (a, τ)











(4)

where

JN (ξk) = QNG(ξk,a, τ)QN , (5)

QN =





N1/2 0 0

0 N3/2 0

0 0 N1/2



 and G(ξk,a, τ) = SNRk





1/α2
k 0 0

0 1/3 1/2
0 1/2 1



 . (6)

Here SNRk denotes the local SNR for the k-th sinusoidal component and its formula is given in
(3). The entries of JN (a, τ) are not influenced by the parameters ξ, hence JN (a, τ) is the same
as in the pure AR case. Based on results from [12], we can write

JN (a, τ) =
N

τ

[

R(a) 0

0 1/(2τ)

]

, (7)

where R(a) =







r0 · · · rM−1
...

. . .
...

rM−1 · · · r0






is the covariance matrix of the AR process defined in (2).

Additionally we define the diagonal matrix CN =

[

IK ⊗ QN 0

0 N1/2 × IM+1

]

, where the sym-

bol ⊗ denotes the Kronecker product, and for a strictly positive integer p, Ip is the p×p identity
matrix. We adopt the convention that 0 denotes a null vector/matrix of appropriate dimensions.

Based on (4)-(7), we note that lim
N→∞

1

N
JN (θ) is not finite, whereas J(θ) = lim

N→∞
C−1

N JN (θ)C−1
N

is finite [6]. Moreover, the ML estimates satisfy the Central Limit Theorem: the distribution



of CN (θ̂ − θ) converges to the Gaussian distribution of mean zero and covariance J(θ)−1 [4].
These properties allow us to extend the results from [8] to the sinusoidal regression model for
which the SC formula is given by

SCr(yN ;K,M) = − ln f(yN ; θ̂) +
5K +M + 1

2
ln
N

2π
+ ln

∫

Θ
|J(θ)|1/2dθ + o(1). (8)

We use the notation SCr to differentiate this particular approximation of SC by other formulae
that will be discussed later.

Remark that J(θ) is a block-diagonal matrix, and 1
τ R(a, τ) is the block corresponding to

the parameters of the Gaussian autoregressive noise. Computing the integral of
∣

∣

1
τ R(a, τ)

∣

∣

1/2

over the parameter space is a problem that arose also in the context of order estimation for AR
processes [13]. Since it is hard to find a closed-form expression of the integral, the authors of
[13] resorted to Monte Carlo techniques for its evaluation. Our task here is even more difficult
because the other blocks of J(θ) must be also considered when calculating the integral term.
Hence the computational burden discourages us to apply formula (8) for estimating the number
of sine-waves in Gaussian autoregressive noise. We show next that SC expression (8) becomes
simpler when the noise is white (M = 0). In this case, θ = [ξ⊤ τ ]⊤, and elementary calculations
lead to

SCr(yN ;K, 0) = − ln f(yN ; θ̂) +
5K + 1

2
ln
N

2π
+ ln

∫

Θ

1

21/296K/2

∏K
k=1 α

2
k

τ (3K+2)/2
dθ + o(1). (9)

To ensure that the integral term is finite, we have to assume that all amplitudes have an upper
bound, αk < αmax <∞, and the noise variance has a strictly positive lower bound, τ > τmin > 0.
Once these conventions are adopted, the estimated number of sine-waves will depend on αmax

and τmin. Note that αmax and τmin are just arbitrary values if we do not have a priori knowledge
on the analyzed signals. The troubles with the computation of SCr make us to prefer the SC
formula that was derived in [7]:

SC(yN ;K,M) = − ln f(yN ; θ̂) + ln |JN (θ̂)|1/2 +
3K+M+1

∑

i=1

ln(|θ̂i| +N−1/4) (10)

A similar approximation of SC was already utilized in [14] to estimate K, the number of
sinusoids. In [14], the noise variance τ is treated as a nuisance parameter in the sense that the
code length to describe it is not included in the SC formula. Here we consider in (10) the cost for
transmitting the value of the τ parameter, and this is the main difference between our approach
and the one from [14]. We check in the Appendix how the conditions for the derivations from
[7] are fulfilled for the model of sinusoids in Gaussian AR noise. We also give in the Appendix
more details on the accuracy of the approximation in formula (10).

In the next Section, we investigate the asymptotic behavior of the SC criterion and we
show its relation with well-known selection rules like Bayesian information criterion (BIC) [15],
Minimum Description Length (MDL) [16], and the maximum a posteriori (MAP) probability
criterion [17]. During the asymptotic analysis, we check also the necessary conditions for the
consistency [18] of SC. For small and moderate sample sizes, we draw a parallel between SC and
two other recently introduced model selection methods: Conditional Model Estimator (CME)
[19] and the Exponentially Embedded Families (EEF) [20].



3 Some properties of SC and its relation to other model selec-
tion criteria

3.1 BIC, MDL and MAP

Based on the results from the Appendix, we obtain readily the well-known asymptotic identity

lim
N→∞

ln |JN (θ̂)|1/2 =
5K +M + 1

2
lnN , and it is easy to notice that the sum of the first two

terms in SC is equivalent with the Bayesian information criterion:

BIC(yN ;K,M) = − ln f(yN ; θ̂) +
5K +M + 1

2
lnN. (11)

More details on the derivation of BIC can be found in [6] and the references therein. In [21], it is
investigated the possibility of improving the performances of BIC for small and moderate sample
sizes by considering two terms that are neglected in the asymptotic formula (11): the first one
involves the logarithm of the determinant of the observed FIM, and the second one is mainly
determined by a prior over the family of the analyzed models. As the sinusoidal regression model
is not discussed in [21], we restrict our interest to the celebrated BIC selection rule (11), and we
do not consider in simulations any sharp approximation of the Bayesian information criterion.
We mention for completeness that formula (11) was also obtained in [3] as a crude version of
the MDL, and its consistency was demonstrated in the same study. In [17], the use of the MAP
methodology in conjunction with asymptotic approximations led also to (11) for the particular
case of white noise.

3.2 A short note on the consistency of SC for M = 0

For ease of presentation we investigate the consistency of the criterion SC′(yN ;K, 0) = SC(yN ;K, 0)−
1
2 lnN . It is evident that SC′ and SC are equivalent selection rules because 1

2 lnN is independent
of K. We focus on the last term in (10), and for simplicity we assume M = 0. If zero does not
belong to the domain of the parameter θi, then θ̂i 6= 0 and ln(|θ̂i|+N−1/4) is much smaller than
1
2 lnN [7]. Hence the term ln(|θ̂i| +N−1/4) becomes important only when θ̂i ≈ 0. Since among
the ξ parameters only the phases can be equal to zero, the penalty term in SC′ formula takes
values between 9K

4 lnN and 5K
2 lnN when N is large. Based on formula (10), we can write

SC′(yN ;K, 0) = − ln f(yN ; θ̂) +Kζ(N, θ̂),

and asymptotically 9
4 lnN ≤ ζ(N, θ̂) ≤ 5

2 lnN . Thus lim
N→∞

ζ(N, θ̂)

N
= 0 and lim inf

N→∞

ζ(N, θ̂)

lnN
>

1. If supplementarily the model (1) verifies ωk

2π ∈
{

1
N , · · · ,

(N−1)/2
N

}

∀k ∈ {1, . . . ,K}, all the

conditions for the application of the Theorem from [18] are satisfied. We select K̂ to be the
minimum nonnegative integer for which SC′(yN ;K, 0) < SC′(yN ;K + 1, 0), and the Theorem
guarantees that K̂ converges almost surely to the true number of sinusoids.



3.3 CME, EEF and an example from [20]

In [20], it was shown that using the determinant of FIM as a penalty term could lead to modest
results when the sample size is small. As the example from [20] involves sinusoidal signals, we
briefly discuss it in the sequel: the noise-free signal xt is generated like in (1) by a sum of K = 3
sine-waves whose parameters are ξ1 = [1 0.2π 0]⊤, ξ2 = [1 0.22π 0]⊤ and ξ3 = [1 0.24π 0]⊤.
The white noise et is Gaussian with variance τ = 10, and the selection is restricted to the class
of nested models Mκ, κ ∈ {2, 4, . . . , 16}, defined by

Mκ : yt =

κ/2
∑

k=1

αk cos(ωkt+ φk) + et, t ∈ {0, . . . , N − 1},

where ωk = 2π
(

0.1 + k−1
100

)

. Since the frequencies are known, Mκ reduces to the linear regression
for which the observation matrix has the expression

Hκ =







1 0 · · · 1 0
...

...
. . .

...
...

cos(ω1(N − 1)) sin(ω1(N − 1)) · · · cos(ωκ/2(N − 1)) sin(ωκ/2(N − 1))






,

and the vector of the unknown parameters is given by vκ = [A1 B1 · · ·Aκ/2 Bκ/2]
⊤, where

Ak = αk cosφk and Bk = −αk sinφk for all k ∈ {1, . . . , κ/2}. The noise variance τ is assumed to
be known. Remark that the number of parameters for the Mκ model is κ. Applying the CME
criterion is equivalent with choosing the model Mκ̂ that minimizes [19]

CME(yN ;κ) =
RSSκ

τ
+ ln

∣

∣

∣

∣

H⊤
κ Hκ

2πτ

∣

∣

∣

∣

,

where RSSκ is the residual sum of squares obtained when fitting the Mκ model to the observa-
tions yN . In [20], it was utilized the approximation H⊤

κ Hκ ≈ (N/2)Iκ to show that the second
term in the equation above is negative when N < 125, thus the penalty term of the CME cri-
terion decreases when κ increases. Since for the models considered in this example, 1

τ H
⊤
κ Hκ

coincides with the FIM [1], Kay concluded in [20] that all criteria whose penalty factor is given
by the determinant of FIM will always choose the most complex model when the sample size
is small or moderate. To circumvent such difficulties, he introduced the EEF criterion that, for
linear regression models, amounts to select the Mκ̂ model that minimizes

EEF(yN ;κ) =

[

−Qκ + κ

(

ln
Qκ

κ
+ 1

)]

u

(

Qκ

κ
− 1

)

, (12)

where Qκ =
‖Hκv̂κ‖2

τ
, the entries of v̂κ are the ML estimates of the parameters, and u(·) is the

step unit function [20].
We use the same example to investigate if similar drawbacks appear when the model selection

relies on the SC criterion. The FIM-based SC approximation [8] was computed in [22] for the
linear regression case, and it involves the ranges of the parameters, which is not convenient as



we have already pointed out in Section 2.1. Fortunately we do not need to resort to such an
approximation because Rissanen gave in [9] a very elegant solution to the problem of evaluating
SC for the linear regression model. For the analyzed example, we prefer to apply the result from
[9] in the form that was worked out in [23]:

SClr(yN ;κ) =
1

τ

N−1
∑

i=0

y2
i −Qκ + κ

(

ln
Qκ

κ
+ 1

)

+ lnκ,

where the notations are the same like in (12). We observe that unlike the CME criterion, SClr
does not contain the term given by the determinant of FIM. Moreover, the expressions of SClr
and EEF are very similar. It is easy to note that −Qκ decreases with κ. Let us consider first

the case when
Qκ

κ
> 1. In general, the term κ

(

ln
Qκ

κ
+ 1

)

increases with κ [20], hence it

is a penalty term for both EEF and SClr. Remark that in this case, due to the lnκ term,
the penalty will be more stringent for SClr than for EEF. Formula (12) can be re-written as
EEF(yN ;κ) = κh(Qκ/κ), where h(x) = −x + lnx + 1,∀x ∈ (0,∞). Because h(x) is strictly

negative for x > 1, the criterion EEF has the same property. Whenever
Qκ

κ
≤ 1, EEF(yN ;κ)

takes value zero, and consequently the model Mκ will not be selected. For SClr, if
Qκ

κ
is small,

the term κ

(

ln
Qκ

κ
+ 1

)

could become negative and lnκ will remain the only penalty term.

For Gaussian linear regression with known noise variance, another SC criterion was derived
in [24] by using the universal mixture model instead of the NML:

SChy(yN ;κ) =
1

2τ

N−1
∑

i=0

y2
i +

1

2

[

−Qκ + κ

(

ln
Qκ

κ
+ 1

)

+ lnN

]

u

(

Qκ

κ
− 1

)

. (13)

As it was pointed out in [24], SChy coincides up to the 1
2 lnN additive term with the empirical

Bayesian selection rule proposed in [25]. Comparing (12) and (13) we also note that EEF and
SChy are essentially the same.

4 Computational issues

The use of (10) is very appealing from computational viewpoint, but it was already pointed
out in [7] that (10) is not invariant under re-parametrization. Due to this reason, we prefer to
use as parameters for the AR noise the magnitudes and the angles of the poles instead of the
coefficients.

More precisely, let us assume that the poles of the AR noise model are g1, . . . , gM : if the
poles g1, . . . , gM1

are real-valued, then the pure complex poles gM1+1, . . . , gM occur in complex
conjugate pairs because the coefficients a are real-valued. Instead of θ = [ξ a τ ]⊤, we will apply
the parametrization η = [ξ g τ ]⊤, where g = [g1 . . . gM1

|gM1+1| ψgM1+1
. . . |gM−1| ψgM−1

]⊤, and
for a complex pole gi, the symbol ψgi

denotes its angle. Remark the range of the entries of g: we
have gi ∈ (−1, 1) for 1 ≤ i ≤M1, and for the rest of the parameters |gi| ∈ (0, 1) and ψgi

∈ (0, π).



SC Hypothesis JN (ξ) JN (g)

SCp Hrp exact exact
SCa Hrp/Hdp asymptotic asymptotic

SCe Hdp exact exact

Table 1: Nomenclature for SC when various formulae for FIM are used in calculations.

To calculate the determinant of the FIM with the new parametrization, we use the general
result on the transformation of parameters [1] in conjunction with the result of equation (15)
from [2]. For writing the equations in a more compact form, we define the (M + 1) × (M + 1)

matrix

[

D(a, τ)

D(g, τ)

]

whose (m,n)-th element is
∂am

∂gn
if 1 ≤ m,n ≤M , it is one if m = n = M +1,

and otherwise takes value zero. Next we obtain the following identities:

|JN (η)| =

∣

∣

∣

∣

∣

I3K 0

0
[

D(a,τ)
D(g,τ)

]⊤

∣

∣

∣

∣

∣

∣

∣

∣

∣

JN (ξ) 0

0 JN (a, τ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

I3K 0

0
[

D(a,τ)
D(g,τ)

]

∣

∣

∣

∣

∣

= |JN (ξ)||JN (g, τ)|

The block JN (ξ) that corresponds to the signal parameters can be evaluated with the fast
algorithms from [2]: the exact JN (ξ) is different for Hdp and Hrp, but the asymptotic JN (ξ)

has the same form under both hypotheses. This asymptotic form is well-known [5], and it is
also given in Section 2.1. JN (a, τ) has the same expression as in the pure AR case, and for its
calculation we resort to the exact and the asymptotic formulae from [12]. The conversion from
JN (a, τ) to JN (g, τ) can be easily performed with the results from [26]. A discussion on the
asymptotic form of JN (g, τ) can be found in [13].

Applying the exact or asymptotic formulae for JN (ξ) and JN (g, τ) leads to various expres-
sions for SC. In Table 1, we explain the nomenclature for SC when FIM in (10) is evaluated
with various formulae.

For better understanding the differences between SCp, SCa and SCe we resort to one of the
examples used in [2] to analyze the Cramer-Rao bound (CRB). Let us consider the case of one
single sinusoid (K = 1) in AR noise with order M = 2. We choose α1 = 1, ω1 = π/2, the
modulus of the AR poles is |g1| = 0.9, and the sample size is N = 35. The angle ψg1

takes values
between 0.02 and (π − 0.02), and the variance τ is selected such that to keep constant SNR1 =
3 dB. Evaluating the differences between SCp, SCa and SCe reduces to calculate ln |JN (η)|1/2

with various formulae. Because under Hdp the exact JN (ξ) depends on the phase φ1, for

each ψg1
we compute ln |JN (η)|1/2 for sixty different values of φ1 that are equally spaced in

[−π, π), and the largest (▽) and the smallest (△) results are plotted in Figure 1. We plot in
the same Figure the values of ln |JN (η)|1/2 used in the calculation of SCp (dash-dot line) and
SCa (continuous line). For sake of comparison, we draw also a horizontal line that corresponds
to 5K+M+1

2 lnN . We can easily extend the conclusions on CRB drawn in [2], by observing the

significant difference between the asymptotic approximation of ln |JN (η)|1/2 and its exact value
when the line spectrum is close to the spectral peak of the noise. Remark also in Figure 1 that
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Figure 1: The term ln |JN (η)|1/2 versus the phase ψg1
of the AR pole when the sample size

is N = 35. In the case of the SCe formula, ln |JN (η)|1/2 is calculated for sixty different
values of φ1 ∈ [−π, π), and the largest (▽) and the smallest (△) results are plotted. The
dash-dot line and the continuous line are for the values of ln |JN (η)|1/2 as they are used
in the evaluation of the SCp and SCa, respectively. The horizontal line with a ⋆ at each
data point corresponds to 5K+M+1

2 lnN .

the value of ln |JN (η)|1/2 used to compute SCp is approximately equal with the average of the
maximum and the minimum of ln |JN (η)|1/2 employed in the calculation of SCe.

In the next Section we investigate how the structure estimation performances of SC are
influenced by the use of various formulae for FIM.

5 Experimental results

In all the examples presented next, we resort to the RELAX algorithm that performs a de-
coupled parameter estimation for the sinusoids and the AR noise [4]. In our simulations we
have used for the implementation of RELAX the Matlab functions that are publicly available
at http://www.uni-kassel.de/fb16/hfk/neu/toolbox.



Asymptotically both RELAX and the maximum likelihood (ML) yield statistically efficient
estimates, and the use of RELAX is recommended due to its lower computational burden [4][5].

For γ = (K,M), let ξ̂k be the parameters of the k-th sinusoid estimated with RELAX.
We denote êt = yt −

∑K
k=1 α̂k cos(ω̂kt + φ̂k), and let â be the coefficients of the AR noise

determined from the sequence ê0, . . . , êN−1. We further define the residual sum of squares as

RSSγ =
∑N−1

t=0

[

êt +
∑M

m=1 âmêt−m

]2
, with the convention that êt = 0 for t < 0.

The performances of SC are compared in our simulations with BIC (11) and two other
criteria: GAIC and KICc. GAIC is a generalized Akaike Information Criterion that was tradi-
tionally used in conjunction with the RELAX algorithm [4]. It seeks for the model structure γ
that minimizes

GAIC(yN ;K,M) = N lnRSSγ + 8(3K +M + 1) ln(lnN).

KICc was derived in [27] as a unbiased Kullback Information Criterion for linear regression
models with i.i.d. Gaussian noise. Since then its application was extended also to other classes
of models, see for example [28] and the references therein. Applying KICc is equivalent with
selecting the model structure γ that minimizes [27]

KICc(yN ;K,M) = −2 ln f(yN ; θ̂) + 2
(κ+ 1)N

N − κ− 2
−Nψ

(

N − κ

2

)

+N ln
N

2
, (14)

where κ = K +M and ψ(·) is the digamma function [29]. In SC (10), BIC (11) and KICc (14),
− ln f(yN ; θ̂) is evaluated as N

2 lnRSSγ after discarding the terms that do not depend on γ.
In our settings, the maximum number of sinusoids is Kmax = 8, and the maximum order of

the AR process depends on the number of the available measurements: Mmax =
⌊

ln2N
⌋

− 1.
The formula for Mmax is derived from the condition used in [3] to ensure the consistency of the
BIC criterion. Supplementarily, each pair (K,M) must verify the inequality 3K +M < N − 2
to be a candidate for the model structure.

Examples 1-3 are taken from [3], where the estimation results are reported only for N ≥ 128.
Since our main interest is on small and moderate sample sizes, we evaluate the performances
of the information theoretic criteria for N ∈ {25, . . . , 100} and various levels of the local SNR.
In Examples 1-3, we consider K = 2 sinusoids whose parameters are ξ1 = [21/2 1 0]⊤ and
ξ2 = [2−1/2 2 0]⊤. The additive noise is generated as follows:
Example 1: et = εt (white noise),
Example 2: et = −0.81et−2 + εt (autoregressive noise),
Example 3: et = εt + 1.6εt−1 + 0.64εt−2 (moving average noise),
where εt is a sequence of i.i.d. Gaussian random variables with zero mean and variance chosen
such that the local SNR’s take the desired values.
Example 4 is taken from [4] and modified such that the observations yN are real-valued. The

number of sinusoids is K = 3 and their parameters are ξ1 = [2 0.10π 0]⊤, ξ2 = [2 0.80π 0]⊤

and ξ3 = [2 0.84π 0]⊤. The noise is simulated by the autoregressive process et = 0.85et−1 + εt,
where the significance of εt is the same as above.

We focus on the capabilities of the tested criteria to estimate correctly the number of sinusoids
K. For the Examples 1-4, we count the number of correct estimates for 100 runs when the local
SNR’s and the sample size N take various values. The results are reported in Tables 2-5.



SNR2=-3.00 dB

N 30 40 50 60 70 80 90 100

SCp 41 61 79 86 94 94 97 100

SCa 41 63 76 84 94 93 97 100

SCe 26 52 64 63 78 84 89 89
BIC 25 41 58 68 87 85 90 96
KICc 54 80 77 74 61 45 44 40
GAIC 3 6 13 22 38 59 65 67

SNR2=-1.00 dB

N 30 35 40 45 50 60 80 100

SCp 62 72 88 93 95 99 98 99
SCa 64 67 71 89 85 91 94 98
SCe 44 59 71 83 82 85 86 96
BIC 43 56 69 78 80 91 99 100

KICc 81 81 79 77 78 67 49 38
GAIC 7 19 40 40 53 73 93 100

SNR2=0.00 dB

N 25 30 35 40 45 50 75 100

SCp 60 79 93 96 97 98 98 99
SCa 60 68 76 76 86 88 94 97
SCe 45 68 75 80 81 90 92 96
BIC 37 51 68 82 86 88 98 99
KICc 75 89 89 92 91 80 56 40
GAIC 6 18 37 52 67 74 97 100

Table 2: Example 1: the counts indicate for 100 runs the number of times the number of sinusoids
was correctly estimated by each criterion. The best result for each sample size N is represented
with bold font.

We note that the estimation results are similar with those reported in [14]. SCp is the best
among the SC formulae and its performances are closely followed by SCa. For both SCp and
SCa, FIM of the sinusoidal components are decoupled [2], which is a serious computational
advantage. From the results reported in [2] together with the outcome of the Example discussed
in Section 4, we can draw the conclusion that the shape of the noise spectrum has more influence
on SCp than on SCa, and this explains the superiority of the SCp criterion. The performances
of SCe are very modest because FIM used in SCe can be ill-conditioned for small and moderate
sample size when the number of sinusoids is two or larger [2].

When the sample size N is smaller than 80, SCa is superior to BIC and GAIC. This is a
straightforward consequence of the asymptotic approximations applied in the derivations of the
BIC and GAIC criteria. KICc estimates for the number of sinusoids are remarkably correct
when N ≤ 40, but the number of correct estimations yield by KICc declines when N increases
such that for N ≥ 80 the reported results are very modest.



SNR2=1.00 dB

N 30 40 50 60 70 80 90 100

SCp 26 63 76 81 90 87 87 92
SCa 25 53 74 78 87 84 86 92
SCe 24 34 74 79 89 87 87 91
BIC 9 41 61 76 89 86 89 93

KICc 23 36 35 37 42 36 33 43
GAIC 5 12 28 42 64 78 89 93

SNR2=3.00 dB

N 30 35 40 45 50 60 80 100

SCp 50 61 76 96 92 95 96 97
SCa 44 52 60 86 83 93 95 97
SCe 41 46 34 50 88 88 96 97
BIC 22 41 53 71 77 91 95 98

KICc 29 44 45 38 42 43 46 45
GAIC 7 17 28 38 54 75 97 98

SNR2=5.00 dB

N 25 30 35 40 45 50 75 100

SCp 36 63 81 88 90 95 95 99
SCa 41 58 73 51 67 91 93 99
SCe 27 54 57 21 15 89 94 99
BIC 16 28 65 57 77 83 99 100

KICc 29 40 57 54 47 52 50 44
GAIC 14 16 32 47 60 72 100 100

Table 3: Example 2: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

We extend our analysis by counting the Type I and Type II errors. Let fk = ωk/(2π) and
similarly f̂k = ω̂k/(2π). Since K and K̂ are not necessarily equal, we take K = min(K, K̂).
We select the indices {i1, . . . , iK} ⊆ {1, . . . ,K} and {j1, . . . , jK} ⊆ {1, . . . , K̂} such that |fi1 −
f̂j1 |, . . . , |fiK − f̂jK | are the smallest entries of the set {|fi − f̂j | : 1 ≤ i ≤ K, 1 ≤ j ≤ K̂}. For

each k ∈ {1, . . . ,K}, f̂jk
is deemed to be the estimate for fik . As usual, a Type I error is counted

in connection with the frequency fk if none of the estimated frequencies are assigned to fk, and
a Type II error is counted whenever K̂ > K. We compute also the mean-squared errors (MSE)
for the frequency estimates.

For brevity, we report in Tables 6-9 the Type I and Type II errors together with the MSE
for one single experiment conducted in each Example. In our comparisons, we consider SCp and
the asymptotic criteria BIC and GAIC.

Because in Example 2 the simulated noise is an autoregressive process, we propose to analyze
more carefully the data shown in Table 7. Remark that only GAIC has difficulties in recovering
the first harmonic when N > 35, and recovering the second harmonic whose local SNR is smaller



SNR1=1.00 dB

N 30 40 50 60 70 80 90 100

SCp 64 85 85 91 78 88 88 85

SCa 51 58 61 69 67 80 82 81
SCe 59 75 83 91 77 85 88 85

BIC 32 55 58 73 70 78 70 78
KICc 60 69 65 75 59 58 58 59
GAIC 11 39 45 62 63 72 63 73

SNR1=3.00 dB

N 30 35 40 45 50 60 80 100

SCp 93 86 94 96 92 94 93 87
SCa 60 60 60 61 67 71 84 86
SCe 85 74 81 91 89 94 93 87
BIC 56 55 72 80 82 85 89 91

KICc 82 74 75 76 77 72 62 57
GAIC 50 60 70 84 80 84 90 89

SNR1=5.00 dB

N 25 30 35 40 45 50 75 100

SCp 97 96 95 97 94 96 92 94
SCa 61 58 61 68 61 59 82 89
SCe 83 86 85 86 88 96 92 94
BIC 53 71 72 85 80 86 93 93
KICc 90 89 81 88 79 81 63 59
GAIC 45 75 85 95 93 93 95 95

Table 4: Example 3: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

posses problems to all the criteria. Note for SCp that the number of Type I errors connected
with f2 decreases fast with the increase of the sample size. For GAIC, the number of Type II
errors is always small, but many Type I errors occur even for N = 60. This is a clear sign that,
for small N , GAIC underestimates the number of sinusoids. The computed MSE is almost the
same for all the investigated criteria and this is natural because the evaluation of SCp, BIC and
GAIC is based on the estimates provided by the RELAX algorithm.

Final remarks

The new results on SC for the sinusoidal regression model illustrate very nicely the main idea
that SC is not just the minus maximum log-likelihood term penalized with k

2 lnN , where k is
the number of parameters and N is the number of samples. The most important achievement
is to show that, for small and moderate sample sizes, the adequate use of SC could improve the
estimation performances even for problems that have been intensively researched in the past, as



SNR1=-5.00 dB

N 30 40 50 60 70 80 90 100

SCp 24 65 81 74 70 70 81 84
SCa 22 65 81 74 70 70 81 85

SCe 32 64 70 66 63 66 79 83
BIC 15 53 79 64 65 69 70 79
KICc 49 75 79 70 70 67 73 71
GAIC 0 3 19 39 49 64 64 72

SNR1=-3.00 dB

N 30 40 50 60 70 80 90 100

SCp 20 82 88 86 90 93 91 95

SCa 20 83 88 86 90 91 84 89
SCe 33 71 80 78 83 87 86 92
BIC 13 72 88 79 78 83 90 94
KICc 51 83 84 81 80 78 74 72
GAIC 0 23 48 56 66 70 75 81

SNR1=-1.00 dB

N 30 35 40 45 50 60 80 100

SCp 30 80 90 93 99 90 94 92
SCa 30 80 86 93 97 88 77 73
SCe 40 72 74 80 90 83 91 87
BIC 27 83 85 87 95 90 92 95
KICc 61 91 89 89 90 82 76 65
GAIC 0 13 38 68 79 74 90 97

Table 5: Example 4: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

it is the case with the mixed-spectrum estimation.
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Freq. N 30 35 40 45 50 60 80 100

f1 Err.1 SCp 0 0 0 0 0 0 0 0
BIC 19 11 8 4 4 3 0 0

GAIC 73 48 25 4 4 0 0 0
MSE SCp -55.92 -56.45 -57.59 -60.01 -59.30 -62.62 -65.32 -68.79

BIC -56.15 -56.37 -57.52 -60.01 -59.17 -62.65 -65.32 -68.79
GAIC -56.61 -56.60 -58.30 -59.59 -59.04 -63.12 -65.32 -68.79

f2 Err.1 SCp 38 25 10 7 5 0 0 0
BIC 51 40 26 21 20 8 1 0

GAIC 93 81 60 60 47 27 7 0
MSE SCp -49.04 -51.43 -52.38 -54.00 -54.82 -56.64 -59.96 -63.19

BIC -46.09 -51.59 -51.90 -53.67 -54.47 -56.67 -59.92 -63.19
GAIC -46.08 -52.16 -51.71 -54.58 -55.88 -56.15 -59.97 -63.19

Err.2 SCp 0 3 2 0 0 1 2 1
BIC 6 4 5 1 0 1 0 0

GAIC 0 0 0 0 0 0 0 0

Table 6: Type I and Type II errors for Example 1 when SNR2 = -1.00 dB. MSE is computed
for the estimates of the frequencies and it is expressed in dB. The results are reported for 100
runs.

Freq. N 30 35 40 45 50 60 80 100

f1 Err.1 SCp 5 1 0 0 0 0 0 0
BIC 9 8 1 0 0 1 0 0

GAIC 28 20 14 12 9 9 1 0
MSE SCp -58.96 -60.13 -61.20 -63.05 -64.48 -65.73 -71.68 -80.15

BIC -59.54 -59.87 -61.72 -63.53 -64.04 -65.69 -71.68 -80.15
GAIC -59.20 -60.62 -61.99 -63.66 -64.35 -65.66 -71.10 -80.15

f2 Err.1 SCp 32 21 14 1 2 1 0 0
BIC 24 29 20 7 7 4 1 0

GAIC 83 74 66 61 42 22 1 0
MSE SCp -49.97 -53.42 -55.07 -56.00 -42.96 -59.76 -64.03 -64.98

BIC -40.71 -39.15 -55.34 -56.82 -42.73 -60.11 -64.09 -64.98
GAIC -50.24 -53.27 -54.20 -56.21 -58.35 -59.84 -64.09 -64.98

Err.2 SCp 18 18 10 3 6 4 4 3
BIC 54 30 27 22 16 5 4 2

GAIC 10 9 6 1 4 3 2 2

Table 7: Type I and Type II errors for Example 2 when SNR2 = 3.00 dB.



Freq. N 30 35 40 45 50 60 80 100

f1 Err.1 SCp 0 1 0 0 1 0 0 0
BIC 5 8 1 2 3 1 0 2

GAIC 43 32 20 14 18 9 4 6
MSE SCp -52.69 -55.06 -56.26 -58.26 -59.12 -60.96 -64.09 -66.39

BIC -53.15 -54.38 -56.05 -58.34 -59.23 -60.97 -64.09 -66.50
GAIC -52.54 -55.38 -56.47 -58.01 -59.51 -60.93 -64.02 -66.52

f2 Err.1 SCp 2 3 2 0 3 1 4 5
BIC 20 21 16 11 13 11 10 7

GAIC 50 40 27 16 19 15 10 11
MSE SCp -53.61 -54.90 -58.91 -57.97 -60.02 -62.41 -65.47 -69.76

BIC -53.43 -56.14 -59.50 -58.48 -60.90 -62.32 -65.48 -69.67
GAIC -53.23 -54.98 -59.15 -57.59 -60.48 -62.21 -65.70 -69.87

Err.2 SCp 5 11 4 4 5 5 3 8
BIC 24 24 12 9 5 4 1 2

GAIC 0 0 3 0 1 1 0 0

Table 8: Type I and Type II errors for Example 3 when SNR1 = 3.00 dB.

Freq. N 30 40 50 60 70 80 90 100

f1 Err.1 SCp 79 17 5 8 3 2 2 1
BIC 85 23 8 18 17 13 6 4

GAIC 100 77 52 43 34 29 22 17
MSE SCp -42.86 -45.75 -51.69 -54.32 -55.19 -57.47 -58.26 -60.92

BIC -42.75 -46.07 -51.54 -47.16 -55.20 -57.33 -58.22 -60.76
GAIC - -47.81 -52.23 -54.07 -56.13 -46.15 -58.84 -61.14

f2 Err.1 SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0

GAIC 100 62 46 17 4 1 1 0
MSE SCp -48.32 -55.79 -54.60 -59.31 -65.52 -65.26 -65.58 -65.73

BIC -50.14 -56.16 -54.60 -59.28 -65.49 -65.24 -65.58 -65.73
GAIC - -55.54 -55.39 -59.32 -65.41 -65.24 -65.59 -65.73

f3 Err.1 SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0

GAIC 100 62 46 17 4 1 1 0
MSE SCp -45.49 -61.30 -58.20 -60.70 -68.24 -70.78 -82.14 -82.14

BIC -46.99 -61.45 -58.25 -60.31 -68.24 -70.78 -82.14 -82.14
GAIC - -60.73 -59.16 -60.13 -68.40 -70.90 -82.14 -82.14

Err.2 SCp 0 1 7 6 7 5 7 4
BIC 0 5 4 3 5 4 4 2

GAIC 0 0 0 1 0 1 3 2

Table 9: Type I and Type II errors for Example 4 when SNR1 = -3.00 dB.



APPENDIX

On the derivation of SC formula (10)

To check the conditions for the applicability of the SC formula of Qian and Künsch in our
particular case, we resort to the closed-form expression of JN (θ) from the equations (4)-(7). We
list below the conditions as they are given in [7]:

C1. JN (θ) is positive definite.

It is easy to check that all the eigenvalues of JN (ξk) are strictly positive. The covariance
matrix R(a) is positive definite for any M [30], therefore JN (a, τ) is also positive definite,
and the condition C1 is verified.

C2. The minimum eigenvalue of JN (θ) is of order O(N) as N → ∞.

Two of the eigenvalues of JN (ξk) are O(N) and the third one is O(N3). As each eigenvalue
of JN (a, τ) is O(N), we conclude that C2 is satisfied.

C3. |JN (θ1)|−1||JN (θ1)| − |JN (θ2)|| ≤ c||θ1 − θ2||, ∀θ1,θ2 ∈ Θ, where c is a finite constant.

For any θ, we have

|JN (θ)| = N5K+M+1 |R(a)|
2τM+2

K
∏

k=1

|G(ξk, a)|, (15)

which implies that the left-hand-side term in the inequality C3 is finite and it does not
depend on N . As the condition C3 is easily verified for θ1 = θ2 , we analyze only the
case θ1 6= θ2. Thus we have min

θ1,θ2

‖θ1 − θ2‖ > δ, where δ is given by the precision

used to store the values of the parameters. To circumvent some technical difficulties,
we consider firstly one sine-wave (K = 1) in white noise (M = 0). Without loss of
generality, we assume 0 < αmin < α1 < αmax < ∞ and 0 < τmin < τ < τmax < ∞.
Elementary calculations lead to the inequality max

θ1,θ2

|JN (θ1)|−1||JN (θ1)| − |JN (θ2)|| < ∆,

where ∆ = (αmax/αmin)4 (τmax/τmin)5. Therefore, condition C3 is verified by selecting
c = ∆/δ. To gain more insight, we assume next K = 1 and M = 1. As the noise
model is stable, the AR coefficient is a non-zero number from the interval (−1, 1). If
supplementarily, the precision δ is used to store the value of the AR coefficient, then we
get immediately a1 ∈ [−1 + δ,−δ] ⋃[δ, 1 − δ]. Taking α1 and τ to be bounded as in the
white noise case, it is not difficult to show that max

θ1,θ2

|JN (θ1)|−1||JN (θ1)| − |JN (θ2)|| < Υ,

where Υ = (αmax/αmin)4 (τmax/τmin)5 ((2 − δ)/δ)6. Since min
θ1,θ2

‖θ1 − θ2‖ > υ, we choose

c = Υ/υ and the condition C3 is verified. We emphasize that the precision used in this
proof for the model parameters does not depend on the number of samples N .

C4. ln |JN (θ)| = o(N).

Using the expression (15) for |JN (θ)|, we readily obtain lim
N→∞

ln |JN (θ)|
N

= 0, thus C4 is

verified.



We apply next the SC criterion from [7]. For simplicity we ignore the terms that do not depend
on N , and the SC formula becomes:

− log f(yN ; θ̂) + log |J̃N (θ̂, yN )|1/2 +
3K+M+1

∑

i=1

log(|θ̂i| +N−1/4)

+
3K+M+1

∑

i=1

r∗(N1/4|θ̂i| + 1) +O(N−1/4), (16)

where log(·) is the logarithm base 2, θ̂ denotes the ML estimates, and J̃N (θ̂, yN ) = −∂
2 ln f(yN ; θ)

∂θ∂θ⊤

∣

∣

∣

θ=
ˆθ

is the observed FIM. For any x > 0, r∗(x) = log(log x) + log(log(log x)) + · · ·, where the sum
continues as long as the iterated logarithms are strictly positive. The approximative formula
(10) is obtained from (16) after operating the following changes:

• J̃N (θ̂, yN ) is replaced with JN (θ̂).

• An O ((3K +M + 1) log logN) term is discarded.

• log(·) is replaced with ln(·).

Remark 1 The two-step encoding procedure adopted in [7] employs first a uniform quantization
of Θ that is performed with the same precision for all the parameters. The term N−1/4 in (10)
is due to the option from [7] to select this precision based on the minimum eigenvalue of FIM.
Remark 2 It is recommended in [7] to consider in the SC expression also the term given by the
number of parameters divided by two and multiplied by log ρ, where ρ is the largest eigenvalue of
JN (θ̂)−1/2J̃N (θ̂, yN )JN (θ̂)−1/2. We prove below that, under mild conditions, ρ does not depend
on N , hence we ignore the log ρ term in (10).

Inspired by the expression of the asymptotic FIM, we assume there exist the non-singular
matrices A and B, and the diagonal matrix CN such that JN (θ̂) = CNACN and J̃N (θ̂, yN ) =
CNBCN . Supplementarily all the diagonal entries of CN are powers of N , and the entries of
A and B do not depend on N . With the notation Z = JN (θ̂)−1/2J̃N (θ̂, yN )JN (θ̂)−1/2, we

have Z = JN (θ̂)−1/2
(

J̃N (θ̂, yN )JN (θ̂)−1
)

JN (θ̂)1/2, thus Z and J̃N (θ̂, yN )JN (θ̂)−1 are similar.

Moreover, J̃N (θ̂, yN )JN (θ̂)−1 = CNBA−1C−1
N , which leads to the conclusion that Z and BA−1

are also similar. As the eigenvalues of BA−1 do not depend on N , ρ is also independent of N .
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