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Abstract

Stochastic complexity (SC), or equivalently, the negative logarithm of the NML (Normal-
ized Maximum Likelihood) was proven to be successful for the estimation of model structure
in the linear quadratic regression problem. Recently, the results have been extended to au-
toregressive (AR) and autoregressive moving average (ARMA) models, whereas most of the
information theoretic methods currently applied for determining the number of sine-waves
in additive Gaussian noise still rely on asymptotic two-terms formulae where the first term
is given by the minus maximum log-likelihood, and the second one is a penalty coefficient
that depends on the number of parameters and the sample size. Additionally, the noise is
assumed to be white, which is not realistic in most of the practical applications. Our main
purpose is to apply sharper approximations of SC for estimating the number of sinusoidal
terms in a time series contaminated by AR noise. This is known to be challenging because we
have to solve a mixed-spectrum estimation problem. We elaborate on two different SC cri-
teria that involve the Fisher information matrix (FIM) of the investigated model. For small
and moderate sample sizes, the experimental results show that SC compares favorably with
other well-known criteria such as: Bayesian information criterion (BIC), corrected Kullback
information criterion (KICc) and the generalized Akaike information criterion (GAIC).

1 Introduction and preliminaries

We address the estimation of the number of sinusoids observed in additive noise with unknown
correlation structure. To formulate the problem, we consider the data model

Yy = wzi+e, t€{0,...,N—1},

K
w = Y o cos(wit + d), (1)

k=1

*The contribution extends the results of the paper “Stochastic complexity for the estimation of sine-waves in
colored noise”, authored by C.D. Giurcaneanu and presented at ICASSP 2007, Honolulu, Hawaii, USA.



where 3; denotes the measurements, x; is the noise-free signal and e; is the colored Gaussian
noise.

To ensure the identifiability of the parameters, we assume as usual that the amplitudes oy,
are strictly positive and the frequencies wy belong to the interval (0,7) [1]. The frequencies are
distinct and, without loss of generality, w1 < - -+ < wg. Both the amplitudes and the frequencies
are non-random parameters that will be estimated from the available measurements.

Two different hypotheses will be considered for modeling the phases ¢y € [—m,7): Hg,, - the
phases are unknown deterministic constants; Hyp - the phases are independent and umIf)ormly
distributed random variables that are also independent of e;. For both assumptions, the statis-
tical properties of y; have been investigated in previous studies, and more details can be found,
for example, in [2].

In line with the approach from [2][3][4] and the references therein, we model the noise e; as
a stable autoregressive (AR) process with order M:

M
— Z AmEt—m, + Wt, (2)
m=1

where w; is a sequence of independent and identically distributed (i.i.d.) Gaussian random
variables with zero mean and variance 7. Since we consider only the case of real sinusoids in real
AR noise, we emphasize that the white random process w; and the coefficients a,,, 1 < m < M,
are real-valued.

When the noise is white, or equivalently M = 0, it is well-known the definition of the local

o az/2

SNR for the k-th sinusoid: SNR, = ——.
T
a2 /2

H(exp(on) P
modeled as the output of an exponentially stable and invertible linear filter H(¢~!) whose input
is a sequence of i.i.d. Gaussian random variables with zero mean and variance 7. We note that
¢! is the unit delay operator and j = /—1. For the AR noise defined in equation (2), we get
immediately

An extension of this definition, namely SNRy =

was also introduced in the literature [5] for the case when the additive noise is

a?/2
SNRy = ———, 3
T AR ?)
where A(wy) = 1+ 3™ a,, exp(—jmwy,). A similar formula can be written without difficulties

for the case when the addltlve noise is a moving average process.

Based on (1) and (2), we observe that the parameters of the model are 8 = [¢ a 7], where
€ =1[¢] ---€}]" with the convention &, = [a wy, ¢x]' for the k-th sine-wave. The notation a
is employed for the vector of the AR coefficients [a; - - - aps] "

Because the model structure v = (K, M) is not known a priori, we resort to the traditional
model selection procedure that comprises two steps:

(a) for all pairs of integers v = (K M) that satisfy 0 < K < Kpoe and 0 < M < Mz,
estimate the model parameters 0 from the observations 4V = yo,...,yn_1 ;



(b) evaluate an information theoretic criterion for all +’s considered at the first step, and
choose the model structure 4 that minimizes the criterion.

The most popular rules for model selection can be reduced to a common form with two terms:
the first one is the minus maximum log-likelihood, and the second one is a penalty coeflicient
that depends on the number of parameters of the model and, for some criteria, also on the
sample size N [6]. In general, the criteria used in practical applications are derived for N — oo,
and the asymptotic approximations could potentially yield false conclusions when the sample
size is small or moderate.

During recent years, the advances in stochastic complexity (SC) have led to new exact
formulae or to sharper approximations for large classes of models [7][8][9], but the use of the
new results in signal processing is scarce. We illustrate next how SC can be applied to estimate
the structure for the model of sine-waves in Gaussian AR noise.

The rest of the paper is organized as follows. In Section 2, two different approximative
formulae for SC are revisited: one proposed by Rissanen in [8], and another one introduced by
Qian and Kiinsch in [7]. As the computation of the Rissanen sharp approximation is difficult for
the sinusoidal regression model, we focus on the Qian and Kiinsch formula, and we investigate
its properties in Section 3. Because the SC expression involves the determinant of the Fisher
information matrix (FIM), the calculation of FIM is addressed in Section 4. SC and three other
well-known model selection criteria are compared in Section 5 to evaluate their performances in
estimating the number of sinusoids from simulated data.

2 SC for sine-waves in AR noise

We focus on the expression of SC for the class of the density functions {f(y";0)} defined
by the equatlons (1) and (2). For the maximum likelihood (ML) estimates we employ the
notation 0( N whenever it is necessary to emphasize on the data set. If it is clear from the
context which measurements are used for estimation, then the simpler notation 0 is preferred
to @(yN). Therefore In f(y™;0) = In f(y™;0(y )) is the maximum log-likelihood, © denotes
9*In f(y™:0)
00007
The Normalized Maximum Likelihood (NML) density function is given by [10][8],

Fy™;0(y™))
fo:?)(x ( N ( N))de7

and the stochastic complexity is defined as

the parameter space, and Jy(0) = E [— ] is the Fisher information matrix (FIM).

fN K, M) =

SCXyN;K]AJ):1n<1ﬁﬂyN;K3A10.

The NML criterion has two important optimality properties [11] that recommend it to be used
as a yardstick in model selection. The application of the NML criterion is appealing, but its
computation is not very easy for all classes of models. Under mild assumptions on ML estimates,
SC is approximated in [8] with a formula that involves the integral of the squared root of the



FIM determinant. The approximation is valid only if FIM divided by N, the number of samples,
has a finite limit as N — oco. The condition is verified for most of the models used in signal
processing, but not for the sinusoidal regression model [6]. We show next how the results from
[8] can be extended to the sinusoidal regression model, and we also point out the difficulties
with evaluating the integral term. Due to the troubles with the integral, we resort to another
SC approximation that was introduced by Qian and Kiinsch in [7].

2.1 Sharp approximations of SC

As the Rissanen formula involves the asymptotic FIM, the following result is very useful for
our application: when N is large, under both Hdp and Hyp, Jn(0) is block-diagonal such that
the block Jn(&;,) corresponds to the parameters of the k-th sine-wave and the block Jy(a, 1)
corresponds to the parameters of the AR noise [2][5]. More precisely, we have

In(&1)
In®) = o € (4)
N\SK
JN(CI,T)
where

JN(sk) = QNG(€k7 a, T)QNa (5)

NYZ 0 0 /a7 0 0
Qn = 0 N%2 0 and G(&,a,7)=SNR, | 0 1/3 1/2 |. (6)

0 0 N2 0 1/2 1

Here SNR; denotes the local SNR for the k-th sinusoidal component and its formula is given in
(3). The entries of Jy(a,7) are not influenced by the parameters &, hence Jy(a,7) is the same
as in the pure AR case. Based on results from [12], we can write

_N[R(a) 0
JN(C[,T) - ? |: 0 1/(27_) :| ’ (7)
To ot TM-1
where R(a) = : : is the covariance matrix of the AR process defined in (2).
TM-1 T

Ik ® Qn 0

0 NY2 5 Iy
bol ® denotes the Kronecker product, and for a strictly positive integer p, I, is the p x p identity
matrix. We adopt the convention that 0 denotes a null vector/matrix of appropriate dimensions.

1
Based on (4)-(7), we note that A}im NJN(O) is not finite, whereas J(6) = A}im Cy'IN(O)CH
—00 —00

is finite [6]. Moreover, the ML estimates satisfy the Central Limit Theorem: the distribution

Additionally we define the diagonal matrix Cy = [ , where the sym-



of Cn(6 — 6) converges to the Gaussian distribution of mean zero and covariance J(8)~! [4].
These properties allow us to extend the results from [8] to the sinusoidal regression model for
which the SC formula is given by

SK+M+1
2

We use the notation SCr to differentiate this particular approximation of SC by other formulae
that will be discussed later.
Remark that J(@) is a block-diagonal matrix, and %R(a, 7) is the block corresponding to
1/2
)

) N
SCr(y™: K, M) = —In f(y":0) + o+ 1n/® 13(6)]/240 + o(1). (8)

the parameters of the Gaussian autoregressive noise. Computing the integral of ‘%R(G,T
over the parameter space is a problem that arose also in the context of order estimation for AR
processes [13]. Since it is hard to find a closed-form expression of the integral, the authors of
[13] resorted to Monte Carlo techniques for its evaluation. Our task here is even more difficult
because the other blocks of J(8) must be also considered when calculating the integral term.
Hence the computational burden discourages us to apply formula (8) for estimating the number
of sine-waves in Gaussian autoregressive noise. We show next that SC expression (8) becomes
simpler when the noise is white (M = 0). In this case, @ = [¢" 7]T, and elementary calculations
lead to

K 2

SCr(y™; K,0) = —In f(y™;0) + 5K2+ L % +In /@ 1 /2;61( 7 71?3’;22‘;‘/’; de +o(1). (9
To ensure that the integral term is finite, we have to assume that all amplitudes have an upper
bound, ap < qmer < 00, and the noise variance has a strictly positive lower bound, 7 > 7,5, > 0.
Once these conventions are adopted, the estimated number of sine-waves will depend on @qs
and Tpyn. Note that g, and 7, are just arbitrary values if we do not have a priori knowledge
on the analyzed signals. The troubles with the computation of SCr make us to prefer the SC
formula that was derived in [7]:

3K+M+1
SCy™; K, M) = —In f(y™;0) + n|In(O)]'*+ D (|6 + N"'/%) (10)
i=1

A similar approximation of SC was already utilized in [14] to estimate K, the number of
sinusoids. In [14], the noise variance 7 is treated as a nuisance parameter in the sense that the
code length to describe it is not included in the SC formula. Here we consider in (10) the cost for
transmitting the value of the 7 parameter, and this is the main difference between our approach
and the one from [14]. We check in the Appendix how the conditions for the derivations from
[7] are fulfilled for the model of sinusoids in Gaussian AR noise. We also give in the Appendix
more details on the accuracy of the approximation in formula (10).

In the next Section, we investigate the asymptotic behavior of the SC criterion and we
show its relation with well-known selection rules like Bayesian information criterion (BIC) [15],
Minimum Description Length (MDL) [16], and the mazimum a posteriori (MAP) probability
criterion [17]. During the asymptotic analysis, we check also the necessary conditions for the
consistency [18] of SC. For small and moderate sample sizes, we draw a parallel between SC and
two other recently introduced model selection methods: Conditional Model Estimator (CME)
[19] and the Exponentially Embedded Families (EEF) [20].



3 Some properties of SC and its relation to other model selec-
tion criteria

3.1 BIC, MDL and MAP

Based on the results from the Appendix, we obtain readily the well-known asymptotic identity

p SK +M+1
A}jm In|In(0)1? = %ln N, and it is easy to notice that the sum of the first two
—00

terms in SC is equivalent with the Bayesian information criterion:

BIC(y™; K, M) = —In f(y";0) + Mz& In N. (11)
More details on the derivation of BIC can be found in [6] and the references therein. In [21], it is
investigated the possibility of improving the performances of BIC for small and moderate sample
sizes by considering two terms that are neglected in the asymptotic formula (11): the first one
involves the logarithm of the determinant of the observed FIM, and the second one is mainly
determined by a prior over the family of the analyzed models. As the sinusoidal regression model
is not discussed in [21], we restrict our interest to the celebrated BIC selection rule (11), and we
do not consider in simulations any sharp approximation of the Bayesian information criterion.
We mention for completeness that formula (11) was also obtained in [3] as a crude version of
the MDL, and its consistency was demonstrated in the same study. In [17], the use of the MAP
methodology in conjunction with asymptotic approximations led also to (11) for the particular
case of white noise.

3.2 A short note on the consistency of SC for M =0

For ease of presentation we investigate the consistency of the criterion SC’(y"V; K,0) = SC(y"V; K, 0)—
% In N. It is evident that SC" and SC are equivalent selection rules because % In IV is independent
of K. We focus on the last term in (10), and for simplicity we assume M = 0. If zero does not
belong to the domain of the parameter 6;, then 0; # 0 and In(|0;| + N~/4) is much smaller than
310N [7]. Hence the term In(|0;| + N~/4) becomes important only when 6; ~ 0. Since among
the & parameters only the phases can be equal to zero, the penalty term in SC’ formula takes
values between % In N and % In N when N is large. Based on formula (10), we can write

SC'(y"V; K,0) = —1In f(y"; ) + K((N, 6),

: 9 < ] 5 ¢V, 0) ((N,0)
and asymptotically 3In N < ((N,0) < 5InN. Thus A}gnoo N = 0 and 1}\151: 1Oréf N >

1. If supplementarily the model (1) verifies $& ¢ {%f--,W}Vk € {1,...,K}, all the

conditions for the application of the Theorem from [18] are satisfied. We select K to be the
minimum nonnegative integer for which SC’(y"™; K,0) < SC'(y"; K + 1,0), and the Theorem
guarantees that K converges almost surely to the true number of sinusoids.



3.3 CME, EEF and an example from [20]

In [20], it was shown that using the determinant of FIM as a penalty term could lead to modest
results when the sample size is small. As the example from [20] involves sinusoidal signals, we
briefly discuss it in the sequel: the noise-free signal x; is generated like in (1) by a sum of K = 3
sine-waves whose parameters are £, = [1 0.27 0]7, €& = [1 0.227 0]" and & = [1 0.247 0]".
The white noise e; is Gaussian with variance 7 = 10, and the selection is restricted to the class
of nested models M,;, k € {2,4,...,16}, defined by

K/2

My @y = Zakcos(wkt+¢k) +e, t€40,...,N—1},
k=1

where w, = 27 (0.1 + %). Since the frequencies are known, M, reduces to the linear regression

for which the observation matrix has the expression

1 0 e 1 0
cos(wi(N — 1)) sin(wi(N —1)) - cos(we/a(N —1)) sin(wy/o(N —1))
and the vector of the unknown parameters is given by v, = [A1 By--- A,/ BK/Q]T, where
Aj = ay cos ¢y, and By, = —ay sin ¢, for all k € {1,...,x/2}. The noise variance 7 is assumed to

be known. Remark that the number of parameters for the M, model is k. Applying the CME
criterion is equivalent with choosing the model M; that minimizes [19]

RSSx H, H,
CME(y"; k) = = +In 2“7”_

)

where RSS,, is the residual sum of squares obtained when fitting the M, model to the observa-
tions yV. In [20], it was utilized the approximation H! H, ~ (N/2)I, to show that the second
term in the equation above is negative when N < 125, thus the penalty term of the CME cri-
terion decreases when k increases. Since for the models considered in this example, %HIH,{
coincides with the FIM [1], Kay concluded in [20] that all criteria whose penalty factor is given
by the determinant of FIM will always choose the most complex model when the sample size
is small or moderate. To circumvent such difficulties, he introduced the EEF criterion that, for
linear regression models, amounts to select the M; model that minimizes

EEF(y": ) = [—Qn . (m i 1)] u <Q“ - 1) | (12)
K K
H.v 2
where Q,, = M, the entries of v,; are the ML estimates of the parameters, and u(-) is the

step unit functiog [20].

We use the same example to investigate if similar drawbacks appear when the model selection
relies on the SC criterion. The FIM-based SC approximation [8] was computed in [22] for the
linear regression case, and it involves the ranges of the parameters, which is not convenient as



we have already pointed out in Section 2.1. Fortunately we do not need to resort to such an
approximation because Rissanen gave in [9] a very elegant solution to the problem of evaluating
SC for the linear regression model. For the analyzed example, we prefer to apply the result from
[9] in the form that was worked out in [23]:

1 K
SClr(y™; k) = - Zy?—Q,{—f—ﬁ(lni%—l) + Ink,

where the notations are the same like in (12). We observe that unlike the CME criterion, SClr
does not contain the term given by the determinant of FIM. Moreover, the expressions of SClr
and EEF are very similar. It is easy to note that —(@), decreases with k. Let us consider first

the case when O > 1. In general, the term & <an“ + 1> increases with s [20], hence it
K K

is a penalty term for both EEF and SClr. Remark that in this case, due to the Ink term,
the penalty will be more stringent for SClr than for EEF. Formula (12) can be re-written as
EEF(y"; k) = kh(Q/K), where h(z) = —z 4+ Inz 4 1,Vz € (0,00). Because h(z) is strictly

negative for x > 1, the criterion EEF has the same property. Whenever Qr < 1, EEF(y"; k)
K

takes value zero, and consequently the model M, will not be selected. For SClr, if % is small,
K

Qr

the term <ln — + 1) could become negative and In x will remain the only penalty term.
K

For Gaussian linear regression with known noise variance, another SC criterion was derived
in [24] by using the universal mixture model instead of the NML:

N-1
SChy(y"; k) = L ny—l—% |:—Q,.;+H (ln%—l-l) —l—lnN] u <Q'{ - 1) . (13)

K K

As it was pointed out in [24], SChy coincides up to the %th additive term with the empirical
Bayesian selection rule proposed in [25]. Comparing (12) and (13) we also note that EEF and
SChy are essentially the same.

4 Computational issues

The use of (10) is very appealing from computational viewpoint, but it was already pointed
out in [7] that (10) is not invariant under re-parametrization. Due to this reason, we prefer to
use as parameters for the AR noise the magnitudes and the angles of the poles instead of the
coeflicients.

More precisely, let us assume that the poles of the AR noise model are g1, ..., gy if the
poles g1,...,gn, are real-valued, then the pure complex poles gar,+1,--.,gam occur in complex
conjugate pairs because the coefficients a are real-valued. Instead of @ = [¢ a 7], we will apply
the parametrization n = [€ g 7], where g = [g1 ... gar, |90, 1] Vgnry 1 - - - \gri—1| Vgpy )", and
for a complex pole g;, the symbol 14, denotes its angle. Remark the range of the entries of g: we
have g; € (—1,1) for 1 <+ < M;, and for the rest of the parameters |g;| € (0, 1) and 4, € (0, ).



SC | Hypothesis In(E) Jn(g)
SCp Hrp exact exact
SCa | Hrp/ Hdp asymptotic | asymptotic
SCe Hdp exact exact

Table 1: Nomenclature for SC when various formulae for FIM are used in calculations.

To calculate the determinant of the FIM with the new parametrization, we use the general
result on the transformation of parameters [1] in conjunction with the result of equation (15)
from [2]. For writing the equations in a more compact form, we define the (M + 1) x (M + 1)
D(a,T) Oan,

D(g,7) On

and otherwise takes value zero. Next we obtain the following identities:

matrix [ ] whose (m,n)-th element is ifl1<m,n<M,itisoneif m=n=M+1,

I3k 0 In(€) 0 L3k 0
[In(n)| = pan]’ ‘ N ' D(a,r)
0 [D(gﬂ} 0 JIn(a7)f| O [D(gm}

= [InEIJIn(g,7)]

The block Jx (&) that corresponds to the signal parameters can be evaluated with the fast
algorithms from [2]: the exact Jy (&) is different for Hyp and Hyp, but the asymptotic Jy(§)
has the same form under both hypotheses. This asymptotic form is well-known [5], and it is
also given in Section 2.1. Jy(a,7) has the same expression as in the pure AR case, and for its
calculation we resort to the exact and the asymptotic formulae from [12]. The conversion from
Jn(a,7) to Jn(g,7) can be easily performed with the results from [26]. A discussion on the
asymptotic form of Jx(g,7) can be found in [13].

Applying the exact or asymptotic formulae for Jy (&) and Jn (g, 7) leads to various expres-
sions for SC. In Table 1, we explain the nomenclature for SC when FIM in (10) is evaluated
with various formulae.

For better understanding the differences between SCp, SCa and SCe we resort to one of the
examples used in [2] to analyze the Cramer-Rao bound (CRB). Let us consider the case of one
single sinusoid (K = 1) in AR noise with order M = 2. We choose oy = 1, w1 = 7/2, the
modulus of the AR poles is |g1| = 0.9, and the sample size is N = 35. The angle v, takes values
between 0.02 and (7 — 0.02), and the variance 7 is selected such that to keep constant SNR; =
3 dB. Evaluating the differences between SCp, SCa and SCe reduces to calculate In |J y(n)|'/?
with various formulae. Because under Hdp the exact Jn (&) depends on the phase ¢q, for

each 14, we compute In|J ~N(m)|Y/? for sixty different values of ¢ that are equally spaced in
[, ), and the largest (37) and the smallest (A) results are plotted in Figure 1. We plot in
the same Figure the values of In|Jx(n)|*/? used in the calculation of SCp (dash-dot line) and
SCa (continuous line). For sake of comparison, we draw also a horizontal line that corresponds
to % In N. We can easily extend the conclusions on CRB drawn in [2], by observing the

’1/2

significant difference between the asymptotic approximation of In |J () and its exact value

when the line spectrum is close to the spectral peak of the noise. Remark also in Figure 1 that



1/2
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Figure 1: The term In |Jx(n)|'/? versus the phase g4, of the AR pole when the sample size

is N = 35. In the case of the SCe formula, In|Jy(n)|/? is calculated for sixty different
values of ¢; € [—m,7), and the largest (7) and the smallest (A) results are plotted. The
dash-dot line and the continuous line are for the values of In |Jx(n)|'/? as they are used
in the evaluation of the SCp and SCa, respectively. The horizontal line with a x at each
data point corresponds to % In N.

the value of In|Jx(n)|"/? used to compute SCp is approximately equal with the average of the

maximum and the minimum of In |J x(n)|'/? employed in the calculation of SCe.
In the next Section we investigate how the structure estimation performances of SC are
influenced by the use of various formulae for FIM.

5 Experimental results

In all the examples presented next, we resort to the RELAX algorithm that performs a de-
coupled parameter estimation for the sinusoids and the AR noise [4]. In our simulations we
have used for the implementation of RELAX the Matlab functions that are publicly available
at http://www.uni-kassel.de/fb16/hfk/neu/toolbox.



Asymptotically both RELAX and the maximum likelihood (ML) yield statistically efficient
estimates, and the use of RELAX is recommended due to its lower computational burden [4][5].
For v = (K, M), let % . be the parameters of the k-th sinusoid estimated with RELAX.
We denote & = y; — Zle Gy, cos(wit + qgk), and let a be the coefficients of the AR noise
determined from the sequence ég,...,éx_1. We further define the residual sum of squares as

2
RSS, = Zi\;l [ét + 2%21 dmét_m} , with the convention that é; = 0 for ¢t < 0.
The performances of SC are compared in our simulations with BIC (11) and two other
criteria: GAIC and KICc. GAIC is a generalized Akaike Information Criterion that was tradi-

tionally used in conjunction with the RELAX algorithm [4]. It seeks for the model structure ~
that minimizes

GAIC(y"; K, M) = NInRSS, + 8(3K + M + 1) In(In N).

KICc was derived in [27] as a unbiased Kullback Information Criterion for linear regression
models with i.i.d. Gaussian noise. Since then its application was extended also to other classes
of models, see for example [28] and the references therein. Applying KICc is equivalent with
selecting the model structure « that minimizes [27]

(k+1)N N -k
N—n—Q_Nw( 2

KICc(yN; K, M) = —2In f(yV;0) + 2 ) + Nln g (14)
where K = K + M and 9(-) is the digamma function [29]. In SC (10), BIC (11) and KICc (14),
—In f(yV; é) is evaluated as % In RSS,, after discarding the terms that do not depend on +.

In our settings, the maximum number of sinusoids is K4, = 8, and the maximum order of
the AR process depends on the number of the available measurements: M, = Lln2 N J — 1.
The formula for M,,,, is derived from the condition used in [3] to ensure the consistency of the
BIC criterion. Supplementarily, each pair (K, M) must verify the inequality 3K + M < N — 2
to be a candidate for the model structure.

Examples 1-3 are taken from [3], where the estimation results are reported only for N > 128.
Since our main interest is on small and moderate sample sizes, we evaluate the performances
of the information theoretic criteria for N € {25,...,100} and various levels of the local SNR.
In Examples 1-3, we consider K = 2 sinusoids whose parameters are & = [2/2 1 0]T and
€, =[271/220]7. The additive noise is generated as follows:

Example 1: e; = &; (white noise),

Example 2: e, = —0.81e;_2 + &; (autoregressive noise),

Example 3: e; = &, + 1.65,—1 + 0.64¢4_o (moving average noise),

where g; is a sequence of i.i.d. Gaussian random variables with zero mean and variance chosen
such that the local SNR’s take the desired values.

Example 4 is taken from [4] and modified such that the observations y~ are real-valued. The
number of sinusoids is K = 3 and their parameters are £, = [2 0.107 0]7, & = [2 0.807 0]"
and €3 = [2 0.847 0]". The noise is simulated by the autoregressive process e; = 0.85¢;_1 + ¢,
where the significance of ¢; is the same as above.

We focus on the capabilities of the tested criteria to estimate correctly the number of sinusoids
K. For the Examples 1-4, we count the number of correct estimates for 100 runs when the local
SNR’s and the sample size N take various values. The results are reported in Tables 2-5.



SNR,=-3.00 dB
N 30 40 50 60 70 80 90 100
SCp |41 61 79 86 94 94 97 100
SCa |41 63 76 84 94 93 97 100
SCe |26 52 64 63 78 8 89 89
BIC |25 41 58 68 87 8 90 96
KICc | 534 80 77 74 61 45 44 40
GAIC| 3 6 13 22 38 59 65 67

SNR,=-1.00 dB
N 30 35 40 45 50 60 80 100
SCp [ 62 72 88 93 95 99 98 99
SCa | 64 67 71 89 8 91 94 98
SCe |44 59 71 8 82 8 8 96
BIC |43 56 69 78 80 91 99 100
KICc | 81 81 79 77 78 67 49 38
GAIC| 7 19 40 40 53 73 93 100

SNR»=0.00 dB
N 25 30 35 40 45 50 75 100
SCp [ 60 79 93 96 97 98 98 99
SCa | 60 68 76 76 8 88 94 97
SCe |45 68 75 80 81 90 92 96
BIC | 37 51 68 82 8 88 98 99
KICc | 75 89 89 92 91 80 56 40
GAIC| 6 18 37 52 67 74 97 100

Table 2: Example 1: the counts indicate for 100 runs the number of times the number of sinusoids
was correctly estimated by each criterion. The best result for each sample size IV is represented
with bold font.

We note that the estimation results are similar with those reported in [14]. SCp is the best
among the SC formulae and its performances are closely followed by SCa. For both SCp and
SCa, FIM of the sinusoidal components are decoupled [2], which is a serious computational
advantage. From the results reported in [2] together with the outcome of the Example discussed
in Section 4, we can draw the conclusion that the shape of the noise spectrum has more influence
on SCp than on SCa, and this explains the superiority of the SCp criterion. The performances
of SCe are very modest because FIM used in SCe can be ill-conditioned for small and moderate
sample size when the number of sinusoids is two or larger [2].

When the sample size N is smaller than 80, SCa is superior to BIC and GAIC. This is a
straightforward consequence of the asymptotic approximations applied in the derivations of the
BIC and GAIC criteria. KICc estimates for the number of sinusoids are remarkably correct
when N < 40, but the number of correct estimations yield by KICc declines when N increases
such that for N > 80 the reported results are very modest.



SNR»=1.00 dB
N 30 40 50 60 70 80 90 100
SCp |26 63 76 81 90 87 87 92
SCa | 25 53 74 78 87 84 86 92
SCe |24 34 74 79 89 87 87 91
BIC 9 41 61 76 8 86 89 93
KICe | 23 36 35 37 42 36 33 43
GAIC| 5 12 28 42 64 78 89 93

SNR2=3.00 dB
N 30 35 40 45 50 60 80 100
SCp [ 50 61 76 96 92 95 96 97
SCa | 44 52 60 86 8 93 95 97
SCe |41 46 34 50 88 88 96 97
BIC |22 41 53 71 77 91 95 98
KICc | 29 44 45 38 42 43 46 45
GAIC | 7 17 28 38 54 75 97 98

SNR2=5.00 dB
N 25 30 35 40 45 50 75 100
SCp [ 36 63 81 88 90 95 95 99
SCa |41 58 73 51 67 91 93 99
SCe |27 54 57 21 15 89 94 99
BIC |16 28 65 57 77 8 99 100
KICec | 29 40 57 54 47 52 50 44
GAIC | 14 16 32 47 60 72 100 100

Table 3: Example 2: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

We extend our analysis by counting the Type I and Type II errors. Let fr = wy/(27) and
similarly fi = & /(27). Since K and K are not necessarily equal, we take K = min(K, K).
We select the indices {i1,...,ix} C {1,...,K} and {j1,...,jx} C {1,..., K} such that |f;, —
fisls -5 fix = fic| are the smallest entries of the set {|fi — fj| : 1<i< K,1<j < K}. For
each k € {1,...,K}, fjk is deemed to be the estimate for f;, . As usual, a Type I error is counted
in connection with the frequency f; if none of the estimated frequencies are assigned to fi, and
a Type II error is counted whenever K > K. We compute also the mean-squared errors (MSE)
for the frequency estimates.

For brevity, we report in Tables 6-9 the Type I and Type II errors together with the MSE
for one single experiment conducted in each Example. In our comparisons, we consider SCp and
the asymptotic criteria BIC and GAIC.

Because in Example 2 the simulated noise is an autoregressive process, we propose to analyze
more carefully the data shown in Table 7. Remark that only GAIC has difficulties in recovering
the first harmonic when N > 35, and recovering the second harmonic whose local SNR is smaller



SNR;=1.00 dB
N 30 40 50 60 70 80 90 100
SCp |64 85 85 91 78 88 88 85
SCa | 51 58 61 69 67 80 82 81
SCe |59 75 83 91 77 8 88 85
BIC |32 55 58 73 70 78 70 78
KICec | 60 69 65 75 59 58 58 59
GAIC | 11 39 45 62 63 72 63 73

SNR;=3.00 dB
N 30 35 40 45 50 60 80 100
SCp |93 86 94 96 92 94 93 87
SCa | 60 60 60 61 67 71 84 86
SCe |8 74 81 91 89 94 93 87
BIC |56 55 72 80 82 8 89 91
KICe | 82 7 75 76 77 72 62 57
GAIC | 50 60 70 84 80 81 90 89

SNR;=5.00 dB
N 25 30 35 40 45 50 75 100
SCp |97 96 95 97 94 96 92 94
SCa | 61 58 61 68 61 59 82 89
SCe |83 8 8 8 88 96 92 94
BIC |53 71 72 8 80 86 93 93
KICec | 90 89 81 8 79 81 63 59
GAIC | 45 75 85 95 93 93 95 95

Table 4: Example 3: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

posses problems to all the criteria. Note for SCp that the number of Type I errors connected
with fo decreases fast with the increase of the sample size. For GAIC, the number of Type II
errors is always small, but many Type I errors occur even for N = 60. This is a clear sign that,
for small N, GAIC underestimates the number of sinusoids. The computed MSE is almost the
same for all the investigated criteria and this is natural because the evaluation of SCp, BIC and
GAIC is based on the estimates provided by the RELAX algorithm.

Final remarks

The new results on SC for the sinusoidal regression model illustrate very nicely the main idea
that SC is not just the minus maximum log-likelihood term penalized with gln N, where k is
the number of parameters and N is the number of samples. The most important achievement
is to show that, for small and moderate sample sizes, the adequate use of SC could improve the
estimation performances even for problems that have been intensively researched in the past, as



SNR1=-5.00 dB
N 30 40 50 60 70 80 90 100
SCp |24 65 81 74 70 70 81 &4
SCa |22 65 81 74 70 70 81 85
SCe |32 64 70 66 63 66 79 83
BIC |15 53 79 64 65 69 70 79
KICc |49 75 79 70 70 67 73 71
GAIC| 0 3 19 39 49 64 64 72

SNR;=-3.00 dB
N 30 40 50 60 70O 80 90 100
SCp [ 20 82 88 86 90 93 91 95
SCa | 20 83 88 86 90 91 84 &9
SCe |33 71 80 78 83 87 8 92
BIC |13 72 88 79 78 8 90 94
KICc | 51 83 8 81 80 78 74 72
GAIC| 0 23 48 56 66 70 75 81

SNR;=-1.00 dB
N 30 35 40 45 50 60 80 100
SCp [ 30 80 90 93 99 90 94 92
SCa | 30 80 8 93 97 88 77 73
SCe |40 72 74 8 90 83 91 87
BIC |27 83 8 87 95 90 92 95
KICc | 61 91 89 89 90 82 76 65
GAIC| 0 13 38 68 79 74 90 97

Table 5: Example 4: the performances in estimating the number of sine-waves reported with
the same conventions as in Table 2.

it is the case with the mixed-spectrum estimation.
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Freq. N 30 35 40 45 50 60 80 100

f1 Err.1 | SCp 0 0 0 0 0 0 0 0
BIC 19 11 8 4 4 3 0 0
GAIC 73 48 25 4 4 0 0 0

MSE | SCp |-55.92 -56.45 -57.59 -60.01 -59.30 -62.62 -65.32 -68.79

BIC |-56.15 -56.37 -57.52 -60.01 -59.17 -62.65 -65.32 -68.79

GAIC | -56.61 -56.60 -58.30 -59.59 -59.04 -63.12 -65.32 -68.79
fa Err.1 | SCp 38 25 10 7 S 0 0 0
BIC 51 40 26 21 20 8 1 0
GAIC 93 81 60 60 47 27 7 0

MSE | SCp |-49.04 -51.43 -52.38 -54.00 -54.82 -56.64 -59.96 -63.19

BIC |-46.09 -51.59 -51.90 -53.67 -54.47 -56.67 -59.92 -63.19

GAIC | -46.08 -52.16 -51.71 -54.58 -55.88 -56.15 -59.97 -63.19
Err.2 SCp 0 3 2 0 0 1 2 1
BIC 6 4 5 1 0 1 0 0
GAIC 0 0 0 0 0 0 0 0

Table 6: Type I and Type II errors for Example 1 when SNRs = -1.00 dB. MSE is computed
for the estimates of the frequencies and it is expressed in dB. The results are reported for 100

runs.

Freq. N 30 35 40 45 50 60 80 100

f Err.1 | SCp 5 1 0 0 0 0 0 0
BIC 9 8 1 0 0 1 0 0
GAIC 28 20 14 12 9 9 1 0

MSE | SCp | -58.96 -60.13 -61.20 -63.05 -64.48 -65.73 -71.68 -80.15

BIC |-59.54 -59.87 -61.72 -63.53 -64.04 -65.69 -71.68 -80.15

GAIC | -59.20 -60.62 -61.99 -63.66 -64.35 -65.66 -71.10 -80.15
fo Err.1 | SCp 32 21 14 1 2 1 0 0
BIC 24 29 20 7 7 4 1 0
GAIC 83 74 66 61 42 22 1 0

MSE | SCp | -49.97 -53.42 -55.07 -56.00 -42.96 -59.76 -64.03 -64.98

BIC |-40.71 -39.15 -55.34 -56.82 -42.73 -60.11 -64.09 -64.98

GAIC | -50.24 -53.27 -54.20 -56.21 -58.35 -59.84 -64.09 -64.98
Err.2 SCp 18 18 10 3 6 4 4 3
BIC 54 30 27 22 16 5 4 2
GAIC 10 9 6 1 4 3 2 2

Table 7: Type I and Type II errors for Example 2 when SNRy = 3.00 dB.



Freq. N 30 35 40 45 50 60 80 100
f Err.1 | SCp 0 1 0 0 1 0 0 0
BIC 5 8 1 2 3 1 0 2
GAIC 43 32 20 14 18 9 4 6
MSE | SCp | -52.69 -55.06 -56.26 -58.26 -59.12 -60.96 -64.09 -66.39
BIC |-53.15 -54.38 -56.05 -58.34 -59.23 -60.97 -64.09 -66.50
GAIC | -52.54 -55.38 -56.47 -58.01 -59.51 -60.93 -64.02 -66.52
fo Err.1 | SCp 2 3 2 0 3 1 4 5
BIC 20 21 16 11 13 11 10 7
GAIC 50 40 27 16 19 15 10 11
MSE | SCp | -53.61 -54.90 -58.91 -57.97 -60.02 -62.41 -65.47 -69.76
BIC |-53.43 -56.14 -59.50 -58.48 -60.90 -62.32 -65.48 -69.67
GAIC | -53.23 -54.98 -59.15 -57.59 -60.48 -62.21 -65.70 -69.87
Err.2 SCp 5 11 4 4 5 ) 3 8
BIC 24 24 12 9 5 4 1 2
GAIC 0 0 3 0 1 1 0 0
Table 8: Type I and Type II errors for Example 3 when SNR; = 3.00 dB.
Freq. N 30 40 50 60 70 80 90 100
f1 Err.1 | SCp 79 17 5 8 3 2 2 1
BIC 85 23 8 18 17 13 6 4
GAIC | 100 77 52 43 34 29 22 17
MSE | SCp | -42.86 -45.75 -51.69 -54.32 -55.19 -57.47 -58.26 -60.92
BIC | -42.75 -46.07 -51.54 -47.16 -55.20 -57.33 -58.22 -60.76
GAIC - -47.81 -52.23 -54.07 -56.13 -46.15 -58.84 -61.14
fa Err.1 | SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0
GAIC | 100 62 46 17 4 1 1 0
MSE | SCp | -48.32 -55.79 -54.60 -59.31 -65.52 -65.26 -65.58 -65.73
BIC |-50.14 -56.16 -54.60 -59.28 -65.49 -65.24 -65.58 -65.73
GAIC - -55.54  -55.39 -59.32 -65.41 -65.24 -65.59 -65.73
fs Err.1 | SCp 79 6 1 0 0 0 0 0
BIC 84 8 3 1 0 0 0 0
GAIC | 100 62 46 17 4 1 1 0
MSE | SCp | -45.49 -61.30 -58.20 -60.70 -68.24 -70.78 -82.14 -82.14
BIC |-46.99 -61.45 -58.25 -60.31 -68.24 -70.78 -82.14 -82.14
GAIC - -60.73 -59.16 -60.13 -68.40 -70.90 -82.14 -82.14
Err.2 SCp 0 1 7 6 7 5 7 4
BIC 0 5 4 3 5 4 4 2
GAIC 0 0 0 1 0 1 3 2

Table 9: Type I and Type II errors for Example 4 when SNR; = -3.00 dB.




APPENDIX

On the derivation of SC formula (10)

To check the conditions for the applicability of the SC formula of Qian and Kiinsch in our
particular case, we resort to the closed-form expression of J(0) from the equations (4)-(7). We
list below the conditions as they are given in [7]:

C1.

C2.

C3.

C4.

Jn(0) is positive definite.

It is easy to check that all the eigenvalues of Jxn (&) are strictly positive. The covariance
matrix R(a) is positive definite for any M [30], therefore Jy(a, ) is also positive definite,
and the condition C1 is verified.

The minimum eigenvalue of Jn(8) is of order O(N) as N — oc.

Two of the eigenvalues of J(£;) are O(IV) and the third one is O(N?3). As each eigenvalue
of In(a,7) is O(N), we conclude that C2 is satisfied.

1IN (01)]7H|TIn(01)] — |Tn(02)]] < c||01 — 02|, V1,02 € O, where c is a finite constant.
For any 0, we have

K
I(6)] = N RO H (0], (15)

which implies that the left-hand-side term in the inequality C3 is finite and it does not

depend on N. As the condition C3 is easily verified for 8; = 05 , we analyze only the

case 01 # 03. Thus we have gnien |61 — 2] > 0, where ¢ is given by the precision
1,02

used to store the values of the parameters. To circumvent some technical difficulties,

we consider firstly one sine-wave (K = 1) in white noise (M = 0). Without loss of

generality, we assume 0 < quin < a1 < gz < 00 and 0 < Tin < T < Timae < 00.

Elementary calculations lead to the inequality max TN (01) | In(01)] — 1IN (82)]] < A,
1,02

where A = (amaz/ amm)4 (Tmaz/ Tmin)5. Therefore, condition C3 is verified by selecting

¢ = A/§. To gain more insight, we assume next K = 1 and M = 1. As the noise

model is stable, the AR coefficient is a non-zero number from the interval (—1,1). If

supplementarily, the precision ¢ is used to store the value of the AR coefficient, then we

get immediately a; € [—1 4 d,—46]|J[, 1 — d]. Taking o; and 7 to be bounded as in the

white noise case, it is not difficult to show that max TN (01) 7| In(01)] — [In(82)]| < X,
1,02

where Y = (@maz/min)* (Tmae/Tmin)® (2 — 6)/6)®. Since min |61 — 62| > v, we choose
1,02

¢ = T /v and the condition C3 is verified. We emphasize that the precision used in this
proof for the model parameters does not depend on the number of samples N.

In T (6)] = o(N).

In|JN(6
Using the expression (15) for |Jn(0)|, we readily obtain lim In [Tn(0)]

m N = 0, thus C4 is

verified.



We apply next the SC criterion from [7]. For simplicity we ignore the terms that do not depend
on N, and the SC formula becomes:

R 5 R 3K+M+1 )
—log f(y";0) +1og [In(0,y™)">+ > log(fs| + N~'/*)
=1
3K+M+1 .
+ > FWYAG] + 1)+ OV, (16)
=1

where log(+) is the logarithm base 2, 6 denotes the ML estimates, and J 5 (6, y 50007
is the observed FIM. For any x > 0, 7*(x) = log(logz) + log(log(log x)) + - - -, where the sum

continues as long as the iterated logarithms are strictly positive. The approximative formula
(10) is obtained from (16) after operating the following changes:

o Jn(8,y") is replaced with J ().
e An O((BK + M + 1)loglog N) term is discarded.
e log(+) is replaced with In(-).

Remark 1 The two-step encoding procedure adopted in [7] employs first a uniform quantization
of © that is performed with the same precision for all the parameters. The term N~/ in (10)
is due to the option from [7] to select this precision based on the minimum eigenvalue of FIM.

Remark 2 It is recommended in [7] to consider in the SC expression also the term given by the
number of parameters divided by two and multiplied by log p, where p is the largest eigenvalue of
In(0)"Y2T5(0,yN)I N (0) /2. We prove below that, under mild conditions, p does not depend
on N, hence we ignore the log p term in (10).

Inspired by the expression of the asymptotic FIM, we assume there exist the non-singular
matrices A and B, and the diagonal matrix Cy such that JN(é) = CyACy and jN(é, yN) =
CnyBCpy. Supplementarily all the diagonal entries of Cy are powers of N, and the entries of
A and B do not depend on N. With the notation Z = Jn(0) /25 (0, yN)In(0)"1/2, we
have Z = Jn(8)~1/2 (jN(é, yN)JN(é)—l) In(0)/2, thus Z and Jn(8,yV)I n(8)~" are similar.

Moreover, I (0, y™)In(0)~! = CnyBA~!'C,/, which leads to the conclusion that Z and BA ™!
are also similar. As the eigenvalues of BA™! do not depend on N, p is also independent of N.
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