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1 BIC formula for the linear model in additive Gaussian noise

We assume the following model for the measurements y:

y = Hx + u, (1)

where the entries of the matrix H ∈ Rm×n are known. Note that m stands for the number of mea-
surements and n is the number of linear parameters. In our calculations, we suppose that m > n. The
random vector u is assumed to be Gaussian distributed with zero-mean and covariance matrix τI, where
τ > 0 and I denotes the identity matrix of appropriate dimension.

BIC is derived by considering an asymptotic approximation for the penalty term of the following
criterion [7]:

−L(y ; x̂, τ̂) +
1

2
ln |Ĵ |, (2)

where L(· ; ·) denotes the log-likelihood function, ln(·) is the notation for the natural logarithm, the

operator | · | is used for the determinant of the matrix in the argument and Ĵ stands for the sample
Fisher Information Matrix (FIM) in which the unknown values of the parameters are replaced with
their maximum likelihood (ML) estimates. In our case, the ML estimates are given by the formulas

x̂ = (H>H)−1H>y, τ̂ =
||y −Hx̂||22

m
[8]. Hence, we have:

L(y ; x̂, τ̂) = −m
2

ln τ̂ − m

2
ln(2π)− m

2
. (3)

The sample FIM has the expression: Ĵ =

[
(H>H)/τ̂ 0

0 m/(2τ̂2)

]
=

[
Ĵn 0

0 Ĵτ

]
, where the size of

the block Ĵn is n× n [8].

After discarding the terms that do not depend on n, the criterion in (2) can be re-written as
m

2
ln τ̂ +

1

2
ln |Ĵ |. The fact that

1

m
Ĵ = O(1) (when m � 1) leads to ln |Ĵ | = ln

∣∣∣∣m 1

m
Ĵ

∣∣∣∣ = (n + 1) lnm + O(1).

Hence, we get the well-known criterion,
m

2
ln τ̂ +

n+ 1

2
lnm, which in most of the cases is written as

BICGauss =
m

2
ln τ̂ +

n

2
lnm. (4)

2 Proof of Eq. (19) from [1]

For ease of writing, we define: a =
c1(β)√
τ

and b =
c2(β)

τ1/(1+β)
. For u > 0, the expression in [1, Eq. (16)]

becomes f(u ; β, τ) = a exp
(
−bu2/(1+β)

)
, which leads to(

∂

∂u
f(u ; β, τ)

)2

= a2b2 exp
(
−2bu2/(1+β)

)( 2

1 + β

)2

u2(1−β)/(1+β).

Furthermore, we have:(
∂
∂uf(u ; β, τ)

)2
f(u ; β, τ)

= ab2 exp
(
−bu2/(1+β)

)( 2

1 + β

)2

u2(1−β)/(1+β).

Therefore, we get

E

[(
∂

∂u
ln f(u ; β, τ)

)2
]

= 2

∫ ∞
0

(
∂
∂uf(u ; β, τ)

)2
f(u ; β, τ)

du

= 2ab2
(

2

1 + β

)2 ∫ ∞
0

u2(1−β)/(1+β) exp
(
−bu2/(1+β)

)
du.
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With the change of variable z = u2/(1+β), the integral above becomes:

1 + β

2

∫ ∞
0

z(1−β)/2 exp(−bz)dz =
1 + β

2

Γ
(

3−β
2

)
b(3−β)/2

.

For evaluating the integral, we have applied [9, Theorem 5.7.3], with the supplementary assumption that
β < 3. It follows that

E

[(
∂

∂u
ln f(u ; β, τ)

)2
]

= ab(1+β)/2
4

1 + β
Γ

(
3− β

2

)

=
Γ1/2

(
3+3β

2

)
(1 + β)Γ3/2

(
1+β
2

)
τ1/2

·
Γ1/2

(
3+3β

2

)
Γ1/2

(
1+β
2

)
τ1/2

· 4

1 + β
Γ

(
3− β

2

)

=
1

τ

4

(1 + β)2

Γ
(

3+3β
2

)
Γ
(

3−β
2

)
Γ2
(

1+β
2

) .

This result together with [1, Eq. (18)] lead to [1, Eq. (19)].

3 Graphical illustration for the penalty term in the formula of
BICβ in [1, Eq. (20)]
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Figure 1: The extra-cost for each linear parameter, in comparison with the Gaussian case, when the
shape parameter β takes values in the interval (−1, 3).
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4 Experiments with simulated data

4.1 Results for the case when the sparsity level is known

We show in Tables 1-2 the statistics for n̂ (minimum, average and maximum) collected from ten runs,
for both learning algorithms ADL and ADL1. Based on the results reported in the tables, we have: (i)
In the case when the additive noise has Gaussian distribution, ADL1/EBIC works better than all other
combinations in selecting the dictionary sizes that are closer to the true dictionary size for all noise levels.
However, when the additive noise is Laplacian distributed, ADL1/BIC is slightly better than the other
methods; (ii) In most of the cases, the maximum values of n̂ chosen by the two IT criteria when they are
used together with ADL1 algorithm are much smaller than the maximum values of n̂ that are selected
when the ADL algorithm is used.

Gaussian Noise ADL/EBIC ADL1/EBIC ADL/BIC ADL1/BIC

min 50.0 50.0 50.0 50.0
SNR=20 dB avg 51.7 51.6 52.9 50.6

max 56.0 55.0 63.0 55.0

min 50.0 50.0 50.0 50.0
SNR=40 dB avg 69.0 50.3 79.4 51.5

max 123.0 51.0 134.0 58.0

min 50.0 50.0 50.0 50.0
SNR=60 dB avg 66.8 50.4 85.4 52.6

max 105.0 51.0 152.0 58.0

Table 1: Statistics for the dictionary sizes selected in 10 runs. In each case, we report the minimum,
the average and the maximum values of n̂. For each SNR, we write in bold the average value of n̂ that
is closest to ntrue = 50. In this experiment, the sparsity level is assumed to be known: s = strue = 3.

Laplacian Noise ADL/EBIC ADL1/EBIC ADL/BIC ADL1/BIC

min 50.0 50.0 50.0 50.0
SNR=20 dB avg 51.9 52.1 53.3 50.7

max 61.0 61.0 59.0 55.0

min 50.0 50.0 51.0 50.0
SNR=40 dB avg 62.3 53.0 72.3 52.0

max 104.0 56.0 144.0 61.0

min 50.0 50.0 51.0 50.0
SNR=60 dB avg 59.1 50.8 81.5 51.9

max 73.0 57.0 125.0 60.0

Table 2: All the settings are as in Table 1, except that the distribution of the additive noise is Laplacian.
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4.2 Results for the case when the sparsity level is unknown

For evaluating the performance of BIC and EBIC in selecting both the sparsity level ŝ and the dictionary
size n̂, we show in Tables 3-4 the minimum, average and maximum values of ŝ and n̂ collected from ten
runs. It is easy to observe the following: (i) ADL1/EBIC works better than all other combinations in
selecting the sparsity level ŝ, which is equal to the true sparsity level (strue = 3) for all types of noise and
noise levels; (ii) When the additive noise has Gaussian distribution, ADL1/BIC is superior to ADL1/EBIC
in selecting the dictionary size at the noise level that equals 40dB. By contrast, ADL1/EBIC is slightly
better when the noise level is 60dB; (iii) When the additive noise is Laplacian distributed, ADL1/BIC
works slightly better than ADL1/EBIC in selecting the dictionary size, in the cases of noise level greater
than 20dB.

Gaussian Noise ADL/EBIC ADL1/EBIC ADL/BIC ADL1/BIC

min 3.0 3.0 3.0 3.0
50.0 50.0 50.0 50.0

SNR=20 dB avg 3.0 3.0 3.0 3.0
52.6 52.0 51.8 51.0

max 3.0 3.0 3.0 3.0
56.0 55.0 58.0 55.0

min 3.0 3.0 3.0 3.0
50.0 50.0 50.0 50.0

SNR=40 dB avg 3.6 3.0 3.6 3.3
60.6 52.4 87.1 51.8

max 5.0 3.0 4.0 4.0
77.0 56.0 128.0 55.0

min 3.0 3.0 3.0 3.0
50.0 50.0 50.0 50.0

SNR=60 dB avg 3.8 3.0 3.8 3.1
58.2 51.4 90.6 51.9

max 5.0 3.0 5.0 4.0
86.0 56.0 177.0 55.0

Table 3: All the settings are as in Table 1, except that we report the statistics for both ŝ (top) and n̂
(bottom). We write in bold the average value of ŝ that is closest to strue = 3.

Laplacian Noise ADL/EBIC ADL1/EBIC ADL/BIC ADL1/BIC

min 3.0 3.0 3.0 3.0
50.0 50.0 50.0 50.0

SNR=20 dB avg 3.0 3.0 3.0 3.0
51.3 51.4 55.3 51.7

max 3.0 3.0 3.0 3.0
56.0 55.0 69.0 55.0

min 3.0 3.0 3.0 3.0
50.0 50.0 59.0 50.0

SNR=40 dB avg 3.7 3.0 3.8 3.1
71.7 52.5 118.1 51.5

max 4.0 3.0 5.0 4.0
99.0 57.0 193.0 55.0

min 3.0 3.0 3.0 3.0
50.0 50.0 50.0 50.0

SNR=60 dB avg 3.5 3.0 3.8 3.1
76.0 52.6 110.2 51.4

max 5.0 3.0 5.0 4.0
123.0 59.0 227.0 57.0

Table 4: All the settings are as in Table 3. Note that the distribution of the additive noise is Laplacian.

5



Figure 2: Results obtained by running ADL1/BIC on ten simulated data sets for which the additive noise
has Laplacian distribution and SNR=20dB. For each data set, we consider the statistics corresponding

to the value ŝ of the sparsity estimated at last step. With the convention that D̃
(ŝ)
step and X̃

(ŝ)
step are the

dictionary and the representation matrix estimated from Ytr, the mean absolute error is given by MAEtr =

||Ytr − D̃
(ŝ)
stepX̃

(ŝ)
step||1,1

mNtr
, where step ∈ {1, . . . , 100}. Left panel: The continuous red line represents the

average of MAEtr computed for ten data sets. The upper and the lower bounds of the shaded area
correspond to the maximum and to the minimum MAEtr obtained at each step. Right panel: The same
conventions as in the left panel, except that the graphical representations are for the dictionary size
and not for MAEtr. At step = 0, we show the minimum, the average and the maximum of the sizes of
dictionaries that are randomly generated for the initialization of the algorithm.
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4.3 Comparison with the DL method from [2]

SNR=20dB
Laplacian Noise ADL1/BIC MBS-2016/BIC ADL1/EBIC MBS-2016/EBIC

min 50.0 45.0 50.0 45.0
n̂ avg 51.7 45.0 51.4 47.0

max 55.0 45.0 55.0 60.0
min 3.0 1.2 3.0 0.9

ŝ avg 3.0 1.4 3.0 1.3
max 3.0 1.6 3.0 1.6

ADR(Avg. 10 runs) 1.00 0.51 1.00 0.52
1030.5secs (n=45) 1030.5secs (n=45)

102.9secs (s=1) 1283.7secs (n=50) 100.3secs (s=1) 1283.7secs (n=50)
392.6secs (s=2) 1399.0secs (n=55) 380.3secs (s=2) 1399.0secs (n=55)

Execution Time 943.5secs (s=3) 1360.8secs (n=60) 904.4secs (s=3) 1360.8secs (n=60)
(Avg. 10 runs) 1828.0secs (s=4) 1521.6secs (n=65) 1745.2secs (s=4) 1521.6secs (n=65)

3143.6secs (s=5) 1719.4secs (n=70) 2932.1secs (s=5) 1719.4secs (n=70)
1794.9secs (n=75) 1794.9secs (n=75)

Table 5: Comparison with MBS-2016 when SNR=20dB: We report the minimum, the average and the
maximum values of n̂ and ŝ. Additionally, we present the average ADR computed from ten runs as well
as the average execution times.

SNR=40dB
Laplacian Noise ADL1/BIC MBS-2016/BIC ADL1/EBIC MBS-2016/EBIC

min 50.0 45.0 50.0 45.0
n̂ avg 51.5 45.0 52.5 47.5

max 55.0 45.0 57.0 55.0
min 3.0 1.4 3.0 1.0

ŝ avg 3.1 1.5 3.0 1.4
max 4.0 1.6 3.0 1.6

ADR(Avg. 10 runs) 1.00 0.52 1.00 0.56
1005.0secs (n=45) 1005.0secs (n=45)

98.0secs (s=1) 1027.2secs (n=50) 96.1secs (s=1) 1027.2secs (n=50)
365.4secs (s=2) 1105.5secs (n=55) 360.8secs (s=2) 1105.5secs (n=55)

Execution Time 853.8secs (s=3) 1546.5secs (n=60) 836.1secs (s=3) 1546.5secs (n=60)
(Avg. 10 runs) 1663.7secs (s=4) 1465.6secs (n=65) 1627.0secs (s=4) 1465.6secs (n=65)

2933.9secs (s=5) 1788.2secs (n=70) 2788.8secs (s=5) 1788.2secs (n=70)
1579.5secs (n=75) 1579.5secs (n=75)

Table 6: The notational conventions are the same as in Table 5, except that SNR=40dB.
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SNR=60dB
Laplacian Noise ADL1/BIC MBS-2016/BIC ADL1/EBIC MBS-2016/EBIC

min 50.0 45.0 50.0 45.0
n̂ avg 51.4 45.0 52.6 46.5

max 57.0 45.0 59.0 55.0
min 3.0 1.4 3.0 1.1

ŝ avg 3.1 1.5 3.0 1.4
max 4.0 1.6 3.0 1.5

ADR(Avg. 10 runs) 0.99 0.54 1.00 0.56
1102.3secs (n=45) 1102.3secs (n=45)

97.6secs (s=1) 1274.2secs (n=50) 98.5secs (s=1) 1274.2secs (n=50)
363.6secs (s=2) 1262.7secs (n=55) 368.0secs (s=2) 1262.7secs (n=55)

Execution Time 844.4secs (s=3) 1391.6secs (n=60) 845.6secs (s=3) 1391.6secs (n=60)
(Avg. 10 runs) 1666.5secs (s=4) 1541.4secs (n=65) 1644.0secs (s=4) 1541.4secs (n=65)

2968.9secs (s=5) 1531.2secs (n=70) 2860.4secs (s=5) 1531.2secs (n=70)
1803.3secs (n=75) 1803.3secs (n=75)

Table 7: The notational conventions are the same as in Table 5, except that SNR=60dB.
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4.4 Comparison with the DL method based on [3–5]

SNR=20dB
Laplacian Noise ADL1/BIC LW-2019/BIC ADL1/EBIC LW-2019/EBIC

min 50.0 50.0 50.0 45.0
n̂ avg 51.7 56.0 51.4 47.0

max 55.0 65.0 55.0 50.0
min 3.0 3.0 3.0 1.0

ŝ avg 3.0 3.0 3.0 1.0
max 3.0 3.0 3.0 1.0

ADR(Avg. 10 runs) 1.00 0.97 1.00 0.20
102.9secs (s=1) 535.3secs (s=1) 100.3secs (s=1) 535.3secs (s=1)

Execution Time 392.6secs (s=2) 1063.0secs (s=2) 380.3secs (s=2) 1063.0secs (s=2)
(Avg. 10 runs) 943.5secs (s=3) 1689.2secs (s=3) 904.4secs (s=3) 1689.2secs (s=3)

1828.0secs (s=4) 2071.0secs (s=4) 1745.2secs (s=4) 2071.0secs (s=4)
3143.6secs (s=5) 2983.4secs (s=5) 2932.1secs (s=5) 2983.4secs (s=5)

Table 8: Comparison with LW-2019 when SNR=20dB: As in Table 5, we report the minimum, the
average and the maximum values of n̂ and ŝ. Additionally, we present the average ADR computed from
ten runs as well as the average execution times.

SNR=40dB
Laplacian Noise ADL1/BIC LW-2019/BIC ADL1/EBIC LW-2019/EBIC

min 50.0 50.0 50.0 50.0
n̂ avg 51.5 59.0 52.5 59.0

max 55.0 75.0 57.0 75.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.1 3.0 3.0 3.0
max 4.0 3.0 3.0 3.0

ADR(Avg. 10 runs) 1.00 1.00 1.00 1.00
98.0secs (s=1) 548.7secs (s=1) 96.1secs (s=1) 548.7secs (s=1)

Execution Time 365.4secs (s=2) 1099.0secs (s=2) 360.8secs (s=2) 1099.0secs (s=2)
(Avg. 10 runs) 853.8secs (s=3) 1640.1secs (s=3) 836.1secs (s=3) 1640.1secs (s=3)

1663.7secs (s=4) 2192.9secs (s=4) 1627.0secs (s=4) 2192.9secs (s=4)
2933.9secs (s=5) 3007.5secs (s=5) 2788.8secs (s=5) 3007.5secs (s=5)

Table 9: The notational conventions are the same as in Table 8, except that SNR=40dB.
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SNR=60dB
Laplacian Noise ADL1/BIC LW-2019/BIC ADL1/EBIC LW-2019/EBIC

min 50.0 50.0 50.0 50.0
n̂ avg 51.4 58.5 52.6 58.5

max 57.0 70.0 59.0 70.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.1 3.0 3.0 3.0
max 4.0 3.0 3.0 3.0

ADR(Avg. 10 runs) 0.99 1.00 1.00 1.00
97.6secs (s=1) 534.1secs (s=1) 98.5secs (s=1) 534.1secs (s=1)

Execution Time 363.6secs (s=2) 1058.0secs (s=2) 368.0secs (s=2) 1058.0secs (s=2)
(Avg. 10 runs) 844.4secs (s=3) 1684.3secs (s=3) 845.6secs (s=3) 1684.3secs (s=3)

1666.5secs (s=4) 2276.7secs (s=4) 1644.0secs (s=4) 2276.7secs (s=4)
2968.9secs (s=5) 2949.7secs (s=5) 2860.4secs (s=5) 2949.7secs (s=5)

Table 10: The notational conventions are the same as in Table 8, except that SNR=60dB.
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4.5 Comparison with the DL method from [6]

4.5.1 Data simulated with Laplacian additive noise

SNR = 20 dB
Laplacian ADR λ δ
Noise min avg max min avg max
n =45 0.81 0.1 0.2 0.3 0.00 0.06 0.15
n =50 0.94 0.1 0.2 0.3 0.00 0.05 0.15
n =55 0.97 0.1 0.2 0.4 0.00 0.04 0.15
n =60 0.97 0.1 0.2 0.3 0.00 0.03 0.10
n =65 0.96 0.1 0.1 0.2 0.00 0.03 0.10
n =70 0.94 0.1 0.1 0.2 0.00 0.05 0.15
n =75 0.94 0.1 0.1 0.1 0.00 0.04 0.10

Table 11: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 4 (for SNR=20dB).

SNR = 40 dB
Laplacian ADR λ δ
Noise min avg max min avg max
n =45 0.82 0.1 0.2 0.4 0.00 0.07 0.15
n =50 0.96 0.1 0.2 0.3 0.00 0.04 0.10
n =55 0.99 0.1 0.2 0.2 0.00 0.05 0.15
n =60 0.98 0.1 0.1 0.3 0.00 0.04 0.15
n =65 0.98 0.1 0.1 0.2 0.00 0.04 0.10
n =70 0.98 0.1 0.1 0.2 0.00 0.06 0.15
n =75 0.96 0.1 0.1 0.1 0.00 0.03 0.10

Table 12: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 4 (for SNR=40dB).

SNR = 60 dB
Laplacian ADR λ δ
Noise min avg max min avg max
n =45 0.81 0.1 0.2 0.3 0.00 0.05 0.15
n =50 0.95 0.1 0.2 0.3 0.00 0.05 0.15
n =55 0.98 0.1 0.2 0.4 0.00 0.04 0.10
n =60 0.98 0.1 0.1 0.3 0.00 0.04 0.10
n =65 0.97 0.1 0.1 0.2 0.00 0.04 0.15
n =70 0.98 0.1 0.1 0.1 0.00 0.03 0.10
n =75 0.97 0.1 0.1 0.2 0.00 0.04 0.10

Table 13: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 4 (for SNR=60dB).
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4.5.2 Data simulated with GMM additive noise

SNR=20dB
GMM Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 50.0 50.0 50.0 50.0
n̂ avg 51.9 72.4 50.8 51.5

max 56.0 178.0 56.0 55.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.0 3.3 3.0 3.0
max 3.0 5.0 3.0 3.0

ADR(Avg. 10 runs) 1.00 1.00 1.00 1.00

Table 14: GMM additive noise: Statistics collected for ADL and ADL1 from 10 trials. Note that
ntrue = 50 and strue = 3.

SNR=40dB
GMM Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 50.0 51.0 50.0 50.0
n̂ avg 51.7 93.0 50.6 61.9

max 55.0 156.0 55.0 101.0
min 3.0 4.0 3.0 3.0

ŝ avg 3.0 4.3 3.0 3.8
max 3.0 5.0 3.0 5.0

ADR(Avg. 10 runs) 1.00 0.98 1.00 0.97

Table 15: The notational conventions are the same as in Table 14, except that SNR=40dB.

SNR=60dB
GMM Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 50.0 60.0 50.0 50.0
n̂ avg 51.1 99.8 50.9 65.7

max 55.0 146.0 58.0 110.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.0 3.8 3.0 3.6
max 3.0 5.0 3.0 5.0

ADR(Avg. 10 runs) 1.00 0.98 1.00 0.98

Table 16: The notational conventions are the same as in Table 14, except that SNR=60dB.
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SNR = 20 dB
GMM ADR λ δ
Noise min avg max min avg max
n =45 0.81 0.1 0.2 0.3 0.00 0.04 0.10
n =50 0.94 0.1 0.2 0.3 0.00 0.04 0.20
n =55 0.99 0.1 0.2 0.3 0.00 0.04 0.10
n =60 0.97 0.1 0.1 0.3 0.00 0.05 0.15
n =65 0.97 0.1 0.1 0.2 0.00 0.04 0.10
n =70 0.95 0.1 0.1 0.4 0.00 0.03 0.10
n =75 0.94 0.1 0.1 0.3 0.00 0.04 0.10

Table 17: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 14.

SNR = 40 dB
GMM ADR λ δ
Noise min avg max min avg max
n =45 0.82 0.1 0.2 0.3 0.00 0.04 0.10
n =50 0.96 0.1 0.2 0.4 0.00 0.05 0.15
n =55 0.98 0.1 0.2 0.3 0.00 0.04 0.10
n =60 0.98 0.1 0.1 0.2 0.00 0.05 0.15
n =65 0.98 0.1 0.1 0.2 0.00 0.05 0.15
n =70 0.99 0.1 0.1 0.2 0.00 0.04 0.10
n =75 0.96 0.1 0.1 0.2 0.00 0.05 0.15

Table 18: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 15.

SNR = 60 dB
GMM ADR λ δ
Noise min avg max min avg max
n =45 0.82 0.1 0.2 0.3 0.00 0.05 0.15
n =50 0.97 0.1 0.2 0.2 0.00 0.06 0.10
n =55 0.98 0.1 0.1 0.3 0.00 0.05 0.15
n =60 0.99 0.1 0.1 0.2 0.00 0.05 0.15
n =65 0.99 0.1 0.1 0.2 0.00 0.04 0.10
n =70 0.96 0.1 0.1 0.2 0.00 0.05 0.15
n =75 0.96 0.1 0.1 0.2 0.00 0.04 0.10

Table 19: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 16.
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SNR = 20 dB
GMM λmin λmax
Noise δmin δmax δmin δmax
n = 45 5.94 secs 5.93 secs 2.88 secs 3.41 secs
n = 75 7.85 secs 9.35 secs 4.48 secs 5.70 secs

Table 20: Execution time for IS-2019: All values are calculated as an average over ten runs. We report
results only for the smallest dictionary size (n = 45) and for the largest dictionary size (n = 75). For
both dictionary sizes, we have λmin = 0.1, λmax = 0.3, δmin = 0.00 and δmax = 0.10 (see Table 17). Note
that the execution times in the table are computed for one pair of parameters (λ, δ). For obtaining the
ADR values shown in Table 17, we have run IS-2019 for 561 (11 · 51) different pairs (λ, δ).
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4.5.3 Data simulated with Cauchy additive noise

The samples of the additive noise are drawn from a Cauchy distribution for which the location parameter
is zero and the scale parameter is σ > 0. Due to the particularities of the Cauchy distribution, SNR is
computed with formula from [10]: SNR = 10 log10(1/σ). The results shown in Tables 21-23 demonstrate
again that ADL1 is superior to ADL. When SNR is low, ADL1 has difficulties in one single trial, where the
size of the dictionary is severely underestimated by both BIC and EBIC. However, the ADR computed
for other trials is much better. In the case of ADL1/BIC, ADR = 0.92 (for one trial), ADR = 0.98 (for
two trials) and ADR = 1.00 (for six trials). If SNR is greater or equal to 40dB, then ADR equals 1.00 in
all trials. For comparison, we display in Tables 24-26 the results produced by IS-2019 on the same data
sets. They are similar to those obtained for Laplacian and GMM noise, in the sense that almost all the
atoms of the true dictionary are recovered when the dictionary size is large enough, but IS-2019 does not
yield an average ADR of 1.00. It is interesting to note that the values of δ in Table 24 are greater than
in Table 17. Hence, IS-2019 is able to detect that in the second scenario there are more outliers than in
the first one. This is achieved by using the information about the ground truth when searching in the
parameter space.

SNR=20dB
Cauchy Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 20.0 81.0 20.0 74.0
n̂ avg 64.7 94.1 64.3 79.3

max 72.0 124.0 73.0 87.0
min 1.0 3.0 1.0 3.0

ŝ avg 3.1 3.9 2.9 3.3
max 4.0 4.0 4.0 4.0

ADR(Avg. 10 runs) 0.90 1.00 0.90 1.00

Table 21: Cauchy additive noise: Statistics collected for ADL and ADL1 from 10 trials. Note that
ntrue = 50 and strue = 3.

SNR=40dB
Cauchy Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 50.0 59.0 50.0 50.0
n̂ avg 52.0 132.9 51.3 74.4

max 57.0 229.0 57.0 133.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.0 4.0 3.0 3.2
max 3.0 5.0 3.0 4.0

ADR(Avg. 10 runs) 1.00 0.99 1.00 1.00

Table 22: The notational conventions are the same as in Table 21, except that SNR=40dB.

SNR=60dB
Cauchy Noise ADL1/BIC ADL/BIC ADL1/EBIC ADL/EBIC

min 50.0 50.0 50.0 50.0
n̂ avg 51.6 81.1 51.2 59.6

max 56.0 174.0 56.0 101.0
min 3.0 3.0 3.0 3.0

ŝ avg 3.0 3.7 3.0 3.8
max 3.0 5.0 3.0 5.0

ADR(Avg. 10 runs) 1.00 0.98 1.00 0.96

Table 23: The notational conventions are the same as in Table 21, except that SNR=60dB.
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SNR = 20 dB
Cauchy ADR λ δ
Noise min avg max min avg max
n =45 0.75 0.2 0.2 0.3 0.06 0.11 0.15
n =50 0.88 0.2 0.2 0.3 0.06 0.11 0.20
n =55 0.95 0.2 0.2 0.3 0.06 0.10 0.15
n =60 0.98 0.2 0.2 0.3 0.06 0.09 0.15
n =65 0.96 0.1 0.2 0.3 0.06 0.08 0.15
n =70 0.96 0.1 0.2 0.3 0.00 0.09 0.15
n =75 0.95 0.1 0.2 0.4 0.00 0.06 0.10

Table 24: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 21.

SNR = 40 dB
Cauchy ADR λ δ
Noise min avg max min avg max
n =45 0.80 0.1 0.2 0.4 0.00 0.06 0.15
n =50 0.94 0.1 0.2 0.4 0.00 0.06 0.15
n =55 0.98 0.1 0.1 0.3 0.00 0.05 0.15
n =60 0.98 0.1 0.1 0.3 0.00 0.05 0.15
n =65 0.98 0.1 0.1 0.3 0.00 0.03 0.10
n =70 0.99 0.1 0.1 0.1 0.00 0.04 0.10
n =75 0.96 0.1 0.1 0.2 0.00 0.04 0.10

Table 25: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 22.

SNR = 60 dB
Cauchy ADR λ δ
Noise min avg max min avg max
n =45 0.82 0.1 0.2 0.3 0.00 0.04 0.15
n =50 0.95 0.1 0.2 0.4 0.00 0.04 0.15
n =55 0.98 0.1 0.1 0.2 0.00 0.05 0.15
n =60 0.98 0.1 0.1 0.2 0.00 0.04 0.10
n =65 0.98 0.1 0.1 0.2 0.00 0.04 0.10
n =70 0.97 0.1 0.1 0.1 0.00 0.05 0.10
n =75 0.97 0.1 0.1 0.1 0.00 0.04 0.10

Table 26: Statistics collected for IS-2019 when the simulated data sets are the same as those used to
produce the results reported in Table 23.
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4.6 Shape parameter estimation

Data set ExpShape1/MAE ExpShape2/MAE ExpShape1/EBIC ExpShape2/EBIC
#1 1.3119 1.4305 1.3119 1.5492
#2 2.2373 1.5017 1.2644 1.3831
#3 1.1932 1.3593 1.0983 2.0949
#4 1.3593 1.4305 1.3119 1.5492
#5 1.2644 1.4542 1.3831 1.3593
#6 1.2881 1.3831 1.4305 1.5492
#7 1.3831 1.6678 1.5966 1.6678
#8 2.1424 1.3593 2.1186 1.5729
#9 1.5254 1.4305 1.5254 1.6441
#10 1.2881 1.4068 1.2881 1.4542

Mean 1.4993 1.4424 1.4329 1.5824
Variance 0.1406 0.0082 0.0776 0.0426

Table 27: Experiments ExpShape1 and ExpShape2: For each simulated data set, we show the values
estimated for the shape parameter when MAE (computed on the validation set) and EBIC (computed
on the training set) are employed. In each case, the mean and the variance of the estimated values are
reported. Note that ptrue = 1.5.
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5 Experiments with signals generated from images

5.1 Results obtained with JPEG data

 s=6   s=7   s=8   s=9   s=10  

100

120

140

160

180

200

220

E
st

im
at

ed
 D

ic
tio

na
ry

 S
iz

e

SNR=20dB: ADL

M1
M2
M3

 s=6   s=7   s=8   s=9   s=10 

70

80

90

100

110

120

E
st

im
at

ed
 D

ic
tio

na
ry

 S
iz

e

SNR=20dB: ADL1

M1
M2
M3

 s=6   s=7   s=8   s=9   s=10  

100

150

200

250

E
st

im
at

ed
 D

ic
tio

na
ry

 S
iz

e

SNR=Inf: ADL

M1
M2
M3

 s=6   s=7   s=8   s=9   s=10 

80

90

100

110

120

130

140

E
st

im
at

ed
 D

ic
tio

na
ry

 S
iz

e

SNR=Inf: ADL1

M1
M2
M3

Figure 3: JPEG data: Sizes of the dictionaries estimated by the methods M1, M2 and M3 when the
values of s are those written on the horizontal axes. The value of the SNR and the name of the algorithm
are mentioned in the title of each panel. The results are collected from 10 data sets.
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Figure 4: JPEG data: Values of MAEtest obtained by three methods. For comparison, we show in the
column labeled “True” the level of the noise for the test set. This is calculated by replacing in [1, Eq. (32)]

the product D̂X̂test with the noiseless data. All graphical conventions are the same as in Figure 3.
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5.2 Results obtained with MRI data
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Figure 5: MRI data: Same settings as in Figure 3.

20



 True  s=6  s=7  s=8  s=9  s=10 

1.5

2

2.5

3

M
A

E
te

st

SNR=20dB: ADL

M1
M2
M3

 True  s=6  s=7  s=8  s=9  s=10 

1.5

2

2.5

3

M
A

E
te

st

SNR=20dB: ADL1

M1
M2
M3

 True  s=6  s=7  s=8  s=9  s=10 

0

0.5

1

1.5

2

2.5

M
A

E
te

st

SNR=Inf: ADL

M1
M2
M3

 True  s=6  s=7  s=8  s=9  s=10 

0

0.5

1

1.5

2

2.5

M
A

E
te

st

SNR=Inf: ADL1

M1
M2
M3

Figure 6: MRI data: Same settings as in Figure 4.
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Figure 7: MRI data: Test errors versus the complexity of the models selected during training. In each
case, MAEtest and Complexity are calculated as averages for ten data sets. See also [1, Fig. 3].
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Figure 8: The values of MAEtest at each step, when ADL, ADL1 and ADL0.6 are applied (with s = 10).
See also [1, Fig. 4 (left panel)].
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Figure 9: The sizes of the dictionaries at each step, when ADL, ADL1 and ADL0.6 are applied (with
s = 10). See also [1, Fig. 4 (right panel)].
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Figure 10: Same conventions as in Fig. 7, except that the results for each method are generated from
the first noiseless MRI data set.
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