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Direct Volume Rendering (DVR) is a technique for displaying volumetric data sets without
generating intermediate representations. Because of the increasing capabilities of computer
hardware and consumer graphics accelerators, DVR can now be performed interactively and
is becoming more and more popular. Originally, DVR has only been applied to scalar data
sets, such as Computed Tomography scans. However, the dramatic advances in biomedical
imaging and other research areas like meteorology and thermodynamics have resulted in ever
increasingly complex volumetric data sets. Novel DVR algorithms are therefore required to
deal with non-scalar and multivariate data at interactive frame rates. The ability to combine
several data sets is also demanded, since insights can often be gained by comparing the
difference or correlation between data sets.

Current research in DVR mainly focuses on either improving the efficiency of rendering
algorithms or the visual appearance of the renderings. Even though both aspects are of great
importance, the efforts often lead to very specialised solutions that are only applicable in a
certain domain. So far, no tool is available that works completely hardware-accelerated and,
at the same time, supports the interactive exploration of arbitrary data as well as the easy
integration of new data types and formats.

In this report, we present solutions to develop a flexible and modular direct volume render-
ing framework which enables the user to interactively explore high-dimensional and multiple
data sets on programmable consumer graphics cards. We discuss how the framework can
be used to incorporate the latest specialised direct volume rendering algorithms and how it
can be adapted on the fly to change a visualisation or to visualise new variables, such as the
difference between two scalar fields, in order to gain insight into the given data.

The capabilities of the framework are demonstrated by two simple case studies and the
efficiency and effectiveness of the framework is evaluated.
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1 Introduction

In many scientific research areas like medical imaging, geology, or thermodynamics, three-
dimensional (3D) discrete data arrays are generated or acquired and need to be analysed.
They usually sample some continuous field. The visualisation of the internal structures or ob-
jects of the data helps researchers to investigate and understand the data [Drebin et al., 1988].

Since there are many ways how the volumetric data is produced, there is a large variety of
data formats and representations. Moreover, the sample points themselves can potentially be
of arbitrary dimensionality and type. In medical imaging, the dimensionality of the individual
sample points range from simple scalar radiodensity data acquired by Computed Tomography
(CT) over Positron Emission Tomography (PET) and possibly Magnetic Resonance Imaging
(MRI) to 3x3 diffusion tensor matrices in Diffusion Tensor Imaging (DTI). In meteorological
weather simulations, different properties of air — like temperature, humidity, or air pressure
— also result in multivariate data [Kniss et al., 2002b].

Especially when dealing with higher-dimensional data, new information has often to be
derived before the volume is displayed. In DTI for example, diffusivity and anisotropy de-
scribe characteristic movements of water in different types of tissue. These entities have to
be derived from the tensor matrix. Another point of interest is the visualisation of differences
between two data sets acquired at different times, which can improve the understanding of
how the data correlate and where it changes over time.

The field of volume rendering in general is not new, algorithms that are still in use have al-
ready been developed in the 1980s [Lorensen and Cline, 1987, Levoy, 1988]. With the upcom-
ing of relatively inexpensive graphics accelerators in the end of the 1990s, volume visualisation
in real-time became possible without the cost of highly specialised rendering hardware. With
the introduction of programmable graphics processing units (GPUs), research was further
intensified — as in the entire computer graphics area.

1.1 Objectives of the project

In this research project, we investigate which is the optimal design for a GPU-based volume
renderer that is capable of both rendering at interactive frame rates as well as dealing with
many different types of volume data and visualisation methods. The aim is to support an easy
integration of new data formats into the rendering framework, regardless of their represen-
tation or their sample point dimensionality. Additionally, user-defined visualisations of the
internal structures have to be possible, as the definition of objects of interest requires knowl-
edge of the concrete domain. We also investigate mechanisms to easily allow the derivation of
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1 Introduction

new values out of existing data. Hereby, all required computation is to be performed on the
GPU. The support for deriving new entities is essential, because especially multi-dimensional
data can often not be displayed directly. Instead, meaningful information has to be extracted
first (a good example is Diffusion Tensor Imaging data which can be visualised by computing
the diffusion anisotropy and mean diffusivity). Another application of these mechanisms is
the combination of several input volumes to derive information about how they differ.

Note that it is not the aim of this work to implement a fully featured volume renderer that
can interpret many different data formats. Neither is the renderer supposed to implement
a range of visualisation techniques. Instead, our main goal is to create a framework that
enables the developer to easily extend the functionality as needed. Nevertheless, we have
implemented several popular DVR techniques for our case studies in order to demonstrate
the flexibility and power of our framework.

1.2 Outline of this report

In the next section, related work will be discussed. Afterwards, principles of the pro-
grammable graphics pipeline will be outlined in section 3. We also give an overview of
high level programming languages that are currently used to write programs that are exe-
cuted on the GPU. Chapter 4 discusses principles of direct volume rendering in general and
GPU-based volume rendering algorithms in particular. In chapters 5 and 6, we explain how
to realise the goals of the research project. First, the requirements of a modular framework
are identified by showing differences in the DVR process for three scenarios. Then, the design
of individual components is derived and our proposed implementation is presented. In sec-
tion 7, we demonstrate the applicability of our framework with two case studies and discuss
the results of performance tests. A conclusion and an outlook are drawn in the last chapter.
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2 Related work

Many papers that relate to direct volume rendering discuss new rendering techniques
and algorithms that aim to improve the visual quality of the rendering or increase the
rendering speed. This is not surprising, as visual quality and efficiency is always an
important issue. The papers might for example demonstrate new acceleration tech-
niques [Rezk-Salama et al., 2000, Purcell et al., 2002, Krüger and Westermann, 2003], or ad-
vanced visualisation methods [Kniss et al., 2002c, Kindlmann et al., 2003]. Techniques for
dealing with higher-dimensional data have also been proposed [Kindlmann et al., 2000,
Kniss et al., 2002b, Kniss et al., 2002a]. For the purpose of demonstrating their achieve-
ments, the researchers usually implement renderers that are tailored to their needs. De-
pending on the domain, the demo applications can deal with scalar or multivariate data.
Nevertheless, these implementations will likely not be flexible enough to support different
data types and formats, as this is not their purpose.

Other publications discuss how to implement more general rendering frameworks.
Stegmaier et al. present a framework that implements a volume ray casting algorithm
[Stegmaier et al., 2005]. The framework allows to define visualisation techniques by imple-
menting fragment shaders. Generally, the application is restricted to scalar volume data, for
which a gradient can be pre-computed. Other data is not supported and other entities can-
not be derived. Bruckner and Gröller discuss an interactive framework for non-photorealistic
volume illustrations [Bruckner and Groller, 2005]. Their system, the “VolumeShop”, allows
to interactively explore and annotate scalar data. Hereby, more than one volume can be
rendered simultaneously. Visualisation and shading effects are defined by adjusting a two-
dimensional transfer function. The application uses hardware-accelerated rendering and C
for graphics (Cg) as high level shading language.

Teem is a very flexible collection of open-source C libraries that offers a variety of func-
tionality to process and visualise volumetric data [Kindlmann, 2003]. It supports data of
arbitrary dimensionality and let the user specify which entities to derive and how to map the
data to colours and opacities (by defining multi-dimensional transfer functions). However,
Teem is not interactive, as it has to be run on command line.

The Silicon Graphics, Inc. developed the OpenGL Volumizer
TM

, a powerful C++ toolkit
for high-quality volume renderings of large data sets [Bhaniramka and Demange, 2002]. The
API uses hardware-accelerated rendering techniques and implements many techniques for
working with very large data (like volume roaming [Bhaniramka and Demange, 2002] and
multi-resolution volume rendering [LaMar et al., 1999]). Shaders may be defined that specify
the visualisation. As a toolkit, the OpenGL Volumizer

TM
is not an application on its own, but

depends on other frameworks like the Visualization Toolkit (VTK) [Schroeder et al., 1998].
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3 The programmable graphics pipeline

Before discussing GPU-based direct volume rendering algorithms in the next chapter, the
programmable graphics pipeline is introduced to give a general understanding of how current
graphics accelerators process data. In the second section of this chapter, concepts of high
level shading languages are outlined. Hereby, differences to conventional general-purpose
programming languages are emphasised.

A thorough discussion of principles of graphics hardware and its programming is considered
to be very important, because the project aims to investigate GPU-based methods of volume
rendering and the utilised concepts differ considerably from general CPU programming. In
order to achieve the modularity and flexibility we demanded in the introduction, advanced
GPU technologies will be utilised. To be able to discuss the design decisions of the developed
rendering framework in section 5, a good understanding of the hardware architecture and
programming concepts is necessary.

3.1 Introduction to the graphics pipeline

Figure 3.1 illustrates the data processing of a general graphics pipeline. This simplified model
concentrates on the components relevant to our research. A more detailed description can
be found in the literature (see for example [Foley et al., 1996, Watt, 1993, Engel et al., 2004,
Fernando and Kilgard, 2003, Rost, 2006]).

A graphics application running on the CPU can access the graphics card by calling functions
of a 3D API (like OpenGL R© or Microsoft R© Direct3D R©). Apart from setting render states
of the hardware, the application can also upload vertex data or texture maps that are to be
displayed. Note that vertices can also be sent to the graphics card during the rendering, but
since this requires the transmission via the system bus in every rendering loop, this method
is generally slower. For objects with unchanging geometry it is therefore preferable to upload
the vertex data once before entering the rendering loop [Akenine-Möller and Haines, 2002].

The rendering pipeline used in standard graphics APIs and graphics hardware was devel-
oped for drawing geometric primitives (like points, triangles, or polygons) which are defined
by vertices. For each vertex, attributes like position, colour, the normal vector, or several
texture coordinates can be assigned. In the vertex processing unit, the incoming vertices are
manipulated. Traditionally, the transformations into the world or camera coordinate system
as well as lighting operations are performed. Thereafter, the vertices are projected onto the
viewing plane and the polygons are rasterised. During the rasterisation process a transition
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3 The programmable graphics pipeline

Figure 3.1: Simplified model of the general graphics pipeline. The per-vertex and per-fragment oper-
ations are the most important components for our research and are shown in more detail.

from a description in 3d space to a description in a pixel-raster is made. Hereby, the vertex
attributes are linearly interpolated over the entire surface [Segal and Akeley, 2006].

The generated fragments (imaginable as pixels with a depth coordinate and the additional
attributes of the vertices) are further manipulated by the fragment processor. At this stage,
texture mapping operations are performed. If the fragment passes the z-buffer test (this
usually means, if the fragment is closer to the viewer than every other fragment at the same
position that has been processed before), the fragment is written to the target buffer and the
rendering pass is finished. Depending on the render state settings, the new colour might be
alpha-blended (i.e. modulated or mixed) with the existing value [Engel et al., 2004].

In order to optimise the fragment processing, newer graphics hardware usually implements
an early z-test. In this case, a z-buffer test is also performed before the fragment is processed.
If the test fails, the fragment is immediately discarded. Without this improvement, the
fragment will be processed in any case [Sander et al., 2005].

3.2 Programmable shading units

In March 2001, the NVIDIA R© Corporation released with the GeForce3
TM

the first consumer
graphics hardware whose vertex and fragment processing units could execute custom micro
programs, commonly called shaders [NVIDIA R© Corporation, 2001]. Until then, graphics
accelerators only allowed to configure pre-defined operations of the fixed-function graphics
pipeline. These operations allow coordinate transformations and lighting calculations on the
vertex stream (a per-vertex Phong lighting model1 was implemented on graphics hardware).
After rasterisation, the fixed-function graphics pipeline gives only relatively limited control
over how the fragments are processed. However, by setting render states, it is possible to
specify alpha-blending, texturing as well as stencil and depth testing.

1 The well-known empirical local illumination model was introduced by Bui T. Phong in 1975 [Phong, 1975].
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3 The programmable graphics pipeline

1.1 (2001) 2.0 (2002) 3.0 (2004) 4.0 (2006)
VS PS VS PS VS PS VS PS

Instructions 128 12 256 96 ≥512 ≥512 ≥64000
Input registers 16 6 16 10 16 10 16 32
Constant registers 96 8 256 32 256 224 16x4096
Temporary registers 12 2 12 12 32 32 4096
Flow control n/a static static/dynamic dynamic
Textures n/a 8 n/a 16 4 16 128
Render targets 1 4 4 8

Table 3.1: Overview of the main requirements and capabilities of vertex shaders (VS) and pixel shaders
(PS) defined by different shader models. Adopted from [Blythe, 2006].

In contrast, the programmable graphics pipeline lets the programmer upload shader
programs for either the vertex processing unit (called vertex shader or vertex programs)
or the fragment processing unit (called fragment shader or fragment programs). In the
pipeline the vertex processing unit replaces the 3D transformations and lighting calcu-
lations. The fragment processing unit provides a new way of manipulating each gener-
ated fragment. Even though fragment programs also have to perform texturing, the pro-
grammable fragment processing units offer a significantly greater flexibility than the conven-
tional fixed-function pipeline. The ability to manipulate the fragment data not only allows
conventional rendering, but also hardware accelerated image processing or general purpose
computing [Akenine-Möller and Haines, 2002, Luebke et al., 2004].

The programmable shading arithmetic logic units (ALUs) are single instruction multiple
data (SIMD) stream processors with highly specialised instruction sets. Operations can be
performed on up to four floating-point components in parallel. The loaded programs are
generally executed once per vertex or once per fragment. Since each element of the input
stream is processed isolated, it is not possible to access data generated in a previous execution.
This isolation allows for enormous parallelism and a superscalar architecture (today up to
320 parallel stream processing units are available on GPUs [Advanced Micro Devices, 2007]).

Over the past years the complexity of the shading units and the maximal length of
shader programs have constantly increased (see table 3.1). To account for this, different
shader models have been specified. Each model defines the instruction set of the ALU,
the maximal length of the programs, the number of variables and constants, and other
parameters. Together with the instruction set, mnemonics in an assembly language are
defined [Microsoft R© Corporation, 2007].

In early shader models, loops, branching, or conditional execution was not implemented.
With shader model 2.0 static flow control was available, which only allowed to use variables
in constant registers for conditions (in if statements and loops). Moreover, nested loops
were not available. The shader model 3.0 introduced limited nesting for static loops and,
more importantly, dynamic flow control. Since then, also temporary registers can be used in
conditions [Engel, 2003].
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3 The programmable graphics pipeline

Another feature that became available with shader model 2.0 is off-screen rendering. In-
stead of writing the result of the rendering pass into the frame buffer, a texture is used as
render target. Today’s graphics cards support to render into more than one off-screen render
target [Engel, 2003].

3.3 High level shading languages

In order to avoid writing shader programs in an assembly language, several high level
languages for real-time shader programming have been developed. The three most pop-
ular languages are currently: The OpenGL R© Shading Language (GLSL) as part of the
OpenGL R© Standard 2.0, C for graphics (Cg), developed by the NVIDIA R© Corporation, and
the Microsoft R© High Level Shading Language (HLSL). Syntactically, they are very similar to
each other, as they are all based on ANSI C/C++ as well as on the RenderMan R© Interface
Specification [Pixar Animation Studios, 2005]. In fact, Cg and HLSL have been developed in
close collaboration and have therefore almost the same syntax [Fernando and Kilgard, 2003].
To best suit the specialised graphics domain, the shading languages differ from C and C++
as general purpose programming languages.

In our research project, we will use Cg as high level shading language. HLSL is only
available in conjunction with the Microsoft R© Direct3D R© API, and GLSL lacks some advanced
features that will be used extensively for achieving modularity. Most importantly, GLSL does
not support interfaces, include directives, semantics, and annotations as they will be described
below. Because of these shortcomings of GLSL only the concepts of Cg will be discussed in the
following. Unless otherwise noted the information is based on [Fernando and Kilgard, 2003]
as well as the Cg language specification [NVIDIA R© Corporation, 2005a].

Data types and variables

The most important data type in shader programming is the 32 bit floating-point type float.
To potentially increase performance, Cg also defines a 16 bit equivalent half.

Since GPUs can process data in parallel, special vector data types are introduced (for
example, float3 represent a three component floating-point vector). The components of
vector data types can be addressed using a dot operator as in C/C++. Since variables
usually represent points, vectors, or colours, the components are labelled .x, .y, .z, .w or
.r, .g, .b, .a respectively. To select multiple components, graphics hardware allows swizzling
without performance loss and thus, swizzling is also part of the high level shading languages
(for example .rgg or .yyxw).

In addition to vectors, matrix data types are defined. They can have up to four rows and
columns. In Cg, matrices are defined by the base data type and the number of rows and
columns (for example float3x2, half4x3, or float4x4).

To access texture maps, the sampler data type is used. A sampler is associated with exactly
one texture object. The binding is done by the application. As with vectors and matrices,
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3 The programmable graphics pipeline

different sampler types are available for textures with different dimensionality (for example
sampler2D or sampler3D). In addition to the raw texture data and the texture coordinates,
render states are associated with a sampler object to specify how to sample texels.

All shading languages allow to define structures (using the struct keyword) as a collection
of variables, similar to the C equivalent. In contrast to GLSL, Cg additionally allows to
define functions within structures as in C++. However, object-oriented concepts such as
polymorphism and inheritance are currently not part of any shading language.

The different input registers in the shader ALUs have different meanings. Moreover, vari-
ables are initialised differently depending on the type of register they are stored in. To
ensure a correct compilation of a program, different type modifiers are defined in the shading
languages.

Constant variables within a shader are already defined at compile-time. To allow constant
folding, the type modifier const can be used. The variables will be stored in the constant
register [NVIDIA R© Corporation, 2005b].

Uniform variables are those whose value is set by the application before the rendering
pipeline is entered. They are named “uniform” since their value does not change during the
whole execution of the shader program.

The term varying variable is used to identify variables that store the attributes of vertices
and fragments (that is, it depicts variables stored in the input registers). Thus, they change
with each processed element. Note that Cg does not define a type modifier keyword for
varying variables.

To encode the meaning of varyings — in other words, to associate the data in the stream
with shader variables — Cg uses binding semantics to associate element data with variables.
Semantics are imaginable as annotations to a variable with a predefined name and mean-
ing (for example POSITION or TEXCOORD2). To pass data from vertex to fragment shader
both programs must associate variables with the same semantic. The name of the variable,
however, is irrelevant. Semantics will be discussed in more detail later in this section (see
page 9).

Functions

Functions are defined as in C or C++. The signature is given by the name and the parameter
arguments. Parameters may be either input parameters (call-by-value), output parameters
(call-by-result), or input-output parameters (call-by-value/result). The corresponding type
qualifiers are in, out, and inout.

Every vertex and every fragment shader program needs an entry point. A vertex shader
must at least write the position of a vertex. A fragment shader must at least output the
colour of a fragment.
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3 The programmable graphics pipeline

Predefined functions

The shading languages predefine commonly used functions. They are referred to as built-
in functions in GLSL, standard library functions in Cg, and intrinsic functions in HLSL.
Naturally, the provided functionality is highly adapted for graphics applications. Coarsely,
the predefined functions can be categorised in the following classes:

General Math: like clamp, pow, exp, log, or sqrt.
Trigonometry: like sin, cos, atan, or degrees.
Geometry: like normalize, dot, cross, length, or reflect.
Texture access: like tex2D, tex3D, or texCUBE.
Others: like lerp or noise.

Other concepts of the Cg language

Because Cg is not part of any graphics API but a proprietary language, it must provide an
external API and library that has to be included in the application. Additionally, Cg requires
a runtime environment to allow the compilation and link of Cg shader programs during the
execution of the graphics application. In the rendering pipeline (figure 3.1), the Cg runtime
is located as an extra layer between the application and the graphics card driver. To make
Cg available for both major graphics APIs (OpenGL R© and Direct3D R©) two different API-
specific Cg runtimes are available. Note that the Cg compiler translates the source code in
different ways depending on the API that is used. The final compilation into machine code
is then done by the API specific driver [Fernando and Kilgard, 2003].

Cg allows to include additional files, using the #include pre-processor directive. This
feature, which was omitted in GLSL for the sake of simplicity [Rost, 2006], will become
important when discussing how to integrate use-defined Cg code into the rendering framework
(see section 6.2).

As already mentioned, Cg uses binding semantics to identify variables as an alternative to
the identification by name. There are predefined semantics for associating input and output
variables with hardware registers. Additionally, user-defined semantics can be specified and
used by the application to get handles to the variables. The syntax for semantics is as
follows [NVIDIA R© Corporation, 2005a]:

<data-type> <variable-name> : <binding-semantic>;

Another important feature of Cg is the concept of interfaces, which neither GLSL nor
HLSL support. An interface is an abstract data type that only defines the function signa-
tures which can then be implemented by structures. The syntax is much like in C#, but
there is no real polymorphism in Cg: Shader programs can define and use variables of the
abstract interface type, but before the shader is compiled, the data type of a structure that
implements the interface must be specified. During the execution, the implementation of this
specified data type is used. If another implementation (i.e. implementing structure) is to be
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3 The programmable graphics pipeline

used, the shader must be recompiled. The NVIDIA R© Corporation calls this “compile-time
polymorphism” [NVIDIA R© Corporation, 2005b]. Even though this expression bizarrely con-
tradicts the definition of polymorphism in object-oriented paradigms, it depicts the concept
nicely.

The CgFX file format

The NVIDIA R© Corporation defined a file format (again in collaboration with
Microsoft R©) that according to the authors represents “complete effects and appearances”
[Fernando and Kilgard, 2003]. Since shader programs are executed with a certain state of
the graphics card, an effect describes the setup of the rendering pipeline including ver-
tex and pixel shader programs as well as render states and potentially multiple rendering
passes [Fernando and Kilgard, 2003].

The Cg runtime provides the API to work with CgFX files. To simplify the use, render
states are automatically set and restored by the Cg runtime during the rendering.

An effect is identified by a named technique that contains one or more passes, each
of which specifies whether to use the fixed or programmable stages as well as render state
settings such as blending. For each pass, the shader program and the compiler profile has to
be specified if a programmable stage is to be used.

In addition, the CgFX file format introduces a new mechanism to give the application
hints and further information about the elements defined in the file. Items like variables,
functions or techniques may have annotations attached. Annotations have a data type, a
name and a value. They are not interpreted by the Cg runtime itself, but can be read by the
application [NVIDIA R© Corporation, 2005b]. An example for annotations of a variable is:

texture volume

<

string FilePath = "volume.raw";

int Width = 128;

int Height = 128;

int Depth = 128;

bool Scalar = true;

>;

10



4 Direct Volume Rendering

In this chapter, direct volume rendering (DVR) algorithms will be discussed. At first, a brief
overview of volume rendering in general is given. Then, the fundamental model for direct
volume rendering, the emission-absorption model, is introduced. Knowledge about this model
is required because all DVR algorithms are based on an optical model which describes how
light interacts with the material represented by the sampled data. The second half of the
chapter focuses on GPU-based algorithms that are used today.

4.1 Overview of volume rendering

Volume visualisation techniques can be classified as being either indirect or direct. The former
class avoids the computationally expensive rendering of the data set itself by representing
features of the data set using graphical representations. An example is object boundaries
defined by iso-surfaces which can be represented by polygonal surfaces and displayed using
conventional rendering techniques. A well-known indirect volume rendering algorithm is
called marching cubes, introduced by Lorensen and Cline in 1987 [Lorensen and Cline, 1987].
The iso-surface extraction — essentially a binary thresholding technique — is problematic.
Once the polygonal iso-surface is generated, most of the information carried by the volume
data is lost. In fact, it is just the aim of the indirect techniques not to integrate the data set
during the rendering.

Direct Volume Rendering algorithms on the other hand directly use the volume data during
the rendering. They do not rely on a polygonal approximation. A further distinction can be
made by means of how the DVR algorithms perform the projection onto the final image plane.
Image-order algorithms come from the pixels of the image and calculate the final colour at
this location. Volume ray-casting, developed by M. Levoy, is an example of an image-order
algorithm [Levoy, 1988]. For each pixel, a ray that originates at the viewer’s position and
travels through the pixel’s centre is traced through space. Along the ray, the volume data
set is resampled and the gathered light accumulated. In the end of this chapter, GPU-based
ray casting is described (see section 4.3.2).

In contrast to image-order approaches, object-order algorithms project the volume data
(i.e. the “object”) onto the image plane. The shear-warp factorisation is one of the first
algorithms of this category that could be implemented at almost interactive frame rates by
projects the volume slice by slice [Lacroute and Levoy, 1994]. The algorithm uses three stacks
of slices, each of which holds slices perpendicular to one of the volume’s principal axes (see

11
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Figure 4.1: The three stacks of slices, each of which is perpendicular to one of the object’s principal
axes (left: x-axis, middle: y-axis, right: z-axis).

figure 4.1). During the rendering, the stack of the axis that is most parallel to the viewing
direction is selected. To account for non-orthogonal viewing angles, the slices are sheared,
scaled and warped appropriately. Even though no rays are cast, the algorithm also models
viewing rays, as they directly determine the transformations of the slices.

4.2 The emission-absorption model

DVR algorithms directly operate on the volume and its voxels. During the rendering, an
optical model is evaluated that describes the light interaction on a voxel basis in terms of
absorption, emission, and possibly scattering and shadowing. Each voxel is considered to
describe the interaction that happened at the corresponding point of the continuous space
that was sampled. The volume can also be considered to represent a gaseous material, whose
absorption, emission and other properties are modelled by the optical model. The mapping
from the voxel’s value to the optical properties is called classification and is usually done
using a transfer function (see below) [Engel et al., 2004].

The goal of every DVR algorithm is to integrate the light interactions along the viewing
rays that pass through the pixels of the final image. The interactions are modelled by the
underlying optical model. For a parameterised viewing ray r(t) = P0 + t~d, P. Sabella intro-
duced the following integral in 1988, assuming an optical model that accounts for absorption
and emission only [Sabella, 1988]:

C =
∫ ∞

0
c(t) · e−τ(0,t) dt, (4.1)

where

c(t) is the emissive colour and

τ(0, t) is the optical depth in the interval [0, t].

12
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This fundamental integral is usually called the volume rendering integral2. In [Max, 1995],
N. Max gives a detailed discussion about several different optical models.

In equation 4.1, c(t) describes the light that is emitted at position t. The optical depth
originates from the fact that light that is travelling through the volume is attenuated by
absorption or scattering due to the particles of the gaseous material. According to Sabella,
the expected number of particles in an interval I = [t1, t2] is given by:

τ(t1, t2) =
∫ t2

t1

κ(u) du,

which is exactly the optical depth. κ(u) is the particle density of the material at u (also
called absorption coefficient [Engel et al., 2004]). Note that the term e−τ(0,t) in the volume
rendering integral is the approximation of the probability that the light is not scattered by
other particles on its way. This probability actually gives the overall attenuation of the light
along the viewing ray [Sabella, 1988].

To numerically solve the volume rendering integral defined in equation 4.1, each ray is
sampled at discrete points. Let ∆t be the sampling distance between two subsequent sample
points. The emissive colour and the absorption coefficient of the i’th ray segment are then
approximated by:

c(i) ≈ c′i = c(i ·∆t)∆t

and:
κ(i) ≈ κ′i = κ(i ·∆t)∆t,

The optical depth for the ray is likewise approximated by:

t/∆t∏
i=0

e−κ
′
i .

Using these approximations, the discrete form of the volume rendering integral is finally
given by [Sabella, 1988]:

C ′ =
n∑
i=1

c′i

i−1∏
j=1

e−κ
′
j =

n∑
i=1

c′i

i−1∏
j=1

(1− αj). (4.2)

Note that e−κ
′
i is the transparency of the volume between i and i + ∆t. Similarly, αi =

1− e−κ′
i depicts the opacity in that interval [Engel et al., 2004].

2 The work of P. Sabella is partly based on a more complex volume rendering equation that also accounts
for scattering. Even though this was introduced four years earlier by J. Kajiya and B. Von Herzen
[Kajiya and Herzen, 1984], Sabella’s integral is considered to be the fundamental volume rendering equa-
tion.
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Transfer functions

One of the most important tasks in DVR is to map the volume data to properties of the
optical model, as this mapping can be used to emphasize regions of interest, such as different
tissue types. Therewith, the objects are classified by different material properties in terms of
the optical model.

A transfer function is usually used to specify this mapping. One of the simplest types of
transfer functions for a scalar volume is a one-dimensional (1D) function m : R 7→ R4 that
maps each scalar value to a colour tuple with four channels: red, green, blue, and opacity. In
the later discussion, this type of function will be called colour-opacity transfer function.

Multi-dimensional transfer functions allow significantly more control for the classification,
because a combination of several parameters can be used [Kniss et al., 2002b]. In the case
of scalar volume data, other dimensions like the magnitude of the gradient or the principal
curvature at a voxel can be derived. Note that the gradient gives the change in slope per
voxel and can be approximated by computing the partial derivatives in x-, y- and z-direction.
For a scalar field f(x, y, z) it is defined as:

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

For a discretised field, the partial derivatives can be approximated using the central
differences [Levoy, 1988]:

∂f
∂x ≈ f(x+1,y,z)−f(x−1,y,z)

2 ,

∂f
∂y ≈ f(x,y+1,z)−f(x,y−1,z)

2 ,

∂f
∂z ≈ f(x,y,z+1)−f(x,y,z−1)

2 ,

with x, y, z ∈ N. In [Mihajlovic et al., 2003], more advanced approximations of the gra-
dient are discussed. Since the gradient changes rapidly at boundaries of objects of interest
(for example at the transition from bone to soft tissue in a CT scan), the combination of a
colour-opacity transfer function with the gradient is particularly plausible for scalar fields.

In the case of higher dimensional volume data the voxels themselves are already defined
in a multi-dimensional domain. Therefore, the combination of different values of the volume
can be used directly to classify components or objects of interest without the need to derive
other properties [Kniss et al., 2002b].

Volume shading

Using the gradient as additional entity, local illumination models like the previously men-
tioned Phong model can be implemented. The normalised gradient, ∇f/||∇f ||, serves as
estimation of the surface normal at the location of each voxel. This method was already
discussed by Levoy in 1988 [Levoy, 1988].
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Figure 4.2: The steps of DVR for scalar volume data.

The general DVR process

To summarise the general DVR approach, figure 4.2 illustrates the rendering using a scalar
volume. If shading is to be performed during the rendering, or if a 2D transfer function is
to be used for classification, the gradient of the scalar volume has to be computed. During
the classification, the transfer function (and indirectly the opacity model) is evaluated and
therewith the colour and opacity determined. During the rendering, the coloured voxel might
be illuminated according to a local illumination model and the volume is projected onto the
image plane. The projection depends on the DVR algorithm that is used (image-order or
object-order).

Figure 4.3 extends this pipeline by introducing more complex pre-processing steps, in
which new entities (like in DTI) may be derived or different volume combined. Note that the
transfer function might be higher-dimensional as well, depending on which entities are used
for classification.

4.3 GPU-based DVR algorithms

In this section, algorithms for GPU-based direct volume rendering will be discussed. They can
also be classified as either object-order or image-order approaches. In contrast to the history
of the previous methods, hardware-accelerated object-order algorithms were developed first.
A simple reason for this is that the graphics pipeline is also laid out in a strictly object-order

Figure 4.3: The steps of DVR for multivariate volume data.
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Figure 3: The �nal combiner stage is used to compute the
resulting fragment output for RGB and Alpha.

The output registers of the second general stage are com-
bined by a �nal combiner stage displayed in Figure 3. The
�nal stage only supports two output registers (RGB and Al-
pha) and allows to compute AB + (1 � A)C + D for the
RGB-portion. Additionally one of the variables A{D can
be assigned to another intermediate component wise prod-
uct E � F . After the multi-stage rasterization the standard
OpenGL per-fragment operations, like depth test or alpha-
blending are performed on the resulting fragment output
from the �nal combiner stage. Note that this hardware
also supports paletted textures, but the color-table lookup
is performed before the interpolation, so the input regis-
ters texture 0 and texture 1 already contain interpolated
RGBA values.

4 Texture Based Volume Rendering

In order to exploit texture hardware for volume rendering,
the volume data set is represented by a stack of adjacent
polygon slices. If 3D-textures (OpenGL 1.2) are supported
by hardware, it is possible to render slices parallel to the
image plane with respect to the current viewing direction
(see Fig. 4 left). This means that if the viewing matrix
changes, these viewport-aligned slices must be recomputed.
Since trilinear texture interpolation is supported by hard-
ware, this can be done at interactive frame rate. In the �nal
compositing step, the textured polygon slices are blended
back-to-front onto the image plane, which results in a semi-
transparent view of the volume. With this approach it is
easy to enhance image quality just by increasing the num-
ber of slices. However, in order to obtain equivalent repre-
sentations of the volume data while changing the number of
slices, opacity values must be adapted to the varying slice

Viewport-Aligned Slices Object-Aligned Slices

Figure 4: Viewport-aligned slices (left) in comparison to ob-
ject aligned slices (right) for a spinning volume object.

Figure 5: Visual artifacts are caused by the lack of trilin-
ear interpolation (left) but can be successfully removed by
inserting multiple intermediate slices (right).

distance. Although the correct scaling factor is a function of
the opacity value, in most cases scaling the values linearly
with a constant factor according to the slice distance is a
visually adequate approximation.
In contrast, if hardware supports 2D-textures only, the

slices are set parallel to the coordinate axes of the rectilinear
data grid (object-aligned slices, Fig. 4 (right)). This allows
to substitute trilinear by bilinear interpolation. However,
if the viewing direction changes by more that 90 degrees,
the orientation of the slice normal must be changed. This
requires to keep three copies of the data set in main mem-
ory, one set of slices for each slicing direction respectively.
The slices are rendered as planar polygons textured with
the image information obtained from a 2D-texture map and
blended onto the image plane. This is equivalent to an im-
plicit decomposition of the viewing matrix into a 3D shear
and a 2D image warp step as proposed in [7]. However, this
factorization is not coded explicitly, since the decomposition
is automatically performed by the OpenGL transformation
matrix. Despite the high memory requirements, the ma-
jor drawback of the 2D-texture based implementation is the
missing spatial interpolation. As a result the images contain
strong visual artifacts as displayed in Figure 5. To obtain
correct visual results with this approach opacity values must
be scaled according to the distance between two adjacent
slices in direction of the viewing ray. Like in the 3D-texture
based approach, scaling the values linearly with a constant
factor as an approximation has lead to good visual results.

5 Multi-Texture Interpolation

In order to enhance the image quality of 2D-texture based
volume rendering, an approach to remove the visual artifacts
caused by the �xed number of slices is required. The idea
to enable real trilinear interpolation is to compute interme-
diate slices on the y. The missing third interpolation step
is then performed within the rasterization hardware using
multi-textures.
Computing an intermediate slice Si+� can be described

as a blending operation of two adjacent �xed slices Si and
Si+1:

Si+� = (1� �) � Si + � � Si+1: (1)

With each slice image stored in a separate 2D-texture, bilin-
ear interpolation is automatically performed by the texture
unit. The third interpolation step is computed subsequently
by blending the resulting two texels. As displayed in Fig-
ure 6, the blending step can be computed by a single gen-
eral combiner stage (see Sec. 3), if the �xed slices Si and

111

Figure 4.4: View-aligned (left) and object-aligned (right) slices used as proxy geometry for GPU-based
object-order volume rendering. From [Rezk-Salama et al., 2000].

approach [Engel et al., 2004]. Additionally, the implementation of image-order algorithms
requires more powerful programmable shading units that only became available in recent
years.

4.3.1 Object-order rendering

Object-order DVR algorithms that run on the GPU make use of the texture mapping and
blending capabilities of the graphics hardware. Since the graphics cards do not support
volumetric rendering primitives, the volume needs to be rendered using a polygonal proxy
geometry. Most often, these parallel planes are clipped against the bounding box of the
volume. To avoid certain problems in case of perspective projection (see below), other proxy
geometries — for example spherical shells — have been proposed [LaMar et al., 1999], but
due to higher complexity these approaches are not as popular. In the following discussion,
planes will be considered as proxy-geometry, but the basic principles also apply for other
geometries.

Regardless on which proxy-geometry is used, the purpose is sampling the volume and
therewith evaluating the discrete volume rendering equation (see equation 4.2). The sampling
distance, ∆t, for the reconstruction directly depends on how many slices are used. Whenever
the transfer function is evaluated, the opacity obtained is defined with respect to the sample
spacing of the volume, ∆s, rather than the sampling distance of the reconstruction (note that
∆s has been defined during data acquisition). To adjust the opacity, α, given by the transfer
function, an opacity correction has to be applied [Lacroute, 1995]:

α′ = 1− (1− α)
∆t
∆s . (4.3)

As Rezk-Salama et al. point out [Rezk-Salama et al., 2000], two different types of planar
proxy geometry can be considered: view-aligned slices, which are always perpendicular to
the viewing direction, or object-aligned slices, which conceptually correspond to the slices
defined by Lacroute and Levoy in the shear-warp factorisation. Figure 4.4 illustrates the two
different types of planar proxy geometry.

The slices of the proxy geometry are rendered from back to front and blended together
using the alpha blending capabilities of the graphics card colours [Engel et al., 2004].
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28 Course 28: Real-Time Volume Graphics

CA B

Figure 3.5: The location of sampling points changes abruptly (C), when switching
from one slice stack (A), to the next (B).

other two coordinates become the actual 2D texture coordinates used
for rendering the slice. Rendering proceeds from back to front, blending
one slice on top of the other (see Figure 3.3).

Although a single stack of 2D slices can stores the entire volume, one
slice stack does not suffice for rendering. When the viewpoint is rotated
about the object, it would be possible that imaginary viewing rays pass
through the object without intersecting any slices polygons. This cannot
be prevented with only one slice stack. The solution for this problem is
to actually store three slice stacks, one for each of the major axes. During
rendering, the stack with slices most parallel to the viewing direction is
chosen (see Figure 3.4).

Under-sampling typically occurs most visibly along the major axis of
the slice stack currently in use, which can be seen in Figure 3.1. Ad-
ditional artifacts become visible when the slice stack in use is switched
from one stack to the next. The reason for this is that the actual loca-
tions of sampling points change abruptly when the stacks are switched,
which is illustrated in Figure 3.5. To summarize, an obvious drawback
of using object-aligned 2D slices is the requirement for three slice stacks,
which consume three times the texture memory a single 3D texture would
consume. When choosing a stack for rendering, an additional consider-
ation must also be taken into account: After selecting the slice stack, it
must be rendered in one of two directions, in order to guarantee actual
back-to-front rendering. That is, if a stack is viewed from the back (with
respect to the stack itself), it has to be rendered in reversed order, to
achieve the desired result.

The following code fragment (continued on the next page) shows how
both of these decisions, depending on the current viewing direction with
respect to the volume, could be implemented:

Figure 4.5: Switching the texture stack can cause visual artefacts, because the sampling locations
change. Image (A) and (B) show the stacks between which is swapped. In image
(C) they are blended together to illustrate the different sampling locations. From
[Engel et al., 2004].

Rendering using object-aligned slices

Approaches that use object-aligned planar proxy geometry usually decompose the volume
into 2D texture maps. Since GPUs are optimised for 2D texture fetches, the rendering is
very fast. A major disadvantage is that three stacks of 2D textures have to be stored, one for
each principal axis of the volume [LaMar et al., 1999]. Figure 4.1 shows the three stacks, each
of which is perpendicular to one of the principal axes. Visual artefacts are introduced when
switching stacks, because the sampling locations change slightly, as illustrated in figure 4.5.

If each slice of the proxy geometry addresses exactly one 2D texture, the rendering method
directly corresponds to the shear-warp factorisation. Note that in this case the volume is
sampled using bilinear interpolation. The image quality usually suffers from undersampling
and the missing interpolation between slices. To increase the sampling rate and to implement
a trilinear interpolation, it is possible to utilise the multi-texturing capabilities of graphics
hardware. An arbitrary large number of planar slices can be used, each of which samples the
two surrounding texture slices. Trilinear interpolation is achieved by linearly interpolating
the two (bilinearly) sampled values [Rezk-Salama et al., 2000].

To avoid redundant storage of the volume in three texture stacks, the data can also be
loaded into the video memory as a single 3D texture. Since today’s hardware supports
trilinear interpolation when sampling 3D texture maps, the result is comparable to the multi-
texturing approach. A drawback of this method is that texture fetches into 3D textures are
usually slower [Engel et al., 2004]. However, a comparison of the actual speed of a multi-
texturing approach using 2D textures and a rendering approach with a single 3D texture did
not show significant differences (see section 7.2, page 48). Even though the 3D texture fetch
might be slower, the fragment shader neither needs to fetch two textures nor has to linearly
interpolate between the two sample values.

Using object-aligned slices leads to a sampling rate that not only depends on the number
of slices, but also on the viewing angle. If the viewing direction is not perfectly orthogonal to
the current slice stack, the sampling distance is increased. This is illustrated in figure 4.6. In
consequence, the assumed sampling distance ∆t in the above mentioned opacity correction
(equation 4.3) has to be corrected. Assuming that the viewing angle θ does not exceed
45◦(which is reasonable, because otherwise a different stack would have been chosen), the
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{∆x0

{2 ∆x0

Figure 4.6: The spacing between samples on a viewing ray depends on the viewing direction, so
voxel opacities must be corrected to account for the sample spacing.

the number of samples stays the same but the distance between sample points in image space

increases (unlike with most ray casters, which maintain the same sample spacing regardless

of the viewing direction). The attenuation along the ray should also increase, hence the need

for opacity correction. Other object-order volume rendering algorithms must also correct

opacities for the viewing angle [Laur & Hanrahan 1991].

Let Z][_^ be the width of a voxel and assume that the opacity computed by the opacity

transfer function and stored with a voxel ( A*`2a2b�ced(f ) uses Z\[_^ as the sample spacing:

A,`.aeb�c2d�fgKhLONiPSRUTWX?Y8j
Then for some other sample spacing Z\[ the corrected opacity can be computed as follows:

A*k(b�cec2d�kla2d(f K LmNiPSRUTWX?Y
K LmNonpP RUTWX?Y8jFqCrtsrts jK LmNvupLONwA,`.aeb�c2d�f;x rtsrts j

The corrected opacity is a function of the stored opacity and the sample spacing ratioZ\[IyzZ\[_^ , but the function is the same for every voxel. Figure 4.7 shows a plot of the cor-

rection function for several values of the sample spacing ratio. Without opacity correction

a cube-shaped voxel appears 30% more transparent than it should when viewed from a 45

degree angle, a difference that is visually significant.

The rendering algorithm performs opacity correction on each voxel just before resam-

pling the voxel. The correction can be implemented efficiently with a precomputed lookup

Figure 4.6: When using object-aligned slices the sampling rate also depends on the viewing angle.
From [Lacroute, 1995].

sample spacing can be corrected by [Engel et al., 2004]:

∆t′ =
1

cos θ
·∆t. (4.4)

Rendering using view-aligned slices

Volume rendering that utilises view-aligned planes as proxy geometry originates
in algorithms that were implemented on specialised rendering hardware (see for
example [Cabral et al., 1994, Cullip and Neumann, 1994, Gelder and Kim, 1996]). The ma-
jor difference to object-aligned approaches is that the planes are always orthogonal to the
viewing direction. In consequence, they need to be updated whenever the observer position
changes. Additionally, it is not possible to use 2D textures for the rendering, since the slices
are not aligned with the volume as it is the case with object-aligned methods.

The view-aligned slices of the proxy-geometry are not rectangles but polygons of up to
six vertices. They are generated by clipping infinite planes against the bounding box of the
volume. Generally, the clipping can be performed on the CPU (by implementing a clipping
algorithm within the application) or on the graphics hardware (by utilising the ability to
define additional clipping planes).

Since the slices of the proxy-geometry are always perpendicular to the viewer, the sampling
distance, ∆t, must not be corrected by equation 4.4.

Problems with perspective projection

All object-order approaches that use planar proxy-geometries lead to an inconsistent sampling
rate if a perspective camera model is assumed. As figure 4.7 illustrates, the viewing rays are
not parallel (as it is the case with orthographic projections). They all originate in a single
point. As a consequence, different viewing rays hit the volume in different angles. This leads
to visual artefacts that can be noticeable for extreme field-of-views [LaMar et al., 1999].

The problem with perspective projection directly corresponds to the problem of different
viewing angles that approaches with object-aligned slices have to deal with (see above). The

18



4 Direct Volume Rendering

Figure 4.7: Under perspective projection, the sampling rate changes between different viewing angles,
because all rays originate in a single centre of projection.

difference is that the viewing angle differs between all viewing rays and not only with different
viewer positions.

As a possible solution, we propose to apply equation 4.4 per viewing ray. In a practical
implementation, this can be done in a fragment shader. For this, the application has to
provide the main viewing direction (i.e. the direction vector for the centre of the image
plane), ~v, and the position of the viewer, Pv, as uniform variables. Additionally, the position
of the vertices, P0, has to be passed to the fragment shader. This is done by a simple vertex
shader program (because vertex shader outputs are interpolated during rasterisation, the
fragment shader inputs correspond to the pixel positions).

Listing 4.1 shows an excerpt of a Cg effect file that performs a per-fragment correction
of the sampling rate, ∆t, as well as opacity correction. At first, all uniform variables are
declared. By defining semantics, the application can initialise the variables easily. Then,
a structure is defined that bundles the output variables of the vertex shader. Note that
the output variable P0 (line 13) will pass the vertex position to the fragment shader. The
fragment shader first samples the volume (the exact source code is omitted here). Afterwards,
the direction of the current viewing ray, ~r, is computed in order to correct ∆t (lines 35, 36,
and 39). These lines of code actually apply equation 4.4. Finally, a full opacity correction
according to equation 4.3 is performed and the resulting colour returned.

1 float4 Pv : CAMERA POSITION VIEW SPACE;
2 float3 v : CAMERA DIRECTION VIEW SPACE;
3 float4x4 wvMat : WORLD VIEW MATRIX;
4 float4x4 wvpMat : WORLD VIEW PROJECTION MATRIX;
5 float dt : SLICE SAMPLE DISTANCE;
6 float dsReci : RECIPROCAL VOLUME SAMPLE DISTANCE;
7
8 /// Output s t r u c t u r e o f the ver tex shader
9 struct VsOutput

10 {
11 float4 Pos i t i on : POSITION ;
12 float3 TexCoord : TEXCOORD0 ;
13 float4 P0 : TEXCOORD1 ;
14 } ;
15
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16 /// Vertex shader program .
17 VsOutput Vs Perspect ive ( float4 pos : POSITION ,
18 float3 texCoord : TEXCOORD0 )
19 {
20 VsOutput output ;
21 output . Po s i t i on = mul (wvpMat , pos ) ;
22 output . P0 = pos ;
23 output . TexCoord = texCoord ;
24
25 return output ;
26 }
27
28 /// Fragment shader program .
29 float4 Fp Perspect ive ( VsOutput input ) : COLOR

30 {
31 // (1 ) Sample the volume / eva luate t r a n s f e r func t i on .
32 float4 c o l o r = /∗ . . . ∗/ ;
33
34 // (2 ) Compute d i r e c t i o n o f cur r ent viewing ray ’ r ’
35 float3 p0 = mul (wvMat , input . P0 ) ;
36 float3 r = normalize ( p0 − Pv ) . xyz ;
37
38 // (3 ) Correct dt accord ing to viewing ang le .
39 float dt1 = dt / dot ( r , v ) ;
40
41 // (4 ) Perform per−p i x e l opac i ty c o r r e c t i o n .
42 float exponent = dt1 ∗ dsReci ;
43 c o l o r . a = 1 .0 − pow (1 − c o l o r . a , exponent ) ;
44
45 return c o l o r ;
46 }

Listing 4.1: Cg effect for correcting different sampling rates caused by perspective projection.

4.3.2 Image-order ray casting on GPU

Implementing GPU-based ray casting is, as already pointed out, not as straightforward as the
implementation of object-order algorithms. Ray casting in general is an image-order approach
and therewith contradicts the graphics pipeline. The first algorithm for GPU-based general
ray tracing was introduced in 2002 by Purcell et al. [Purcell et al., 2002]. One year later,
GPU-based ray casting algorithms for direct volume rendering were described by Krüger and
Westermann as well as Röttger et al. [Krüger and Westermann, 2003, Röttger et al., 2003].
Both papers criticise the object-order approaches, because a significant amount of voxels are
processed even though they will not contribute to the final image. The algorithms discussed
in the previous section neither recognise and skip transparent regions nor can they predict
whether the currently processed fragment will be occluded by a later processed slice. Both
problems originate from the back-to-front order rendering.

The methods described in the two papers are very similar in their algorithmic structure
and will be outlined in the following. They differ slightly in the implementation, which will
be disregarded at this point.

Since there is a one-to-one correspondence between pixels of the resulting image and the
viewing rays that are traced, it is straightforward to encode the rays in 2D textures (one
texture for each, the entry-point into the volume and the propagation direction). Additional
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4 Direct Volume Rendering

data that is required during the ray casting is stored in further texture buffers (like the
current position of the rays in the volume or the accumulated colours and opacities). The
volume itself is stored in a 3D texture as for rendering with view-aligned slices.

To compute the entry-points of the rays, those faces of the bounding box of the volume
that point towards the camera are rendered (i.e. the front faces). Since the vertex positions
are interpolated over the surfaces of the bounding box, the entry points are simply obtained
by returning the interpolated positions in a fragment program.

To calculate the direction vectors of the rays the back-faces, which give the exit-points of
the rays, are rendered. This time, the previously computed entry-points are subtracted from
the interpolated exit-points. In summary, the direction ~d is computed as:

~d = Pexit − Pentry.

After the rays have been set up, the volume is sampled iteratively by reading and updating
the texture buffers. In each iteration, the current position of a ray is computed and the
volume is sampled at this position. The colour and opacity values are obtained by evaluating
the transfer function.

If the accumulated opacity for a ray exceeds a threshold or if the ray exits the volume, the
value in the depth buffer is set to zero. This causes the graphics card to skip the execution
for this ray from there on due to the early-z test. With this trick, early ray termination is
easily implemented.

Note that the two main parts of the algorithm, integration and early ray termination,
are performed in separate rendering passes with different fragment shaders. The shader for
sampling the volume is more complex and hence requires more computation time than the
shader for early ray termination.

To achieve further optimisation, Krüger and Westermann included a simple empty space
skipping in their algorithm [Krüger and Westermann, 2003]. In CPU-based algorithms, oc-
tree data structures are usually employed to speed-up the rendering. The space, i.e. the
volume, is partitioned depending on the presence of dense material. Large empty regions are
encoded as large blocks.

Since a recursive octree can not be represented and traversed in shader programs very well,
the authors propose to use a simplified octree of only one level (and thus avoid the recursive
traversal). In each dimension, that is in width, height and depth, the resulting 3D texture
is 1/8 the size of the original volume. Thus, each voxel of this coarse volume represents
an 8x8x8 block of the volume. The voxels encode whether the block in the original volume
contains non-empty voxels. During the rendering pass that tests for early ray termination,
the sampling interval is increased by a factor of eight and the coarse octree is read out. If the
current block is empty, the depth buffer is set to zero, so that the skipping of all represented
voxels of the original volume is forced. Therewith, it is avoided to execute the complex volume
sampling for this block. If non-empty blocks are detected, the depth buffer is restored, and
the volume will be sampled properly for the entire block.
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5 Design of a modular framework

The goal of this project is to find methods to design an efficient modular GPU-based frame-
work for direct volume rendering, which allows the user to explore multiple higher-dimensional
data sets by rendering them simultaneously and by interactively deriving new data sets. When
comparing our research objectives (section 1.1) with the DVR process illustrated in figures 4.2
and 4.3 it becomes clear that a flexible design is needed at each stage of the process:

Data initialisation stage: It has to be possible to load arbitrary volume data (multiple scalar
and higher-order data sets). The framework must support the easy integration of
arbitrary data types and file formats. It also must be possible to derive new entities
at run-time. Examples are gradient and eigenvector fields, which subsequently can be
used during rendering.

Classification stage: The classification stage must be flexible enough such that the user can
use arbitrary components of the data or derived entities to classify the data to be
rendered. For example, Diffusion Tensor Imaging data of the brain can be classified by
using the mean diffusivity and diffusion anisotropy computed from the diffusion tensor
data. Similarly, PET data can be used to determine regions of interest, such as a tumor,
in an MRI data set.

Rendering stage: The rendering can be divided into three components: The reconstruction
method used for sampling the data, the type of DVR algorithm (see section 4.3) and
the desired rendering effect. The selected techniques directly affect the image quality
as well as the rendering speed. Note that DVR algorithms that utilise texture mapping
of graphics card usually implement a trilinear reconstruction filter. By controlling
rendering effects, the user can emphasise different aspects of the data and improve the
visual perception of features. Examples are gradient based shading, colour mapping of
curvature, and emphasis of the silhouette boundary.

With the following three scenarios we illustrate the described stages and show how they
differ (see also table 5.1). It is these differences that make a modular framework necessary.

Scenario 1 – Visualisation of a scalar CT data set

During data initialisation, a scalar volume data set must be loaded. Each voxel consists of a
single value, typically encoded as an integer of 8–16 bit. Depending on the classification and
the rendering effect, the gradient has to be derived and represented in a second 3D texture.
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For the classification, a colour-opacity transfer function can be used. In a GPU-based
approach, it is usually represented by a lookup table stored as 1D texture. A 2D trans-
fer function that uses the magnitudes of the derived gradients as second dimension is also
imaginable.

Different visualisation techniques can be suitable for the CT data set: A simple output
of the density values, the evaluation of the transfer function, or additional illumination and
shading effects.

Scenario 2 – Combined visualisation of CT and PET data

A PET scan records the concentration of radionuclides in the brain. By administering a
patient glucose that is tagged with radioactive fluorine-18 this can be used to measure the
brain activity. Such PET data is usually visualized using false colours, with lighter colours
indicating regions of increased activity.

Typically, PET data is fuzzy due to low resolution and the fact that brain activity does not
show clear boundaries. To set the acquired PET data into an anatomical context, it helps to
simultaneously visualise the surrounding bone, which might be given by a CT data set.

In this scenario, two volume data sets as well as two transfer functions have to be used
and loaded. Besides deriving the gradient for the CT data, it could be appropriate to encode
both data sets in a single texture to speed-up the rendering by reducing texture lookups.

In the rendering stage, the visualisation technique must combine both data sets to give the
anatomical context. However, it might also be desired to temporarily examine both data sets
separately, which would require a change of the visualisation technique being used.

Scenario 3 – Visualisation of DTI data sets

In a DTI data set each voxel value is a diffusion tensor which can be mathematically rep-
resented by a symmetric 3x3 matrix. For the visualisation, it is common to derive several
entities. For example, the mean diffusivity, λm, and mean anisotropy, λa, characterise dif-
ferent types of tissue in the brain. Both values can be derived from the eigenvalues of the
tensors [Wünsche and Lobb, 2004].

During data initialisation, the DTI data set has to be loaded and the entities derived. Note
that, for a GPU-based approach, the DTI data set will need to be distributed over several
textures, because a single texture can only hold up to four components.

For the transfer function, λm and λa could serve as axes. Depending on which type of
matter is to be emphasised, different colour and opacity values can be chosen. The data
set could then be rendered by creating a Line Integral Convolution (LIC) texture in regions
where mean diffusivity and anisotropy are high. Other tissue types are represented by colours.
The different representations are then blended according to the function classifying the tissue
type. A 2D example is given in [Wünsche and Lobb, 2004].
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Initialisation Classification Rendering

Scenario 1 Load CT data, derive
gradient

1D or 2D transfer func-
tion

Different visualisati-
ons / shadings

Scenario 2 Load CT + PET data,
derive gradient, possi-
bly merge volume tex-
tures

1D or 2D transfer func-
tion for CT and 1D
function for PET

Combined rendering,
temporarily indepen-
dent visualisation

Scenario 3 Load DTI data, derive
eigenvalues and then
λm and λa

2D transfer function for
λm and λa

LIC texture where λm
and λa are high, colour
for other tissue types

Table 5.1: Overview of the differences of the three scenarios in the DVR process.

5.1 Requirements for the modular framework

After showing how the three scenarios differ and where the DVR process requires flexibility,
we will now identify corresponding components in the framework, each of which is described
by one of the following sections.

5.1.1 Support of arbitrary data

Different volume data sets may be stored in different file formats. To make the integration
of arbitrary data simple and flexible, the application must allow to implement new “texture
loaders”. To make use of a specific implementation, it must be possible to identify the loader,
to specify the actual data set (file path) as well as the variable or object in the fragment shader
with which the loaded data is to be associated (that is, to which sampler object a loaded
texture is to be bound).

One problem follows from scenario 3: If multivariate data has more than four components
per voxel, a single volume data set must be associated with multiple texture sampler objects.
In consequence, the framework has to support a splitting of the data into several textures
and samplers.

5.1.2 Support for deriving new entities from existing data

A key functionality of our volume rendering framework is the derivation of new entities from
existing data. One of the project objectives is to perform the required computation on the
GPU using a fragment program. We call the modules or code blocks that implement the
derivation of entities operators.

The output of an operator is a new texture object that holds the derived values. For a full
specification of an operator the user has to be able to define the dimensions of the resulting
texture as well as its format (number and data type of the channels), the input data sets, the
fragment program that implements the operator and finally the sampler object to which the
generated texture is to be bound.
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Chapter 37 A Toolkit for Computation on GPUs

Listing 37-1. Performing a Partial Reduction

float main(float2 texcoord  : TEXCOORD0,
uniform samplerRECT img) : COLOR

{
float a, b, c, d;
a = f1texRECT(img, texcoord);
b = f1texRECT(img, texcoord + float2(0, 1));
c = f1texRECT(img, texcoord + float2(1, 0));
d = f1texRECT(img, texcoord + float2(1, 1));
return max(max(a, b), max(c, d));

}

Performance
To perform a large reduction of a 1024×1024 image requires only ten passes, with
each pass one-fourth the size of the previous pass. In general, O(log n) passes are re-
quired for performing a reduction of n2 elements. We don’t necessarily need to go all
the way down to one pixel for the readback. In some cases, it may be faster to read back
a small square and let the CPU do the final reductions. We can also increase the num-
ber of reductions performed within the fragment program, doing more than just one
reduction per pass, decreasing the total number of passes required.

37.2.2 Reduce Tidbits
Although our example is specific to tone mapping, the basic algorithm can be applied
anywhere you need to do a reduction, assuming it fits within the constraints of the

Figure 37-3. Max Reduction Performed with Multiple PassesFigure 5.1: The concept of reduction operations illustrated for a 2D input texture of size 8× 8. The
shown reduction operation computes the maximal value. From [Luebke et al., 2004].

For operators, multiple render target capabilities of modern graphics hardware are a power-
ful concept that allows to output more than four values. Since each render target corresponds
to a texture, and therewith to a sampler object in the fragment shader, it must be possible
to define several output bindings.

Reduction operations

For some operators it might be necessary to compute a single value out of an entire input
texture, for example the mean or the maximal / minimal value of the whole texture. This
operation can be characterised by mapping some input data with n elements to a single
value (r : Rn 7→ R). Due to the streaming architecture of graphics hardware, GPU-based
algorithms can generally not iterate through all items (texels of a texture), as it would be
possible on CPU.

To compute a single value on the GPU, general purpose computing techniques describe
so-called reduction operations. The idea is to iteratively (that is, in several rendering passes)
reduce a given input texture by combining neighbouring texels. Thereby, each output texture
serves as input for the next iteration. For a 2D texture of size N ×N the reduction is done
using four neighbours, as illustrated in figure 5.1 [Luebke et al., 2004]. In the 3D case, eight
neighbours would have to be used.

To support the user with defining operators, reduction operations should be supported in
our GPU-based framework as well.

5.1.3 Support of classification using transfer functions

In practice, transfer functions are represented by texture objects in GPU-based DVR. In our
framework, we can therefore use the concepts described above to handle transfer functions.

As a first option, the user can specify a loader implementation to load a specific transfer
function from hard disk. Note that the transfer function does not have to be saved as a
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texture but can also be abstractly described, as long as the implemented loader generates a
texture that can be bound to a sampler object.

In addition, if the mapping or the “shape” of a transfer function depends on actual data
values, an operator can be used to compute the transfer function on-the-fly.

5.1.4 Support of different DVR algorithms and visualisation techniques

It must be possible to implement new DVR algorithms as well as selecting them for the
rendering itself. The implementation of an algorithm must be flexible enough to integrate
visualisation techniques defined by the user. Naturally, parts of a DVR algorithm will be
executed on the GPU. The user’s visualisation technique will likewise be implemented in a
shader.

It is possible to separate the resulting fragment shader code into two classes: Code needed
for the implementation of the algorithm (the basic structure) and code that implements a
certain visualisation technique. Note that it is the visualisation technique that, in the end,
determines the colour and opacity of a certain position in space. It is important to allow
arbitrary combinations of algorithm code and user code.

5.2 Development of the framework design from the requirements

In this section, we will develop a design that meets the requirements described above. The
following itemisation summarises requirements and user-actions we discussed.

• Support of arbitrary data:

– Integration of new data formats by implementing a new texture loader.
– Specification of the data set.
– Specification of the appropriate loader implementation that is to be used.
– Specification of the binding of the data to sampler objects (possibly with splitting

to several samplers).

• Support for deriving new entities from existing data:

– Specification of a GPU-based operator, for example as fragment program.
– Specification of reduction operations if required for the computation.
– Specification of the input data sets.
– Specification of the dimensionality and size of the output texture.
– Specification of the data format of the derived entities (texture format).
– Specification of the binding of the result to sampler objects (possibly using multiple

render targets).

• Support of classification using transfer functions:

– Similar to support of volume data loading and operator definition.

• Support of different DVR algorithms and visualisation techniques:
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– Integration of new DVR algorithms, with most of the computation on GPU.
– Straightforward integration of user-defined visualisation techniques into an existing

algorithm implementation.
– Specification of the DVR algorithm that is to be used.
– Specification of the visualisation technique that is to be used.

When inspecting this list it becomes clear that some aspects extend the framework, whereas
the others support the user to create visualisations. The integration of new data formats
and the integration of new DVR algorithms are tasks for developers, since they have to
be done before a user can use the framework. From this observation we derived a unified
design for texture loaders and DVR algorithms that aims to make the integration of new
implementations as simple as possible (discussed in the next section). The user-specific
design concepts mostly relate to the loading and processing of data sets and the specification
of visualisation techniques. They will be detailed afterwards. Finally, an overall view of the
framework design will be given in section 5.2.3.

5.2.1 Extendible framework design

New texture loaders and DVR algorithms must be integratable into the framework with as
little effort as possible. It is obvious that abstract classes (either for loading texture data or
for implementing algorithms) are a good choice to allow different implementations by sub-
classing. In this way, the application can use the abstract data type without the need to
know the actual implementation.

However, during the initialisation of the application, an object of a specific sub-class must
be instantiated. Moreover, state variables of this object might have to be initialised according
to user settings (for example the number of slices for an object-order DVR algorithm). In a
naive approach, the developer would need to write code for creating and initialising objects
for each new sub-class. But clearly, this would lead to many conditional code branches and,
more importantly, would not be very flexible and straightforward.

To overcome this problem, two design concepts have been applied: A generic factory for in-
stantiating objects and a unified method for setting state variables, which we term parameter
design pattern.

A generic factory

Our generic factory, designed using the singleton design pattern, makes it possible to create
new objects of a common base-class using a unique identifier (for example a string). Sub-
classes of the base-class can be registered by passing both a prototype object of this class and
a unique identifier. Whenever an object of this sub-class has to be created, the factory clones
the registered prototype object. For different base-classes, different factory objects exist (for
example for texture loaders and DVR algorithms).
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Figure 5.2: The generic factory. For registering a sub-class at a factory, the developer has to provide
a prototype object and a unique identifier. During the application initialisation, a clone
of this prototype can be obtained by providing the factory a corresponding identifier.

In consequence, the developer only has to register a prototype object of a new sub-class at
the corresponding factory in order to make the new implementation available throughout the
application. Later, a user can use the identifier to specify the concrete sub-class he wants to
use (for example, a specific DVR algorithm or a texture loader for a specific data format).

Figure 5.2 illustrates the concept of the generic factory.

The parameter design pattern

In order to easily initialise objects at start-up, we developed a unified design for initialising all
possible state variables. Two fundamental problems arise when dealing with state variables
of unknown objects (as they may be present in the framework due to sub-classing by other
developers): The state variables themselves are unknown (that is, their “name” or signature)
and their data type may differ.

Before discussing our design, we make the following definitions: A property is a pair of a
Get... and a Set... method for a certain state variable (note that the term property is
also used in Java and C# for the same concept). Additionally, a parameter is defined as an
object that encapsulates a property and maps the property’s Get... and Set... pair to a
string representation. This string representation is equal for all properties of the same data
type.

To achieve an automated initialisation of state variables, every class (or base-class) that
needs to be initialised allows to query its parameters and to use these parameters to set the
states. This concept again allows developers to introduce new sub-classes with minimal effort.
All that has to be done is specifying the available parameters. The application’s initialisation
module will then be able to initialise all registered parameters. This is possible because
parameters have a unified string format. Implementing additional code for the initialisation
for all possible properties for a new implementation is not necessary.

The concept of the parameter design pattern is shown in figure 5.3.
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Figure 5.3: The parameter design pattern. For each property, the object provides a parameter object
that abstracts from the property’s data type using a unified string representation. The
object can be queried for existence of parameters. The value can then be set using a
unified string. Note that the property typically reads and writes a state variable of the
object.

5.2.2 User-related design decisions

The most important user-specific aspects of the rendering framework are the specification
of data to load (for example volume data sets or transfer functions), the processing of the
data and derivation of entities using operators, and finally the specification of visualisation
techniques. We will now describe how the shader code and the management of resources is
organised in the framework.

At first, we can observe that loaded data is exclusively used by operators and visualisation
effects, which both run on the GPU and therefore will be implemented by the user in shader
programs. To keep the work with the framework practicable and clearly arranged, it is
reasonable to have the specification of resources and the fragment shader definition at the
same location. This is especially true when considering the fact that texture resources are
bound to sampler objects of a shader.

Secondly, as already mentioned above, the executed fragment shader code can be separated
into code that is specific to the DVR algorithm on the one hand and code that is specific to a
user-defined visualisation technique on the other hand. The former is part of the application
framework and is written whenever a new DVR algorithm is implemented. In contrast, the
latter depends on what the user wants to display. It will likely be specific to a concrete
domain or type of data. To make arbitrary combinations possible, the two types of code are
physically and conceptually separated.

In order to meet these observations, each implemented DVR algorithm specifies a file that
contains the algorithm-specific shader code. In addition, the user can specify a second file
that contains the definition of resources as well as the implementations of operators and
visualisation techniques. During the application start-up, both files are combined in order to
obtain full functioning and valid shader code that will then be executed during rendering.

For organising and combining the shader code, we introduce a separate module in the
framework. The functional concept is shown in figure 5.4. After combining the two shader
source code files, the resulting shader is compiled and all resources that are needed during
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Figure 5.4: Organisation of the shader code and resources. The framework first combines the two
shader source code files and then initialises the resources needed for the rendering. For
loading textures, the specified texture loader is used. For executing operators, the texture
renderer provides the required functionality.

rendering are initialised (that is, textures are loaded using the specified texture loader bound
to sampler objects). If operators are defined, they are executed and the result stored in a
newly created texture. For this purpose, the texture renderer provides functionality.

Note that one of the key functionalities of the framework is the switching between different
visualisation techniques at runtime. The volume rendering module also performs the steps
necessary for a switch (for example, releasing resources that are not needed anymore and
loading new resources).

5.2.3 Overall view of the framework design

The main components of our rendering framework are shown in figure 5.5. Besides the con-
cepts and modules discussed so far, the framework contains a controller object that controls
the entire program execution (initialisation, rendering and termination). During the start, a
configuration file is parsed. It contains settings that specify global states of the application.
Further on, a renderer is introduced to render all graphical objects that are registered. It
also updates the camera according to the user input.

Program flow

Figure 5.6 illustrates the basic states that the application is in during the execution. In the
beginning, the factories are initialised by registering known implementations, as described
above. Then, a configuration file is loaded and parsed. The configuration determines the
settings in which the application will run (for example window size, the volume rendering
implementation to use, the user-specified shader file, etc.). Before the actual rendering is
started, the DVR and user’s shader code is combined and parsed.

After all initialisation is finished, the main rendering loop is entered. In each loop, the user
input is handled and a frame is rendered and displayed. If the user requests the termination
of the rendering, the rendering loop is exited and the application terminates.
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Figure 5.5: The main components of the volume rendering application. Note that for the volume ren-
dering, the DVRAlgorithm is the base class for DVR algorithms. VolumeRenderingEffect
combines shaders and manages the resources defined in the shader code.

Figure 5.6: The program flow of the volume rendering application. The diagram shows the states that
the application is in during the execution of the program.
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Our prototypical implementation of the direct volume rendering framework is written in ANSI
C++. We use OpenGL R© as graphics API. As high level shading language we decided for Cg,
because it has features which makes it superior to the other languages. Our implementation
will heavily rely on CgFX files, semantics, annotations and interfaces — language concepts
that GLSL does not offer. To use Cg, our application integrates the Cg API and runtime.
Both are provided by the NVIDIA R© Corporation as plain C libraries. To support the de-
velopment, two additional open-source libraries are used. Graphics 3D [McGuire, 2007] is a
cross-platform rendering engine. It provides basic mathematical functionality for 3D graphics
(vector math for example). Additionally, Graphics 3D wraps the OpenGL R© API and pro-
vides an object-oriented rendering framework. Further on, the Extensible Markup Language
(XML) is used to specify the settings of the application, as will become clear below. A simple
and minimalist open-source library, TinyXml [Thomason, 2007], is used to load and parse
the XML files.

In the following, we outline our implementation. The discussion will follow the structure
of the previous chapter and the program flow as illustrated in figure 5.6.

6.1 Application startup and initialisation

As shown in figure 5.6, the application at first initialises the factories and registers all sub-
classes that have been implemented (for details and an example, see below). Then, the
application is initialised according to a configuration file. As already indicated, we use an
XML file for this configuration. The advantage of XML over proprietary file formats is
that it is standardised and human-readable as well as hierarchical and formal. Because of
the tree structure of XML documents, parsing is straightforward. Another reason for using
XML is that the documents can be validated against a Document Type Definition (DTD) or
an XML schema [World Wide Web Consortium, 2004, World Wide Web Consortium, 2006],
even though this is not been done in the current implementation and also not supported by
the TinyXml library3.

During the initialisation, we benefit from our design (generic factory and the parameter
design pattern) which enables us to dynamically set the states of objects, without explicit
knowledge of their implementation. The SettingsLoader can simply parse the configuration

3 Note that other XML libraries offer such functionality (for example, the open-source project
Xerces [The Apache Software Foundation, 2005]). They could easily be integrated and replace TinyXml.
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file, instantiate new objects using the corresponding factory, and set parameter values using
the string representation defined in the XML file.

Implementation of the generic factory and the parameter design patterns

The generic factory is implemented using C++ templates. The public interface of the tem-
plate class looks as follows:

1 template<class TPrototypeBase , class TIdent i f i e rType> class Factory {
2 public :
3 static Factory∗ In s tance ( ) ;
4 void Reg i s te rPrototype ( const TPrototypeBase∗ prototype ,
5 const TIdent i f i e rType& i d e n t i f i e r ) ;
6 TPrototypeBase∗ Create Ins tance ( const TIdent i f i e rType& i d e n t i f i e r ) const ;
7 } ;
8
9 // Example :

10 Factory<IVolumeRenderer , std : : string> dvrFactory ;
11 dvrFactory . Reg i s te rPrototype ( new XYZAlgorithm ( ) , ”XYZ ALGORITHM” ) ;

Listing 6.1: Public interface of the template factory class.

Since the implementation of the Factory class follows the singleton design pattern, at
most one object of a certain combination of TPrototypeBase and TIdentifierType exists.
This makes it possible to easily access the same factory object in the entire application.
As can be seen in the given example (lines 10 and 11), a developer only has to insert a
single line of code in order to make a new implementation of a certain sub-class available
throughout the application.

To realise the parameter design pattern, we make use of both templates and function
pointers to member functions of classes. Recall that a property is a pair of a Get... and a
Set... method for a certain state variable. A parameter encapsulates a property and maps
the property’s data type to a standardised string representation.

Properties are implemented using the concept of functors or closures [Haendel, 2007]: A
pure virtual base-class defines one or more methods that will be used to call member functions
of arbitrary objects. A generic sub-class then implements the method definitions by calling
the member functions of the concrete template parameter class. In our application, the
IProperty class is pure virtual and defines the methods for calling either a getter or setter
method of the associated host object. A generic sub-class Property takes the data type of the
host class and the data type of the property as template parameters. The function pointers
to the getter and setter method are passed in the constructor.

To implement parameters, a pure virtual class IParameter defines methods for getting and
setting the type and value of an arbitrary parameter of an object using a string representation.
A generic sub-class implements this abstract parameter for the data type specified by the
template parameter. In the constructor, it gets an IProperty object of the host class. The
getter or setter function callbacks of this property will be invoked and string conversion will
be performed according to the specified data type.
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In the application, all classes that are configured by the SettingsLoader inherit from a
base-class called IParameterizable . It holds a list of all parameters of the object. Addi-
tionally, it defines methods for checking whether a certain parameter exists and for invoking
the getter or setter method using a string representation of the value.

This concept again allows other developers to introduce new sub-classes with minimal
effort. All that has to be done is registering the available parameters in the list of the
IParameterizable base-class. The SettingsLoader will then be able to initialise all reg-
istered parameters. Extending the loader for all possible properties of a new class is not
necessary. This is possible, because parameters have a unified XML format, for example:

1 <VolumeRenderer type=”ViewAlignedVolumeRenderer”>
2 <Parameter name=”Dimensions ” type=”Vector3 ”>0.78 0 .9 1</Parameter>
3 <Parameter name=”WireframeMode” type=”Bool”>false</Parameter>
4 <Parameter name=”NumSlices” type=”UInt32”>512</Parameter>
5 </VolumeRenderer>

In the shown example, the volume renderer with the identifier string
“ViewAlignedVolumeRenderer” will be searched and a new object created. The spec-
ified parameters will be set by calling the renderer’s properties after string conversion.

6.2 Initialisation of the Cg shaders

To integrate the Cg library (written in plain C) in our object-oriented framework, we encap-
sulate it in a CgEffect class. A specialised sub-class, VolumeRenderingEffect, is responsible
for combining and parsing the CgFX code (remember that the code is conceptually separated
into algorithm code and user-defined code).

Each volume renderer defines the code required to implements the underlying algorithm in
a CgFX file. We use CgFX files because with the techniques it offers the greatest flexibility,
because the full functionality of the graphics pipeline can be used. Each CgFX file of an
algorithm contains an #include directive to input the user specified code that implements
the sampling of the volume, the evaluation of a transfer function and possibly additional
rendering effects. In this way, different volume renderer algorithms can be used with the
same user-defined visualisations. Likewise, different visualisations can easily be used with
the same algorithm. It is important to mention that the path to the user-specific code is not
known beforehand. Thus, the VolumeRenderingEffect inserts the path into the source code
at runtime.

To call the correct visualisation technique defined in the user’s Cg code, a Cg interface
type IEvaluator is defined. It contains a single function Evaluate() that takes a 3D texture
coordinate as parameter and returns a float4 colour value. In the algorithm code, a global
instance of IEvaluator code is defined and used within the shader. The user is expected
to define at least one structure that implements this interface. At runtime, the visualisation
technique can then be changed by selecting the corresponding structure. Note that the Cg
effect then needs to be recompiled.
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The Cg source code is given in listing 6.2 (note that the line #include

‘‘USER SPECIFIED INCLUDE FILE.cgfx” is replaced with a specified file path at runtime
by the VolumeRenderingEffect, before the CgFX file is compiled):

1 // ////////////////////////////////////////////
2 // IEvaluator . cg fx
3 // ////////////////////////////////////////////
4 interface IEva luator {
5 float4 Evaluate ( float3 texCoord ) ;
6 } ;
7
8
9 // ////////////////////////////////////////////

10 // DVR algor i thm code
11 // ////////////////////////////////////////////
12 #inc lude ” IEvaluator . cg fx ”
13 #inc lude ”USER SPECIFIED INCLUDE FILE . cg fx ”
14
15 IEvaluator eva lua to r : EVALUATOR INSTANCE;
16
17 // Fragment shader o f the a lgor i thm
18 float4 Fp( VsOutput input ) : COLOR {
19 // (1 ) Sample the volume / eva luate t r a n s f e r func t i on .
20 float4 c o l o r = eva lua to r . Evaluate ( input . TexCoord ) ;
21 // . . .
22 }
23
24 // ////////////////////////////////////////////
25 // User−de f ined code ( s epara t e f i l e )
26 // ////////////////////////////////////////////
27
28 // . . . D e f i n i t i o n o f r e s o u r c e s . . .
29
30 struct DensityEvaluator : IEva luator {
31 float4 Evaluate ( float3 texCoord ) {
32 float dens i ty = tex3D ( scalarVolumeSampler , texCoord ) . x ;
33 return float4 (1 , 1 , 1 , dens i ty ) ;
34 }
35 } ;
36
37 struct GradientEvaluator : IEva luator {
38 float4 Evaluate ( float3 texCoord ) {
39 float dens i ty = tex3D ( scalarVolumeSampler , texCoord ) . x ;
40 float opac i ty = tex1D ( t rans ferFunct ionSampler , dens i ty ) . a ;
41 float3 grad i en t = tex3D ( gradientSampler , texCoord ) . rgb ;
42
43 return float4 ( grad ient , opac i ty ) ;
44 }
45 } ;

Listing 6.2: Cg code for keeping algorithmic implementation and user-defined visualisation flexible.

6.3 Definition of resources

Resources (textures) must be specified by the user. The Cg mechanisms of semantics and
annotations make a flexible and modular implementation possible. The user defines a Cg
texture object as global variable. With annotations, the application can be told how to
load the texture. In this way, the user specifies the identifier string of the texture loader
implementation, the file path to the resource, specific hints about how to load the texture as
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well as the name of the target Cg sampler object. The texture will be bound to this sampler
by the application. The following simple example illustrates the concept:

1 texture t r an s f e rFunc t i on : LOAD TEXTURE FROM FILE
2 <
3 string TextureLoader = ”PIECEWISE COLOR TRANSFER FUNCTION LOADER” ;
4 string Fi lePath = ” . . \ \ volumes \\ piecewiseTF VisMale . xml ” ;
5 string SamplerBindings = ” trans fe rFunct ionSampler ” ;
6 string LoaderHints = ” Reso lut ion : 5 1 2 ” ;
7 >;
8 sampler1D t rans fe rFunct ionSampler = sampler_state {
9 generateMipMap = false ;

10 minFilter = Linear ;
11 magFilter = Linear ;
12 } ;

Note that there is no restriction on how the texture loader creates the texture objects. Data
formats may range from traditional binary data to completely different representations. For
example, the texture loader specified in the given example loads an XML file that contains
an abstract description of a colour-opacity transfer function. The texture is then generated
on the fly according to the XML specification.

As pointed out in section 5.1.1, higher-dimensional data might have to be split and dis-
tributed over more than one texture and sampler object. Thus, the specification of the target
Cg sampler may contain more than one name. With each sampler name, the components of
the texture that are to be associated with the sampler are defined. For a diffusion tensor
imaging (DTI) data set that consists of six values per sample point, the texture definition
could look like this:

1 texture d t i : LOAD TEXTURE FROM FILE
2 <
3 string TextureLoader = ”TENSOR FIELD LOADER” ;
4 string Fi lePath = ” . . \ \ volumes \\ bra indata . t f d ” ;
5 string SamplerBindings = ” channe l s 00 01 02>>dt i 1 \\
6 channe l s 11 12 22>>dt i 2 ” ;
7 >;
8 sampler3D dt i 1 = sampler_state { /∗ . . . ∗/ } ;
9 sampler3D dt i 2 = sampler_state { /∗ . . . ∗/ } ;

With the statements channels 00 01 02>>dti1 and channels 11 12 22>>dti2, the
TextureLoader object with the identifier “TENSOR FIELD LOADER” knows which component
to associate with which Cg sampler.

6.4 Deriving new entities using operators

The implemented concept for operators is similar to the loading of textures from hard disk.
The user again specifies a Cg texture and sampler object. To create the texture, additional
information is needed: The dimensionality and size of each dimension, the desired texture
format as well as the target sampler object. Since the operator is executed on the GPU, a
full Cg technique with passes, render states and associated shader programs can be specified.
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This guarantees maximal flexibility, because the full functionality of the graphics hardware
and the CgFX framework is available for deriving the desired entities.

The execution of operator is managed by the VolumeRenderingEffect class, which makes
use of the class TextureRenderer. It provides the functionality to render textures of one
to three dimensions using a Cg effect technique. It has to be pointed out that graphics
cards always render into 2D buffers. Consequently, it is not possible to directly render
3D textures (note that 1D textures can be considered as having two dimensions with a
height of one pixel). To overcome this problem, the technique is executed slice-by-slice.
Each slice is rendered into a 2D temporary buffer. The result is then copied into the 3D
texture that is to be created. Copying data directly within the video memory is supported
by an OpenGL R© extension and no texture data needs to be copied via the system bus
(CopyTexSubImage3D, see [Segal and Akeley, 2006]).

To render into multiple render targets the Cg annotations of the texture declaration are
extended. All output colours (that is, Cg binding semantics) of the fragment shader are
assigned to the desired sampler objects.

The following Cg code shows examples of operators for one and multiple render targets:

1 // CREATING THE GRADIENT FROM A SCALAR VOLUME
2 texture gradientTex : CREATE TEXTURE WITH SHADER
3 <
4 int Dimensions = 3 ;
5 int Width = 128 ;
6 int Height = 256 ;
7 int Depth = 256 ;
8 string TextureFormat = ”RGBA8” ;
9 string RenderTechnique = ” Gradient ” ;

10 string RenderTargetBindings = ” gradientSampler ” ;
11 >;
12
13 sampler3D gradientSampler = sampler_state { /∗ . . . ∗/ } ;
14
15
16 float4 FS GRADIENT( float3 texCoord : TEXCOORD0 ) : COLOR0 {
17 // . . .
18 return grad i en t ;
19 }
20 technique Gradient {
21 pass {
22 VertexProgram = NULL ;
23 FragmentProgram = compile arbfp1 FS GRADIENT ( ) ;
24 }
25 }
26
27
28 // PERFORMING EIGEN−ANALYISES FOR A DTI DATA SET
29 texture eigenTex : CREATE TEXTURE WITH SHADER
30 <
31 int Dimensions = 3 ;
32 int Width = 128 ;
33 int Height = 128 ;
34 int Depth = 33 ;
35 string TextureFormat = ”RGBA32F” ;
36 string RenderTechnique = ” EigenAnalys i s ” ;
37 string RenderTargetBindings = ”COLOR0>>maxEigen COLOR1>>medEigen
38 COLOR2>>minEigen ” ;
39 >;
40
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41 sampler3D maxEigen = sampler_state { /∗ . . . ∗/ } ;
42 sampler3D medEigen = sampler_state { /∗ . . . ∗/ } ;
43 sampler3D minEigen = sampler_state { /∗ . . . ∗/ } ;
44
45 void FS EIGENANALYSIS( float3 texCoord : TEXCOORD0 ,
46 out float4 eMax : COLOR0 ,
47 out float4 med : COLOR1 ,
48 out float4 min : COLOR2 ) {
49 // . . .
50 eMax . xyz = maxEV; eMax .w = maxEVal ;
51 eMed . xyz = medEV; eMed .w = medEVal ;
52 eMin . xyz = minEV ; eMin .w = minEVal ;
53 }
54
55 technique EigenAnalys i s {
56 pass {
57 VertexProgram = NULL ;
58 FragmentProgram = compile arbfp1 FS EIGENANALYSIS ( ) ;
59 }
60 }

Listing 6.3: Cg code for defining operators, either for a single output texture or multiple render targets.

Reduction operations

In our modular framework, reduction operations can be implemented with a single C++
class that realises the iteration process and by utilising Cg’s concept of interfaces. In the
case of 2D operations, an abstract Cg interface defines the signature of a function that com-
bines four fragments. Different structures can then implement different reduction operations
(min/max/mean/etc.).

In the user-defined Cg code, a variable can be defined that will hold the result of a re-
duction operation. Annotations provide information about which input sampler object is
to be reduced and which reduction operation (that is, which structure that implements the
interface) is to be used:

1 // /////////////////////////////////////
2 // Reduction opera t ion i n t e r f a c e
3 // /////////////////////////////////////
4
5 interface ReductionOperation {
6 float4 Reduce ( sampler2D inputSampler ,
7 float2 texCoord1 , float2 texCoord2 ,
8 float2 texCoord3 , float2 texCoord4 ) ;
9 } ;

10
11 // /////////////////////////////////////
12 // Example implementation
13 // /////////////////////////////////////
14
15 struct MaxReductionOperation : ReductionOperation
16 {
17 float4 Reduce ( sampler2D inputSampler ,
18 float2 texCoord1 , float2 texCoord2 ,
19 float2 texCoord3 , float2 texCoord4 )
20 {
21 float4 v1 = tex2D ( inputSampler , texCoord1 ) ;
22 float4 v2 = tex2D ( inputSampler , texCoord2 ) ;
23 float4 v3 = tex2D ( inputSampler , texCoord3 ) ;
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24 float4 v4 = tex2D ( inputSampler , texCoord4 ) ;
25
26 return max ( v1 , max ( v2 , max ( v3 , v4 ) ) ) ;
27 }
28 } ;
29
30 // /////////////////////////////////////
31 // User−de f ined code
32 // /////////////////////////////////////
33
34 float4 maxMagnitude : PERFORM REDUCTION OPERATION
35 <
36 string InputSampler = ”some2DSampler ” ;
37 string ReductionOperation = ”MaxReductionOperation ” ;
38 >;

Listing 6.4: Cg code for reduction operations (here, for 2D input textures). Note that the texture
coordinates could also be computed on-the-fly in the fragment shader.

After the last iteration, the application can load the texture data into the system memory,
read the resulting value, and initialise the uniform Cg variable. With the reduction operation
technique, the amount of data that is to be transferred via the system bus has been minimised,
as only a single texel has to be copied.

6.5 Definition of visualisation techniques

To implement visualisation techniques, at least one structure must be defined that implements
the Cg interface IEvaluator. Besides this, additional structures with different implementa-
tions may be defined as well (see listing 6.2 for an example). The VolumeRenderingEffect

lists all of these implementations during the parsing of the CgFX. The list of evaluators can
be queried and a visualisation technique selected at runtime.

In order to make the definition of visualisation effects more practicable, the application
offers commonly needed uniform variables. They can be used in the Cg shaders and are
identified by predefined semantics. Examples can be seen in listing 4.1 (section 4.3, page 19).
In the first 5 lines, vectors, points, and matrices are defined. They will be initialised by the
application during rendering. Another useful entity that can be demanded is the texel-size
for a texture associated with a defined sampler object:

1 float3 t e x e l S i z e s : TEXEL SIZES
2 <
3 string SamplerName = ” scalarVolumeSampler ” ;
4 >;

For example, the gradient operator shown in listing 6.3 uses this mechanism to sample
the neighbouring texels of the source volume texture in order to approximate the partial
derivatives in x-, y-, and z-direction.
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To demonstrate the applicability of the discussed concepts, our prototype implements two
different DVR algorithms as well as different texture loaders. The first algorithm imple-
mentation realises a view-aligned object-order algorithm, the second one an object-aligned
algorithm that samples 3D volume textures.

A restriction regarding the rendering algorithms has been introduced in the current imple-
mentation, as only 3D volume data is supported. When the user defines texture objects, they
have to be associated with Cg sampler objects to make them accessible in shader programs.
The decomposition of the volume into 2D texture stacks is not at all straightforward in a
modular and flexible environment as described in the last chapter. If 2D texturing is to be
supported, the user would have to specify both a 3D Cg sampler as well as a pair of 2D sam-
pler objects. Otherwise, the user-defined CgFX file would not be compatible with different
rendering algorithms. Moreover, the IEvaluator interface would have to be extended by an
additional function for 2D texturing. In consequence, the user would have to implement both
functions in any case.

Our tests show that an object-aligned direct volume rendering implementation using 2D
textures is not faster (see below). Thus, the support for it was declined in order to make
the definition of visualisation techniques as easy as possible. Additionally, since graphics
accelerators are nowadays even capable of performing volume ray casting at interactive speed,
we believe that 2D DVR texturing techniques are outdated.

Due to the limited time reduction operations used to derive scalar values from an input
texture (see sections 5.1.2 and 6.4) have not been implemented yet. However, we discussed
the concepts and gave detailed suggestions of a possible realisation within the rendering
framework.

In an exemplary user CgFX file, several visualisation techniques have been implemented.
To demonstrate the use of operators, the gradient of scalar volumes has been computed
on-the-fly using a user-defined Cg technique. The created gradient texture has then been
used by several visualisations (for example gradient shading or lighting calculations). Other
implemented operators combine several volume data sets to reduce the number of texture
fetches in the fragment shaders, which improves performance (see below for examples and
tests).
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7.1 Case studies

We made two case studies to show how our framework supports the user developing different
visualisation techniques for different data sets. In fact, we realised scenario 1 and 2 of
section 5. For the performance measurings of the renderings, the test computer T2 has been
used (specified below in section 7.2).

7.1.1 Visualisation techniques for conventional CT data

Example renderings with different visualisation techniques are shown in chapter A in the
appendix (colour plates A.1 – A.3). The used data set is the head of the CT scan of the
Visible Male (acquired by [National Library of Medicine, 2007] as part of The Visible Hu-
man Project R©, downloaded from [Röttger, 2006]). The data set contains 128x256x256 scalar
sample points. In the following, the different visualisation techniques will be explained (in
the order as they are shown in the colour plates) and analysed.

Note that all required resources are specified in a single source file or computed on-the-
fly using operators. The visualisation techniques, which are very different in style, can be
implemented by only specifying new Cg structures that implement the IEvaluator interface.
Because the user does not have to worry about the implementation of the DVR algorithm,
the resulting Cg source code is very well structured and short (between two and 12 lines of
code per evaluator in our examples).

Density: The density values of the CT scan are directly used as opacity for the output colour,
without evaluating any transfer function. To improve the visibility of internal structures
of the data, the density values have been scaled by 0.02.

Colour-Opacity: Implementation of a simple one-dimensional colour-opacity function, as dis-
cussed in section 4.2.

Diffuse Lighting: The colour component (red, green, and blue) obtained by evaluating the
colour-opacity transfer function is shaded using an ambient-diffuse illumination model.
It assumes that the displayed objects are perfect lambertian reflectors. To approximate
the surface normal, an operator is implemented that computes the gradient vectors.
Compared to the previous technique, the volume lighting clearly improves the percep-
tion of the structures of the object.

Gradient Shading: The normalised gradient is mapped into the range [0, 1] (a scaling by 0.5,
followed by a shift by 0.5) and visualised using the red, green and blue components
of the computed colour: x 7→ r, y 7→ g, z 7→ b. The returned opacity is obtained by
evaluating the colour-opacity transfer function.

Artistic Shading: A shading effect that is not based on a conventional illumination model.
The dot product between surface normal, ~n, and light vector, ~l, is computed as for
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Asm tex1D tex3D Preparation Rendering

Density 3 1 — 0.2773 0.0356
Colour-Opacity 2 1 1 0.2548 0.0401
Diffuse Lighting 14 1 1 0.5421 0.0883
Gradient Shading 8 1 1 0.5354 0.0818
Artistic Shading 12 1 1 0.5440 0.0880
Gradient Magnitude 6 1 1 0.5706 0.0655

Table 7.1: Complexity of different visualisation techniques. Shown are: The number of assembler
instructions (Asm), the number of 1D and 3D texture fetches (tex1D and tex3D) as well
as the preparation and the rendering speed per frame (in seconds)

diffuse lighting. However, a constant colour c is then modulated by the negated dot
product and shifted by 0.5. In summary, the colour is computed as (−(n • l) · c+ 0.5).
The opacity is again given by the colour-opacity function.
As can be seen in colour plate A.2 (bottom), the negation of the dot product enhances
the silhouette of the skull where the angle to the light is large.

Gradient Magnitude: As discussed in section 4.2, the magnitude of the gradient, ||∇f ||, can
be used as axis for a two-dimensional transfer function. Another possibility is to define
a high-pass filter function with the magnitude as independent variable. This high-pass
rejects all magnitudes below some threshold, ||∇f ||a, and linearly decreases the attenu-
ation up to some ||∇f ||b from which on all magnitudes pass unattenuated. The opacity
of a 1D colour-opacity transfer function is then scaled according to that high-pass filter.
Colour plate A.3 shows an example of this rendering effect. In comparison with the sim-
ple Colour-Opacity technique it becomes clear that object boundaries can be separated
better when also taking the gradient into account.

Table 7.1 shows the complexity of the visualisation techniques in terms of the length of
the fragment shader programs, the number of texture fetches, and the computation time.
The latter is also illustrated by figure 7.1. The preparation time measures the initialisation
(texture loading and execution of operators), whereas the rendering time gives the average
time needed for rendering a frame. It is important to point out that the preparation is only
performed once during the initialisation of the application.

As expected, the preparation time increases if an operator is executed (for Diffuse Lighting,
Gradient Shading, Artistic Shading, and Gradient Magnitude). The rendering time also
directly depends on the complexity of the shader. Note that the gradient operator also
inserts the scalar value of the CT volume into the resulting colour. Thus, the fragment
shaders do not need to sample two 3D textures.
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Visible Human CT data set
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Figure 7.1: Performance of different visualisation techniques for a scalar CT data set. The preparation
time depends on texture loaders and operators. The rendering time is given per frame.

Case study CT-PET
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Figure 7.2: Performance of different renderings in the CT-PET case study. The preparation time
mainly depends on texture loaders and operators that pre-process data. Note that the
preparation is only performed once before the actual rendering starts. The rendering time
is given per frame.
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7.1.2 Combined rendering of CT and PET data

To demonstrate the combined visualisation of two data sets, we use a CT and a PET
scan of a monkey’s head, acquired by [Laboratory of Neuro Imaging, 2007] and downloaded
from [Röttger, 2006]. The data sets have a resolution of 256x256x62 sample points. The PET
data set has been pre-classified: The brain activity has been encoded in a false-colouring and
each voxel therefore consists of an RGB triple. Without a pre-classification, we would have
to define a simple 1D transfer function that assigns the same false colours to the scalar data
values. We rendered onto an image plane of 800x800 pixels using our implementation of an
object-order volume rendering algorithm with 256 planar view-aligned slices. Example ren-
derings of this case study can be seen in colour plate A.4. Figure 7.2 shows the performance
of four different visualisations.

CT Only: Rendering of the CT scan using a simple colour-opacity transfer function (see
colour plate A.4, top-left). This is the same method as used in conventional DVR
applications and needs one 3D and one 1D texture fetch (into the scalar volume and
the transfer function lookup table). The Cg compiler generates a fragment shader with
two instructions.

PET Only: Visualisation of the regions of increased activity (see colour plate A.4, top-right).
Using the false-colouring of the pre-processed data, we only visualise data that do not
contain any blue colour. The opacity is scaled depending on the green channel. Since
no transfer function is used, the shader only performs one 3D texture fetch. Together
with the scaling, eight instructions are needed. As the chart shows, the rendering is
slightly slower than for the CT.

CT + PET: Combined visualisation of both data sets (see colour plate A.4, bottom). Each
data set is exactly evaluated as described before. However, the colour resulting from the
PET volume is only computed and returned if the colour of the CT transfer function
is fully transparent.
It is not surprising that the rendering is slower. The shader code needs 14 instructions,
one 1D texture fetch, and either one or two 3D texture fetches (because of dynamic
flow control, the second 3D texture fetch is only performed if the PET volume has to
be evaluated).

CT + PET (optimised): To increase the efficiency of the combined rendering, we imple-
mented an operator that creates a new volume with four channels. It holds both the
scalar CT values and the triplets of the PET data set. Hence, only a single 3D texture
fetch has to be performed during rendering. The Cg compiler uses 13 instructions.
The result of this optimisation can easily be seen in the diagram. The fragment shader
is about as fast as the PET Only technique. Since an operator has to be executed
during the initialisation, the preparation time is increased. But note that the operator
is executed only once before the actual rendering.
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7.2 Performance tests

In the next sections, different test results will be shown and discussed. The following hardware
setups were used for testing:

T1: Intel R© Core
TM

2 Duo 2.13 GHz; 2.0 GB main memory; NVIDIA R© Quadro R© FX 550,
128 MB video memory.

T2: Intel R© Pentium R© 4 3.4 GHz; 2.0 GB main memory; NVIDIA R© Quadro R© FX 3400,
256 MB video memory.

T3: Intel R© Pentium R© M 1.8 GHz; 1.25 GB main memory; ATI
TM

Mobility Radeon
TM

9700,
128 MB video memory.

Comparison of operator execution

To analyse whether CPU-based or GPU-based operators are faster, the gradient was com-
puted for an 8 bit scalar volume data set. The data set consists of 128 × 256 × 256 voxels.
The experiment was run for different sizes of the generated gradient texture (for 2n× 2n× 2n

voxels with 0 ≤ n ≤ 8).
Figures 7.3, 7.4, and 7.5 show the time needed for the different test machines to perform

the operator on CPU and GPU respectively. The sudden break in the rendering speed for
the NVIDIA R© Quadro R© graphics cards of test machines T1 and T2 might be caused by
some driver-internal issues, but this is an unverified assumption. However, since there is
no discontinuity with the ATI

TM
card of machine T3, the application itself can likely be

eliminated as a reason.
Figure 7.6 and table 7.2 show the relative speed of the operator implementations (the

ratio CPU/GPU speed). As expected, the GPU-based operator is faster for reasonably large
texture sizes (larger than about 323 – 643voxels). For larger volumes, the GPU-based operator
performance is up to roughly 35–40 times faster. For extremely small sizes, the CPU-based
approach out-performs the GPU rendering, which can be explained by less overhead required
for setting up the operator.
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Figure 7.3: Computation time for gradient operator on test machine T1, both on CPU and GPU.
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Figure 7.4: Computation time for gradient operator on test machine T2, both on CPU and GPU.
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Gradient Operator computation - T3
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Figure 7.5: Computation time for gradient operator on test machine T3, both on CPU and GPU.

Relative duration CPU/GPU

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128 256
Volume size (per dimension)

R
el

at
iv

e 
du

ra
tio

n 
[fa

ct
or

]

CPU/GPU T1
CPU/GPU T2
CPU/GPU T3
CPU/GPU T2*
CPU/GPU T3*

Figure 7.6: Relative computation time for the gradient operator of all test machines. In order to
normalise the results for a single test setting, the GPU measures for T2 and T3 were
also compared to the CPU speed of T1 (the fastest CPU). Lines CPU/GPU T2* and
CPU/GPU T3* show this comparison. Note that the result is biased, because the GPU
computation was performed with different CPUs).
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Voxels T1 T2 T3 T2* T3*

1 0.0175 0.014 0.0312 0.0041 0.0057
2 0.0137 0.0113 0.0041 0.0047 0.0036
4 0.0115 0.0152 0.0043 0.0069 0.0039
8 0.014 0.0224 0.01 0.0118 0.0078
16 0.55 0.3263 0.0325 0.2052 0.0202
32 1.8549 1.3466 0.1121 0.9437 0.0696
64 6.3525 5.4781 0.4282 3.9414 0.2663
128 21.7854 24.6022 1.6444 18.1025 1.0251
256 25.135 37.5242 5.9051 27.5299 3.6702

Table 7.2: Relative computation time for the gradient operator of all test machines. In order to
normalise the results for a single test setting, the GPU measures for T2 and T3 were
also compared to the CPU speed of T1 (the fastest CPU). Lines CPU/GPU T2* and
CPU/GPU T3* show this comparison. Note that these results are biased, because the
GPU computation was of course performed with different CPUs).

Two-dimensional vs. three-dimensional texture fetches

It is of interest whether a slice-based volume rendering algorithm that uses object-aligned
slices and 2D multi-texturing is faster than a similar algorithm that uses a single 3D texture
(see section 4.3.1 for an algorithm description). Since the former algorithm cannot be realised
easily with the current framework, a comparison is reasonable.

For the test, two simple fragment shaders were written. They are shown in listing 7.1.
The first samples two 2D textures and linearly interpolates the obtained values. The second
shader simply returns the value obtained by sampling a 3D texture. In this way, the shaders
exactly simulate the differences in the algorithms. Note that with this test it is not tested
which texture fetch is generally faster. The render target as well as the input textures had a
size of 128 for all dimensions.

1 float4 FS 2D( float3 texCoord : TEXCOORD0 ) : COLOR0 {
2 float4 t1 = tex2D ( s2Da , texCoord . xy ) ;
3 float4 t2 = tex2D ( s2Db , texCoord . xy ) ;
4 return l e r p ( t1 , t2 , texCoord . z ) ;
5 }
6 float4 FS 3D( float3 texCoord : TEXCOORD0 ) : COLOR0 {
7 return tex3D ( s3D , texCoord ) ;
8 }

Listing 7.1: Fragment shaders used to test texture fetch performance. Note that the definition of the
sampler objects is omitted here. All samplers use linear interpolation for sampling the
associated texture.

The execution of the shaders was performed 1.0E+ 7 times. To calculate the computation
time for a single fragment, the total duration was divided by the total number of processed
fragments (i.e. 1.0E+ 7× 1282 = 1.64E+ 11). As can be seen in figure 7.7, the computation
time per fragment is similar for the two approaches. In fact, the 3D texture fetch is slightly
faster.
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7 Results and Tests

Comparison of 2D and 3D Texturing
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Figure 7.7: The average per-fragment computation time for texture fetches.
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8 Conclusion and Future work

In our prototypical implementation, the different aspects of modularity, described in section 5,
have successfully been implemented. The developed framework is flexible enough to support
new types of data, rendering algorithms, and visualisation techniques using advanced mecha-
nisms of the Cg high-level shading language and the CgFX framework, like binding semantics,
annotations, techniques and interfaces.

With the abstract TextureLoader class, no restrictions on the data representation are
made. As could be shown, even abstract descriptions of lookup tables, that are then generated
on-the-fly, can be implemented (see section 5, page 36). A minor drawback is that data of
higher dimensionality must be split into several texture objects, because of restrictions to at
most four components of graphics hardware in general.

In order to derive new entities from existing data, the concept of GPU-based operators
has been developed and implemented. It allows to perform the operator-computation on
GPU, using the full functionality of the CgFX framework. The application ensures that all
required resources are loaded. Complex operators may render into multiple render targets
and therewith output up to four values per target.

By defining the abstract Cg interface IEvaluator, multiple visualisation techniques can
easily be implemented and used. The user has the full flexibility of specifying how to sample
which volume textures and how to evaluate some transfer function. The application supports
this by providing commonly used vectors and matrices.

The application is currently in a prototypical state, and could therefore be extended in
several ways in future. Very interesting would be the implementation of a GPU-based ray
casting algorithm as described in section 4.3.2.

More functionality in general could be implemented as well. An important aspect of direct
volume rendering is the use of clipping planes or geometries to cut out parts of the volume.
This gives further insight into the internal structures. Defining clipping planes is a standard
functionality of 3D APIs like OpenGL R©, and the clipping is performed as part of the rendering
pipeline. In [Weiskopf et al., 2002], Weiskopf et al. discuss in detail how to use fragment
shaders to implement clipping against complex objects.

Usage of our framework could be simplified by creating a graphical user interface which
offers menus and dialogues for loading data and for deriving entities using operators. CgFX
files could be created on-the-fly according to the user’s demands and control the rendering.
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A Colour plates

Visible Male CT data set

Figure A.1: Renderings of the head of the Visible Male CT data set. Top: CT density (scaled by
factor 0.2); Bottom: Colour-opacity transfer function.
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A Colour plates

Figure A.2: Renderings of the head of the Visible Male CT data set. Top: Diffuse lighting; Middle:
Gradient shading: Bottom: Artistic shading which enhances the silhouette of rendered
structures.
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A Colour plates

Figure A.3: Rendering of the head of the Visible Male CT data set. The alpha channel of a 1D
colour-opacity transfer function was scaled according to a linear high-pass filter function
that takes the magnitude of the gradient, ||∇f ||, as argument. This high-pass rejects all
magnitudes below some ||∇f ||a and passes everything above another threshold, ||∇f ||b
(here, ||∇f ||a = 0.25 and ||∇f ||b = 0.6 was used).

53



A Colour plates

PET-CT case study

Figure A.4: Different renderings in the CT-PET case study. We used a CT and a PET scan of a
monkey’s head. Top-left: CT data set using a colour-opacity transfer function; Top-
right: False-coloured PET data set showing the regions with increased activity; Bottom:
Combined rendering. The PET data is set into an anatomical context, which is given by
the CT data set showing the bones semi-transparent.

54



Bibliography

[Advanced Micro Devices, 2007] Advanced Micro Devices. ATI
TM

Radeon
TM

hd 2900 series -
gpu specifications. (2007). URL: http://ati.amd.com/products/Radeonhd2900/specs.
html [last checked: 24/08/2007].
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