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Abstract

In this project the use of arti�cial neural networks for autonomous driving tasks is investigated,
especially for obstacle avoidance and road following. We have analysed neural networks with input
from various sensor types like a single camera, stereo vision, depth information and linear cameras.
During the investigation the resulting driving behaviour of the autonomous mobile agent is tested
in a virtual environment.
We found that arti�cial neural networks with input from single sensors result in the best driving
behaviour when using depth information. We discovered that combining di�erent sensor inputs
with an arti�cial neural network can generate a better �tting steering output for autonomous
mobile agent than with the information of only one sensor. Furthermore, we present interesting
results about the in
uence of varied network topology on the agent's driving behaviour.
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Chapter 1

Introduction

1.1 Background

Autonomous driving is still a di�cult problem. Its avails are for example intelligent transport
systems and lateral motion control of vehicles. Therefore, obstacle avoidance and road following
are needed.
The control of agents in a complex environment is not easy. Several way �nding techniques like
retraction and cell dividing exist but they all require prior knowledge of the agent's environment.
In map-less navigation there is no explicit representation of the world, like a robot would not have
in the real world in a new environment. In this case the agent must rely only on its visual and other
sensors. Thus no traditional navigation and path �nding techniques can be used. Instead objects
have to be recognised and tracking and learning algorithms to identify, extract and observe relevant
elements in the environment are necessary as well as geometric reasoning. All these mechanisms
have to be realised in real-time when an agent is controlled with this information. Such techniques
work well under certain conditions but have many problems with others.
Real world images are full of noise and variability. Real-time, reactive control algorithms that can
cope with a high level of sensor data variability and noise are required. Obstacle avoidance in
an arbitrary unknown environment or road following on noisy data is a highly nonlinear function
between the input (an image) and the output (the steering direction).
Such nonlinear functions are known to be a strength of neural networks.

An arti�cial neural network is an interconnected group of arti�cial neurons (units) [7]. It consists
of an input layer, zero, one or more hidden layers and an output layer. The units are connected
with the next layer and each connection has a weight.
To use an arti�cial neural network the input is projected to the input units, the activation is prop-
agated through the network and the output units represent the system's answer. This propagation
is in
uenced by the connection weights between the units.
These weights are trained with the back-propagation learning algorithm [40, 45] on training ex-
amples. The error of the network's output regarding the desired output is propagated backwards
through the network whereas the weights are accordingly slightly modi�ed. Thus the network's
error is minimized.
Arti�cial neural networks have promising performance and 
exibility and are capable of handling
noise and variability. They are used successfully for handwritten character recognition [16, 29],
speech recognition [44] and face recognition [6].
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1.2 Motivation

Arti�cial neural networks can also successfully be used for autonomous driving which was proven
by the success of ALVINN, an Autonomous Land Vehicle in a Neural Network [30]. This research
showed the 
exibility of connectionist learning techniques in autonomous robot navigation. An
arti�cial neural network controlled a test vehicle and learned to follow a road by observing a
human driver following public roads for a few minutes [32].
The system could autonomously follow the road under a variety of circumstances like di�erent
road types while driving with speeds of over 85 km/h with great success.
These results show that even simple arti�cial neural networks such as ALVINN can learn quite
complex tasks.

1.3 Objectives

The purpose of this project is to investigate the use of arti�cial neural networks for the processing
of inputs from various sensor types like a single camera, stereo vision, depth information (like
those from a laser range �nder) and linear cameras (cameras with only one line of view) for
autonomous driving tasks such as obstacle avoidance and road following. Thereby, it will be
analysed which sensor type is most useful. Moreover, di�erent sensor inputs are combined with
an arti�cial neural network that generates the steering output for an autonomous mobile agent
in a virtual environment from this information to see if this leads to a better driving behaviour.
Furthermore, the network architecture will be varied to investigate what is necessary and what is
possible for neural network driving in order to �nd an optimal setup. For these purposes a virtual
environment is su�cient.
Thus, the agent should learn to avoid obstacles and to follow the road as accurately as possible.

1.4 Overview

At the beginning, in section 2, the literature review is given. Previous work related to arti�cial
neural networks, obstacle avoidance, road following and autonomous driving in virtual environ-
ments is presented. In section 3 the system's design including the environment for obstacle avoid-
ance and road following, the training of the neural network consisting of gathering training data
and training the neural network, and at last the simulation is described. Afterwards, the imple-
mentation of these matters is presented in section 4. Finally, the results of the investigations are
explained in section 5 for both obstacle avoidance and road following. The work is summarised in
a conclusion ,section 6, and possible future work is mentioned in section 7.
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Chapter 2

Related Work

A mobile robot in the real world has often no explicit representation of the world, especially
in a new environment. The lack of such a map makes traditional navigation and path �nding
techniques impractical. Therefore, the mobile robot has to rely on its visual and other sensors.
Real world images include a lot of noise and variability which makes it di�cult to implement
rule-based strategies since they have to be robust even on noisy data and changing situations.
It is nearly impossible to consider all possible eventualities. Obstacle avoidance in an arbitrary
unknown environment on noisy data is a highly nonlinear function between the input (e.g. an
image) and the output (steering direction).

2.1 Arti�cial Neural Networks

The learning of such functions is the strength of neural networks

Figure 2.1: A neural network

[7]. Arti�cial neural networks1 [46] are one of the most e�ective
learning methods for some problems like analysing complex real-
world sensor data currently known. Neural networks consist of
an interconnected group of arti�cial neurons/units, where each
unit takes a number of real-valued inputs and produces a single
output. This is based on real neural networks in brains. A neural
network is an adaptive system that changes its bias (the weights
of the connections) while learning. Feed-forward networks con-
sist of an input layer, zero, one or more hidden layer(s) and an
output layer. The units of each layer are connected to units of
the following layer, whereas each connection has a weight.
The neural network processes a given input (values of the input units) and provides a certain
output (values of the output units). Each unit calculates the linear combination of its weighted
input values and outputs a value regarding a function (mostly if a threshold is obtained). This is
propagated through the whole network and so the output of the neural network can be provided.
So the output depends on the topology of the network and the weights of the connections which
can be changed while learning.

This is usually done by the back-propagation learning algorithm [46] which learns the weights
for a neural network given a �xed set of units and connections [45]. It uses gradient descent to
minimize the error between the network output and the correct/desired output [40].
Back-propagation is a supervised learning technique. The network is presented an input (training
sample), the activation is propagated through the network and the network's response is compared
with the correct response; if they do not match, the weights of the units of the output layer causing
the error are modi�ed slightly. Then the local error of these units is used to calculate the error

1In the following \neural networks" means \arti�cial neural networks"
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of the units at the previous level that are connected with them, and their weights are modi�ed.
This process is repeated until the input layer is reached.
Thus for every training sample the weights of the connections are modi�ed to minimize the error
of the neural network.

Neural networks are popular in visual perception systems and pattern recognition applications.
For example, they are used in handwritten character recognition [16, 29] like the automatic reading
of hand written ZIP codes [24, 7]. They are also used in speech recognition [44] and face recog-
nition [6]. Other applications are in control theory [3], data-mining (information �ltering [48]),
bioengineering (quantitative structure-relation activity prediction for organic molecules [14]) and
environment control (ozone pollution and urban hydrology) [7].

In summary neural networks are machine learning tools that are able to learn very general nonlinear
functions. Using supervised learning they are high-quality classi�ers with a good performance [7].
We therefore infer that neural networks are likely to be useful for obstacle avoidance in unknown
environment with noisy data.

2.2 Obstacle Avoidance

Williams [47] showed that a neural network controlled vehicle can �nd a goal in an obstacle �lled
environment and is able to avoid these obstacles. The network was trained by manually moving
the vehicle through the environment. It was shown that a minimum neural network of 129 input
units and 3 output units (forward, right, left) with no hidden units and 400 training pairs were
enough to learn to avoid obstacles and even to seek the goal. Nevertheless, the steering of the
training data and the control output were simple and not very diverse. Furthermore, the learning
took very long.

Aitkenhead and McDonald [1] used a virtual environment to show that a neural network based
\animat" (virtual organism) is capable of avoiding obstacles. The animat navigated in the envi-
ronment relying on its visual sensor system. Its neural network learned to avoid obstacles. The
authors tried various network topologies and examined how well the animat learned. By varying
the size of the visual input layer and the hidden layer they showed that increasing the layer size
improves the performance.
They also investigated the dependency of the system's learning performance upon di�erent train-
ing paradigms and possible variations in network topology as well as the learning ability under
di�erent environmental conditions. Therefore, a simple world with obstacles and boundaries was
created. A vision view of 32 times 24 pixels was the input and the allowed movements were mov-
ing straight ahead and turning left or right by a set angle. During training the correct response
was determined by a simple rule set considering the distances to an obstacle straight ahead and
on the side. The authors tried di�erent training methods like supervised, partially supervised
and unsupervised training and di�erent network architectures (changed layer number and size) to
estimate the e�ect on the training time.
They found that increasing input layer size, hidden layer size and number of layers improves learn-
ing ability up to a certain point beyond which no improvements are achieved. Also it was shown
that neural networks are able to learn obstacle avoidance.

Ruichek [39] showed that neural networks are able to learn obstacle detection with linear stereo
vision in real-time. The author used a multilevel neural method for matching edges which were
extracted from stereo linear images [38].

There is also a variety of alternative methods used for obstacle avoidance in the literature. Ye et
al. [50] used reinforcement learning [23] which has the advantage of not needing supervision during
the learning process. A reward is assigned to each action and the system tries to maximize this
reward. In this approach in a �rst step the system learned on training examples with supervised
learning. Afterwards �ne-tuning was achieved by reinforcement learning. So the system learned
more e�ective collision-free navigation.
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A neuro fuzzy controller to control a mobile robot was used by Er and Deng [8]. A generalized
dynamic fuzzy neural network (GDFNN) learning algorithm was able to adapt the structure of
the controller by itself resulting in very fast learning speeds. The fuzzy rules were automatically
generated on-line.

2.3 Road Following

There are also a lot of investigations concerning road following with neural networks. Jeong et
al. [17] controlled an autonomous vehicle with a neural network. It was capable of road following
with a vision camera. The vanishing point and the vanishing line of a road were used to follow the
road marking. This was implemented in computer simulation. First a vehicle dynamical model
was set up. Then the transformation of the coordinate systems (world, vehicle, camera and image
coordinate system) were calculated and at last the control algorithm was implemented. A neural
network (2 input, 50 hidden and one output unit) learned from a human driver and was trained
with the back-propagation algorithm. Afterwards it was able to follow straight and curved roads
quite well.

The most popular autonomous road follower using a neural network was ALVINN (an Autonomous
Land Vehicle in a Neural Network) [30].
Pomerleau used this neural network [32] to control the steering of a modi�ed van (NAVLAB,
the Carnegie Mellon's autonomous navigation test vehicle) while driving on public roads to stay
on them [33]. A camera in the vehicle produced real-world images which were quite noisy. To
implement a rule-based algorithm for road following from this data would be supremely di�cult.
The result was that even a very small neural network learned such a complex task very quickly.
The author used a single hidden layer feed-forward neural network and the back-propagation
learning algorithm. ALVINN got images from a video camera pointed straight ahead or images
from a scanning laser range-�nder as input. The network consisted of 3 layers (including the input
layer). The output was the direction the vehicle should steer to in order to follow the road.
The input layer consisted of a 30 � 32 unit "retina" which was a low-resolution version of a
pre-processed video camera image from a road scene or a laser range �nder image. These 960
input units were fully connected to 4 hidden layer units which in turn were fully connected to
the output layer. This consisted of 30 units which represented the turn curvature. It was a
linear representation of the currently appropriate steering direction in order to keep the vehicle
on the road and prevent it from colliding with obstacles. The centre-most output unit represented
straight ahead, the more left or right units in turn stood for successively sharper left and right
turns.
For driving the image from the sensor was reduced to 30 � 32 pixels and the intensity of each
pixel was projected onto the input layer. The resulting activation of the output layer controlled
the steering direction.
The training was implemented by a back-propagation learning algorithm [40, 45]. The video
camera image is presented the network as an input. The activation is propagated through each
layer of the network and the network's response is compared to the correct driving direction,
determined by the driver's steering direction. If these two do not match, the weights of the neural
network will be modi�ed slightly. The desired output vector was not only the correct unit activated
while all the others were deactivated but a "hill" of activation centred around the unit representing
the correct turn curvature to make learning more e�cient.
ALVINN was successfully tested on the Carnegie Mellon autonomous navigation test vehicle. It
was shown that a neural network can e�ectively follow real roads in autonomous control under
certain �eld conditions with only a few minutes learning. That worked well under a variety of
circumstances such as several di�erent road types. ALVINN was able to control the vehicle with
speeds of over 85 km/h. They showed that such a simple neural network can learn a complex task
like road following under real conditions. It learned the features which are required for driving on
particular road types during training. The system was computationally simple and worked well
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in a variety of situations.

Also other learning methods to train ALVINN have been tried. Batavia et al. [4] used Quickprop
[10], Cascade Correlation [11], and Cascade 2 while learning road following with a neural net-
work and compared them to back-propagation. Quickprop was even faster than back-propagation
whereas the other two of them did not do as well. There was even a hidden layer unit analysis
performed to determine what the network learned.

Since a short training of ALVINN did not cover all driving situations and especially rare situations
had a lack of coverage in the training set such situations resulted in erratic driving. Pomerleau [31]
modelled the appearance of infrequent scenarios by augmenting the training set with important
situations that were missing during training. Since the network was trained over a relatively short
stretch of road it did not expose to all possible situations during training. Situations like passing
cars or guardrails (while driving over a bridge) were rare and limited in duration so there were
only very few training samples including them. Therefore, the network was not able to learn how
to behave in such situations and was likely to make mistakes. To work against this insu�cient
diversity in the training examples they tried to teach the neural network to generalize to situations
which were not explicit in training set.
First they added Gaussian noise to the training examples but that did not work very well. Training
with structured noise was more successful. Physical objects like cars and guardrails are 2d-regions
of nearly uniform intensity in the video image. So they added random features to the input images
of the training examples, mostly in the periphery. Features were added on random images with a
random position, colour and intensity, and then removed randomly.
The neural network trained with structured noise steered more accurately. It learned to rely less on
features in periphery and used primarily the lines for following the road. This led to a signi�cant
increase in steering accuracy and improved the driving performance, especially when cars passed
or while driving over a bridge.

Pomerleau [34] also tried other ways of adding diversity to training data. The performance was
improved by transforming the input images and with bu�ering of the training examples.
The transformation of the sensor images has been done to learn how to correct from swerving
without having the driver to swerve himself and to switch on and o� the learning process since
this would not only be impractical but also dangerous to do in real tra�c. So they transformed
(shifted and rotated) the input images with an algorithm to obtain images as if the vehicle was
facing more sidewards and if it was shifted more to the side of the road. So they gained 15 im-
ages out of one. Then the missing pixels were extrapolated and the correct steering direction for
the transformed images was calculated. All these samples were added to the training data. Thus
ALVINN was able to learn how to behave when not exactly in the centre of the road or not driving
straight ahead and how to correct from mistakes without really drive the vehicle that way.
Their next way to add diversity to the training examples they used was bu�ering. Older training
examples were reused for learning again with a certain probability regarding their steering direc-
tion. The purpose was to to keep the mean steering direction of the bu�ered data set straight
ahead so that ALVINN did not learn to prefer one of the directions.
With these techniques they improved the performance of ALVINN and showed that adding diver-
sity of training data is quite important.

Baluja [2] used an evolutionary method for creating arti�cial neural networks that should control
an autonomous land vehicle to follow a road. The goal was to �nd networks with good general-
ization ability with evolutionary algorithms.
The back-propagation learning algorithm is a gradient descent which searches for a local minimum.
Evolutionary algorithms in contrast perform a global search and therefore, are less susceptible to
keep stuck in a local minimum. The author used evolutionary optimization methods to improve
generalization capabilities of the feed-forward neural networks. The network topology was discov-
ered as well as the weight were optimized with the aid of evolutionary algorithms. Since these are
computationally very expensive the whole network pool has to be trained before any use of the
learned neural network, so no on-line training was possible.
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The advantage was in combining evolutionary search and back-propagation: First a population
based incremental learning was used to learn both topology and weights for the neural network
(within certain limits like number of units and layers) and afterwards the weights of this network
were re�ned by using back-propagation.
The so achieved road following system performed better (on NAVLAB) in unseen situations than
those trained only with back-propagation.

Another way to obtain a more accurate neural network is reinforcement learning [23]. Yu and
Sethi [51] used a neural network based road follower with vision sensor input that generated the
steering control output. The network was not only trained in a supervised mode but also with
reinforcement learning. Thus the authors eliminated the need for external supervision and added
continuous learning ability (like human drive practice) to the system.
Reinforcement learning is an unsupervised learning method in which the system is given a feed-
back (reinforcement) systematically. This performance score is either a reward/payo� or a pun-
ishment/critic regarding if the action was good or bad. With this method the neural network's
connection weights were modi�ed. Thus the reinforcement was maximized to improve its future
performance.
With the combination of a neural network and reinforcement learning which re
ects the human
driving practice the system was capable to learn continuously how to generate the correct steering
output.

Another reinforcement learning road follower was presented by Oh et al. [27]. The new dynamic
control architecture was capable of high-speed road following of high-curvature roads. Reinforce-
ment learning was used to handle image features which were �rst extracted during an image
processing step.

As seen above a neural network can drive a vehicle reliably and safely on many di�erent road types
reaching from paved paths to multi-lane interstate highways. But what was missing in ALVINN
was the transparent navigation between di�erent road types, the simultaneous use of di�erent
sensors and the generalization to former unseen road types. ALVINN is good for one type of road,
but only for roads it has already learned. Pre-trained networks existed for several road types but
the system had problems with new ones.
MANIAC (Multiple ALVINN Networks In Autonomous Control) [19] was a modular neural ar-
chitecture which tackled these disadvantages. It allowed transparent navigation between roads of
di�erent types using pre-trained ALVINN networks. With a neural network combining pre-trained
networks the system was able to drive robustly on many di�erent types of roads. The authors
hoped that MANIAC would learn to combine the pre-trained networks to gain new information
instead of simply selecting one of them.
The output of the hidden units of multiple ALVINN networks, each pre-trained for a particular
road type, were connected to the input of the MANIAC network. This one was trained using
back-propagation with images from di�erent road types which were permuted.
The trained system was in a simulator with di�erent road types, those ones the partial networks
were trained on and also new ones. The combined neural network (MANIAC) worked better on
a new road than both of the used pre-trained networks, and did not work much worse than the
particular networks on the road types they had been trained on.
A system like this can also be useful for incorporating information from di�erent sources.

Other features which were added to ALVINN include vision guided lane transition [22], intersection
detection [21], traversal [20] and navigation [18].

However there were also other systems. ROBIN (Radial Basis Network) [37] was a template-based
visual autonomous road-following system which was based on a radial basis function architecture.
A neural network was the inner reactive component of the system. It was trained by a human
operator on a speci�c road type. These pre-trained instantiations were saved to activate them
again later. Diverse sensors like a colour camera, a FLIR and a low light camera were used. Thus
the system was able to navigate successfully on a diverse set of roads reaching from worn tracks
in the grass to multi lane highways.

10



Another System developed by Pomerleau and Jochem [35] was \Ralph", a vision system designed
to help automobile drivers to steer. It got a sample image, assessed the road curvature and
determined the lateral o�set of the vehicle relative to the lane centre. With this information it
was able to determine the correct steering direction. The system performed well, for example
during a coast-to-coast, 2; 850 mile drive.

2.4 Autonomous Driving in Virtual Environments

For the purpose of testing and evaluating algorithms for autonomous driving or even for pre-
training neural networks several simulators were developed.
One of them is SHIVA, the Simulated Highway for Intelligent Vehicle Algorithms [43], which
focused tactical driving on highways [41] mainly for intelligent transportation systems [42].
Since testing new algorithms in human tra�c is risky and potentially dangerous simulation of
them is essential. SHIVA provided a realistic sensor model and driver models as well as an
e�cient integration for real robotics since the interfaces were quite similar to those in the NAVLAB
test vehicle. The roads consisted of an arbitrary number of lanes. Di�erent types of vehicles,
controllers, sensors and driver models were included. The user interface provided di�erent displays
and views like bird's eye, road side or driver's eye view.
With the help of such a simulator it is possible to test the algorithms designed for real tra�c
safely in a virtual environment without endangering oneself or others. Other road simulators are
Smart-Path [9] and TRAF-NETSIM [49].

Figure 2.2: SHIVA (Simulated Highway for Intelligent Vehicle Algorithms) road simulator

Autonomous driving in a virtual environment was done by Flower et al. [12, 13]. A mobile agent
was controlled by a neural network getting only the information the agent could see from its point
of view. The autonomous agent was put in a interactive virtual environment and trained to follow
the road or to �nd a path to a given goal. Therefore, a virtual city with intersections, tra�c lights,
bridges and buildings was created. The autonomous agent learned to follow the road and to �nd
a path in a virtual environment if certain conditions were ful�lled. This was investigated for a
possible usage in computer games.

Altogether, many approaches for obstacle avoidance and road following with neural networks exist.
However, only in some of them variations to the neural network topology were mentioned. In none
of the cases di�erent sensor types were compared or was tried to combine di�erent sensor types
in order to compare them and achieve better results for autonomous driving tasks like obstacle
avoidance and road following.
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Chapter 3

Design

This section describes the design of the system to investigate autonomous driving with neural
networks. The system consists of an virtual environment wherein a human driver can record
information on which a neural network can be trained. This controls the agent for the tasks of
obstacle avoidance or road following.

The work of this project is based on a previous project of Daniel Flower [12]. He created a
virtual environment for autonomous agents with simulated vision controlled by a neural network
[13]. A mobile agent had to rely only on what is saw with a mounted camera facing straight
forward. It was put in an interactive environment with the idea of a possible usage in computer
games. Di�erent investigations like obstacle avoidance, road following and path �nding have been
done. It was analysed how well the autonomous agent navigates its way through a virtual city
with intersections, tra�c lights, bridges and buildings by only using what it sees from its point
of view. This computer generated image with quite simple complexity was used as input of a
neural network which produced the direction to steer as output. The system learned from training
examples saved while a human driver steered the virtual agent. After training the neural network
could be activated to control the agent's steering direction autonomously. It was shown that
autonomous agents can learn how to avoid obstacles, follow the road and �nd a path in a virtual
environment under certain conditions.

The objective of this project is to use various kinds of sensors like a single camera, stereo vision,
depth information (as provided from a laser range �nder) and linear cameras as input for a neural
network. An autonomous agent is trained to drive autonomously in a virtual environment.
Additionally, distinct sensors will be consolidated with a neural network to generate the steering
output. Thus the agent should learn obstacle avoidance and road following. Furthermore di�erent
neural network architectures and other variations on the training setup will be investigated.

This section provides an overview of the system's design. The environment for obstacle avoidance
and road following is described in section 3.1. In section 3.2 is explained how the training data is
gathered and in section 3.3 how the neural network is trained. Finally, section 3.4 deals with the
simulation of the neural network driving the virtual vehicle autonomous.

3.1 Environment

For the tasks of obstacle avoidance and road following a virtual environment was created (see �gure
3.1). In order to investigate di�erent types of sensors and the ability to follow a road in a virtual
environment this had not to be very realistic since graphic details like textures are not important
for that (a human driver would not need a high degree of detail for the mentioned tasks). Thus,
many things could be kept simple, e.g. a 
at world without hills and slopes was su�cient. The
graphics could be simple as well since a simple environment already contains enough information
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for the desired investigations. So more complex graphics including textures and models are not
necessary. For a realistic simulation of the real world and a view with very high resolution for
the agent a more realistic environment could be necessary. However, analysis of high resolution
images is not topic of this project and therefore not considered here.

Figure 3.1: Virtual environment

To render the environment from the agent's point of view di�erent sensors can be simulated.
Besides the normal view as it would come from a single vision camera, stereo vision cameras,
depth information (like from a laser range �nder) and linear cameras (cameras which record only
one line) can be used. For the agent's view the perspective image from the environment is reduced
to a much lower resolution since this information should be enough to avoid obstacles and to follow
the road (a human driver could do this with a reduced view as well, see �gure 3.2). Furthermore,
the image is converted to greyscale (see sections 3.2 and 4.1 for details). This view can be displayed
on the screen and while recording data to learn (see section 3.2) these pixel values are written into
a �le.

Figure 3.2: Scene from the agent's point of view; original left, reduced right

The user's view can be the one of the agent but also a freely movable camera view or a bird's eye
view. The path taken by the agent can be displayed for evaluation purposes. The agent itself only
knows what it sees from its point of view and has no map or other prior information about the
environment. This provides the same situation as for a human driver or a real robot in unknown
environment and leads to realistic driving.
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To learn obstacle avoidance a simple world with obstacles was created. This is just a bounded area
(enclosed by border walls) and simple obstacles with di�erent shape, size, position, and rotation
(see �gure 3.3). Di�erent maps were used for training and testing the neural network.

Figure 3.3: An obstacle avoidance map Figure 3.4: A road following map

For road following the environment is simple as well. To investigate the ability of following the
road and improvements thereupon with image transformation methods, a curved road on 
at
ground as in �gure 3.4 is su�cient. To evaluate the neural networks other road maps or just the
same road in the other direction can be used.

3.2 Gathering Training Data

To train the neural network to avoid obstacles or to follow the road training data from a human
driver are recorded. The agent should learn to imitate the driver's behaviour without telling it
explicitly rules to follow or features to react on. The human driver can control the agent with the
keyboard like in a race simulation in order to show the agent how to drive.
For obstacle avoidance the driver just drives around avoiding obstacles. If an obstacle is in the
way he turns the vehicle. The driver can react quite early or late to obstacles in front of him and
the agent should learn to behave similar to that.
For road following the human driver should follow the road, thus staying in the centre of the road
or the lane, respectively, as exact as possible.

Training data is recorded for approximately four minutes for obstacle avoidance and even shorter
for road following. The pixel information of the reduced view of the agent and the current steering
direction is stored in a �le every few frames. For this controllable screenshot rate a �xed time of
approximately �ve examples per second is appropriate since with more examples per second many
pictures would look the same and therefore would not contain much new information. Thus, there
is more diversity in the training data of the same size with less screenshots per second.
The image quality is reduced since much less pixels than there are on the screen are needed to learn
obstacle avoidance or road following and too much pixels would slow down the learning process.
The number of pixels in the agent's view is controllable in order to test how di�erent view sizes
work.
Furthermore, the image is converted to greyscale. There is not much more information which is
necessary for driving contained in the colour of the image than in the greyscale image in general
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as showed in [34]. A human driver is able to drive a vehicle and avoid obstacles or follow the road
without colour, too. Therefore, colour is not used for autonomous driving in this project.
As colour is not needed for these tasks it is appropriate to convert images the agent gets to
greyscale. The same holds for the resolution; a human driver would also be capable of driving a
vehicle with a low resolution image of the environment. But can a neural network even drive with
less information than a human driver would probably need? This issue will be investigated with
sensor images with very low resolution.

The agent can be controlled by a human driver like in a car racing computer game. The steering
and the velocity can be a�ected with the keyboard. Since the angular velocity and thereby the
curve radius is in
uenced the driver can drive long turns and sharp turns where it is needed. These
di�erentiated steering values (di�erent sharpness of turning) are stored in a �le together with the
sensor information and are used to train the neural network. Additionally, the previous steering
value is stored as well since this can be useful, e.g. if driving straight towards a wall or an obstacle
it can be possible that the neural network controlled agent alternates between left and right and
does not decide for one direction. In that case it can be an advantage to use the last steering
direction to help the agent to select one direction and avoid the obstacle.

Figure 3.5: A human driver is recording data in the agent's view

Figure 3.5 shows the agent's view while a human driver is recording training data. The red circle
in the lower right corner indicates that data is currently recorded, the time counter in the upper
right corner shows how long training data has been recorded yet. The blue point in the middle
shows the current steering direction. The recorded data of the agent's view is visualised in the
lower left corner.

While training the neural network, the human driver has to consider that the neural network will
imitate his behaviour. If he avoids obstacles in the nick of time the agent will do this as well and
if he turns much more often to one side the agent will also be biased to this direction. The same
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holds for road following: when there are much more turns to one side in the street and so in the
training data the agent will be more likely to drive to this direction after training.

For obstacle avoidance several sensor types are recorded in parallel. These are a single vision
camera, two stereo vision cameras, depth information (like from a laser range �nder) and linear
cameras (cameras with only one line of view). The single vision camera is just the reduced image of
the scene from the agent's point of view. For the stereo vision two cameras at the side boundaries
of the virtual vehicle are simulated and both of their views are used. The depth information is read
out of the depth bu�er of the single vision camera's view. These are greyscale values representing
the distance of an object. The linear cameras are just particular lines of the single camera's view
and the stereo cameras' views, respectively. The pixel information of each sensor is stored in a
�le with the information from which sensor type they come. They are all written to the same �le
in order to compare di�erent sensor types with the same training data and to combine di�erent
sensor types in one neural network.

For road following the vision camera information is used. This is stored in a �le together with the
current steering information of the human driver. If only the values which were recorded while
driving in the centre of the road are used the neural network will never be presented training
examples showing how to correct from mistakes. Thus, it cannot learn how to steer back to the
road if it made a mistake. To approach this problem it would be possible to turn the learning
process o�, leave the centre of the road, and record data how to drive back to the road. However,
this is very time consuming since it has to be done quite often to get enough training examples. A
better possibility was introduced by Pomerleau [34] who transformed the images. Of each training
image multiple versions were created namely shifted and rotated images. This is quite di�cult
in the real world since missing pixels have to be calculated whereas in a virtual environment the
virtual camera has only to be shifted and rotated before rendering the view and storing the data.
This additional image information is used for training as well. For each image the appropriate
steering direction is needed, too. Obviously it is not the same as the steering direction of the
normal view. Thus, a modi�ed one has to be computed. This is realised by a function named
\pure pursuit" which gets the shift and rotation values and the correct steering direction for the
normal view as well as a look-ahead value. The look-ahead is the distance after which the virtual
vehicle should be at the same point as the one with the normal view and the real steering value,
e.g. in the centre of the road. With these values and the current steering radius a formula delivers
the appropriate steering radius for the transformed view (for more details see section 4.2.1). The
output representation of this value is stored with the transformed image information in the �le.

To train the neural network on this information the appropriate steering direction for each recorded
or transformed image is required as well. A representation of the steering value is also stored in
the same �le.
The number of output units representing the steering direction is prede�ned but controllable. The
leftmost output unit represents a sharp left turn, the median output unit straight ahead and the
rightmost output unit a sharp right turn (the units between not so sharp left and right turns) (see
[34].
Instead of just storing a one for the current steering direction and a zero for all the others (here
all neural network values are between zero and one), a Gaussian curve around the current steering
direction where the mean (�) is the current steering direction and the variance (�2) depends on the
total number of output units, is used. This makes sense since a turn without the exact sharpness
but the same direction is normally also an appropriate steering value and therefore not to be set
to zero in the learning data. In this way a smooth distribution of activation around the current
steering direction is stored.

All the stored values are real values between zero and one. For the sensor inputs this is the
normalized brightness information of each pixel and for the output the normalized steering value
with the Gaussian curve of activation. Taking only values between zero and one for both all inputs
and the output allows to learn the neural network easier and faster.

All possible input values and the desired output values are stored in a �le. To be able to record
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more training examples bit by bit and to allow to delete one �le when the human driver made a
mistake each recording session creates a new �le with the current date and time in the �lename.
This contains all information that is needed to train the neural network.

3.3 Training the Neural Network

What a neural network is and how it works has already been explained in sections 1.1 and 2.1.
For further information the reader is referred to the literature, e.g. [7] and [45].

With the recorded training examples a neural network can be trained. The inputs (the sensor
information) and the correct output (the correct steering direction) for these inputs are stored in
a �le as explained above. The neural network is trained with this data and should learn obstacle
avoidance or road following. Therefore, no further information about the environment or any rules
are needed. The network should learn the features needed to avoid obstacles or to follow the road
just from the training data.

The structure of the neural network depends on the sensor types which are used and the number
of output units. Since di�erent values are to be compared both the current sensor types and
the number of output units can be controlled. In the majority of cases a fully connected neural
network is used. The used sensor types and the size of the agent's view determine the number
of input units. Which pixel is used as activation for which input unit is arbitrary as long as the
same mapping is used for training and simulation. The number of hidden units and layers, if any,
can be controlled in order to compare di�erent settings, too.
It is also possible to train two neural networks to get steering directions for a stereo camera, one
for each input. These two have to be consolidated when the neural network is used for autonomous
driving.

The weights of the neural network are learned with the training examples and the chosen con�gu-
ration using the back-propagation learning algorithm [45]. Back-propagation uses gradient descent
to minimize the error of the neural network [40]. It is a supervised learning technique where the
neural network is presented an input (here the reduced image of a sensor), the activation is propa-
gated forward through the network and the network's output is compared to the correct response
(the demanded steering direction). If the output and the correct response di�er the weights of the
output layer causing the error are modi�ed slightly. Then the local error of these units is used to
correct the weights of the previous layer and so on. So the errors are back-propagated through
the neural network and all the weights of the connections can be modi�ed in order to minimize
the global error of the network for this training example. This is done for every training sample to
minimize the error for the whole training set. The parameter with which the weights are modi�ed
can be controlled but it can also change during the learning process if e.g. \momentum" is used.

For learning obstacle avoidance and road following iRprop, a variation of RPROP [36] developed
by Igel and H�usken [15] is used. This learning algorithm works similar to back-propagation with
momentum but uses so-called \learning epochs" and does not depend on the derivative value but
only on its sign. This leads to a higher learning speed and faster convergence times. For more
information about these learning methods see section 4.2.5.

Before learning the weights of the neural network these should be initialised. Instead of assigning
a zero as weight for each connection, random values result in faster and more accurate learning as
showed later. Here, �rst random values and then the Nguyen-Widrow layer initialisation function
[25] were used for weight initialisation. This method starts with random weights which are modi�ed
later. See section 4.2.3 for more details.

In Summary, a neural network with the chosen con�guration can be trained on di�erent sensor
information with given view size. Di�erent network architectures and even two neural networks
for stereo can be used as showed later. This allows comparing various di�erent settings of sensors
and neural networks in obstacle avoidance and road following. The trained neural network can be
saved for using it in the simulation where it can be loaded and run again.

17



3.4 Simulation

Testing the trained neural network works quite similar to gathering the training data (see section
3.2), except that the virtual vehicle is not controlled by a human driver but by the neural network.
The path taken by the agent so far can be drawn for evaluation (see �gure 3.6).

Figure 3.6: Agent drives autonomously and avoids obstacles

The trained and saved neural network is loaded. Every frame rendered by the current scene from
the agent's view (reduced and converted) is given to the network as input, the same way as it
was trained with. The values depend on the brightness (or depth) of the pixels of the current
view. This activation is propagated forward through the network using the trained weights (these
are not changed anymore). As result the output units have a certain activation which is used to
determine the steering value from.

Each output unit represents a steering direction as explained earlier. To gain one appropriate
steering direction from the activation of the output units miscellaneous possibilities exist. One
would be to take just the output unit with the maximal activation value as steering direction. This
is fast and easy but leads to discrete steering values depending on the number of output units.
Other possibilities would be to take the weighted average of all output units or to calculate the
best �tting Gaussian curve over the output units and take its mean/centre as steering direction.
Similarly, only the best �tting Gaussian curve next to the maximal value could be used as steering
direction. All these techniques will be explained in more detail in section 4.3 and evaluated in
section 5.1.4.

Di�erent neural networks trained before with diverse inputs, and varying hidden layer size and
even two neural networks to process stereo information can be used in the simulation. In the latter
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case both networks had to be trained on the same data using only one half of the recorded stereo
information. Table 3.1 gives an overview of the di�erent setups.

single sensors vision camera, depth information, stereo cameras, linear camera(s)
stereo cameras di�erent ways to combine stereo vision information

combining sensors vision camera + depth information, depth info + linear camera
view size di�erent amounts of pixels per sensor image

network architecture number of hidden units, connection rate, weight initialisation
output representation maximum, weighted average, best �tting Gaussian curve (near max.)

Table 3.1: Overview of the investigated setups

If the training data was biased to one direction the neural network will also be more likely to drive
into this direction since it learned driving to this direction more often than to the other one from
this training data. Diversity in the training examples is important and the human driver should
balance right and left turns while recording training data.

To improve a biased training set or to add training examples which are not in the training set yet
it is possible to record data during testing. Therefore, the neural network is not used during that
time and the human driver takes control of the virtual vehicle again. These new training examples
(together with the old ones) can be used to train the neural network again.
Another idea to avoid the bias in the training set would be add the mirrored images and the
appropriate steering values to the training set. However, this was not used here and is future
work.

In general, the neural network should be able to generalise to new situations after the learning
process. Hence, testing can take place in unseen environment, e.g. a new obstacle layout or
another road for obstacle avoidance and road following, respectively. The neural network should
have learned features which are important for obstacle avoidance or road following that it has not
been explicitly told before, so that it can be used in new situations as well.

19



Chapter 4

Implementation

This section gives an overview of the implementation of the system. The realisation of the envi-
ronment for obstacle avoidance and road following (section 4.1), the neural network and training
algorithms (section 4.2) and the simulation (section 4.3) are described.

The system consists of two programs: The drive program used for gathering the training data
and simulating the neural network and the learn program which trains the neural network's
weights with the training data. The drive program is written in C++ using OpenGL1 with GLUT
(OpenGL Utility Toolkit). The learn program is a C++ command line tool. For the neural network
implementation FANN 2 (Fast Arti�cial Neural Network Library [26]), a free open source neural
network library in C, was used.
Object-oriented programming was used for this system. The drive program consists of a main class
which reads in the con�guration �le3, sets up OpenGL and GLUT information (create window,
set up light, camera, key listeners etc.) and creates a Robot (a virtual agent) which is processed
every frame.

The Robot changes its position and rotation (and so its view) depending on if it is controlled by a
human driver or by a neural network. In the former case the velocity and the angular velocity is
controlled by the user with the keyboard. In the latter case a neural network is loaded and used
for determining the steering direction. The inputs for the neural network are saved in an array
by a method in the AgentView class. The Robot interprets the outputs of the neural network an
determines the next steering direction. Afterwards the movement is checked for collisions with the
environment.

The input for the neural network is the current view of the agent which comes from the AgentView
class. When a neural network controls the agent, AgentView updates an array with the sensor
input for the neural network every frame. Therefore, the scene from the agent's point of view is
rendered in sub-windows depending on the current used sensors. The pixel information is stored
in an array and processed with the neural network to get the next steering direction.
When in contrast a human driver is controlling the agent and recording training data the sensor
information is obtained in the same way but written to a �le instead of an array. This �le can be
used for training the neural network later.

Many settings can be de�ned in the con�g �le. It contains general information as the window
resolution, if the agent is controlled by the keyboard, the size of the agent's view, the used
sensors, which map should be loaded and folder and �lenames but as well settings referring to
training the neural network like the number of hidden units, the connection rate and the number
of epochs to learn. Furthermore, the con�g �le includes information about the simulation of the

1Open Graphics Library, see www.opengl.org/
2Available from http://leenissen.dk/fann/ as at August 2006
3The con�guration �le will in the following be called \con�g �le".
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neural network like the �le name of the neural network and whether two networks should be used
for stereo cameras. For road following it can be controlled if white stripes in the middle of the
road should be used, if the images should be transformed, and the look-ahead distance. This high
degree of ability to con�gure the programs is very helpful for many tests with di�erent settings.

The scene itself depends on the map which is a �le in a certain format read in by the MapReader
that generates objects and their geometry.

4.1 Environment

As explained in section 3.1 the virtual environment can be kept simple and must not be very
realistic for the desired investigations. A simple world already contains enough information for
obstacle avoidance with di�erent sensors and road following since the resolution of the agent's view
is too low to obtain detailed information from its environment. However, a realistic view of this
simple environment is important. Therefore, perspective is used for the rendered scene from the
agent's point of view. The illumination is both di�use and ambient, the background colour is light
blue for the driver's view and white for the agent's view since this makes distinguishing between
background and obstacles easier. All these settings are applied to the scene using OpenGL.

Which objects ought to be in the scene is controlled with the map �le loaded from the MapReader.
Such a �le is a list of object types followed by their position, rotation, colour and size. For each
entry the object and its geometry is created and then they are added to the scene.
Every object in the world is a WorldObject. Special cases of that are StaticObjects like obstacles,
walls, and Roads and the Robot which can move and whose process function is called in every
frame.

Figure 4.1: Obstacle avoidance ... Figure 4.2: ... and road following environment

For obstacle avoidance a map consists of a bounded area enclosed by walls with objects of varying
shape, size, position, and rotation (see �gure 4.1). Di�erent maps are used for gathering training
data and testing the neural network.
For road following a curved road forms a cycle to make it easier to drive for a longer time (see
�gure 4.2). This has the advantage that the camera does not have to move when the agent drives
for a longer time. The road can be used for training in one direction and for testing in the other.
Di�erent road maps are possible as well.

The view of the environment can be varied. Besides the view from the agent's point of view a free
camera view and a bird's eye view are possible. These can be controlled with the keyboard.
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The scene from the agent's point of view is rendered in sub-windows on the screen. These images
are reduced in size and converted to greyscale (see �gure 4.3).

While the human driver drives the vehicle through the environment

Figure 4.3: Reduced
and converted view

and records data the reduced image information from the agent's point
of view for each sensor is stored in a �le (see section 4.2). Thereby, the
agent only gets the information it sees and has no map or other rep-
resentation of the environment which would allow an optimal driving
behaviour or at least a kind of planning. This leads to a realistic
steering and is the same situation as if a real robot was in unseen en-
vironment.
The stored information can be used for training the neural network.

4.2 Neural Network Training

In the following the training of the neural network is explained in more detail. First it is explained
how the training examples are recorded (section 4.2.1) and then the learning program is described
(section 4.2.2). Afterwards, the weight initialisation of the neural network (section 4.2.3) and the
standard back-propagation algorithm (section 4.2.4) are presented. Finally, the RPROP learning
algorithm and its variation iRprop (section 4.2.5) which is used here are explained.

4.2.1 Gathering Training Data

To train the neural network training examples have to be gathered �rst. Therefore, a human driver
controls the virtual vehicle to avoid obstacles or to follow the road. The velocity and the angular
velocity are controlled with the keyboard which allows longer and sharper turns, respectively.
When recording training data the sensor values and the steering value are stored in a �le every
few frames (in most cases every 30 frames a screenshot is taken, that is approximately between
one and 5 per second).

The input information for the neural network are the pixel values of the reduced sensor image
that has been converted to greyscale. Therefore, the scene is rendered from the agent's point
of view in sub-windows depending on the currently used sensors (for obstacle avoidance). There
exists a sub-window for the single camera and two translated camera views for stereo vision, one
on the left and one on the right side of the virtual vehicle. From these three rendered views the
image information for single and stereo cameras and also the depth information and the values
for the single cameras can be obtained. For the depth information the depth bu�er of the centred
sub-window is used and the linear camera information is just one line of the normal camera view.
This sensor information is written to a �le together with the current steering value of the agent
controlled by a human driver. Therefore, the value of a Gaussian curve around the current steering
direction is used for every output unit . The mean (�) of the Gaussian curve is the current steering
value and the variance (�2) depends on the total number of output units. Without the factor at the
beginning of the formula all values are real and between zero and one which is useful for training
the neural network on this data. The formula used here is x[i] = exp

�
� 1

2
( i��

�
)2
�
, whereas x[i] is

the stored activation value for output unit i, � is the given steering direction and �2 is one tenth
of the total number of output units.
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Figure 4.4: The shifted and rotated views

For road following shifted and rotated image information is stored besides the normal view. To get
more training data, to show the neural network how to correct mistakes and how to �nd the way
back to the centre of the road (since it would not have been presented training examples showing
this otherwise), the normal vision camera image is transformed to get 17 images out of one (see
�gure 4.4). Therefore, the virtual camera is shifted and rotated each to the left and the right by
two values. All this can be done with OpenGL wherefore no missing pixels have to be approximated
as it would be necessary when using a real camera since the images and not the camera have to
be transformed and therefore not all needed data exists. The di�erent views are used as training
examples in turn, thus not every frame the values of all transformed images are written to the �le
but only one of them. Each view is rendered only when its values are recorded.
For these image values the appropriate steering direction is still missing to be complete training
examples. This direction is computed4 with the shift s and the rotation � of the image together
with the current steering radius rh of the human driver and a look-ahead distance l. This latter
value describes the distance to the point where the vehicle from the original point driving with the
real steering value and a vehicle driving from the transformed position with the steering radius
which will be computed should be at the same place again. Therefore, the desired steering radius
needs to be chosen.
With these values the quantity dh (see �gure 4.5) can be calculated as dh = rh �

p
r2h � l2. With

this for the displacement d the equation d = cos � � (dh + s+ l tan �) holds. Now it is possible to

calculate the desired steering radius r as r = l2+d2

2d
. This has to be transformed back to a steering

value. The representation of the computed steering direction as an output value is stored in the
�le together with the pixel information of the appropriate transformed image.

The frequency of writing examples (input and output values) to the �le is controllable in the
con�g �le. In this project between one and �ve examples per second are written. The size of the
data depends on the current size of the agent's view which is controllable as well. One training
example containing all sensor information and the output representation looks like this (here with
an agent's view size of three times two pixels):

NORMAL 1 1 1 0.792157 0.792157 0.101961

STEREO 1 1 1 0.792157 0.792157 0.101961 1 1 1 0.792157 0.792157 0.101961

DEPTH 1 0.886621 0.860191 0.900477 0.886621 0.860191

LINE 0.792157 0.792157 0.101961

LINE2 0.792157 0.792157 0.101961 0.792157 0.792157 0.101961

OUTPUT 0.226815 0.953571 0.542557 0.041778 0.000435373

Each line contains a sensor name (or OUTPUT) with the appropriate pixel (or depth) values. NORMAL
is followed by the pixel values of the single vision camera, STEREO by those of both stereo cameras,
DEPTH by the depth information and LINE and LINE2 by the linear camera information for a single
and two stereo cameras, respectively. OUTPUT is followed by the output representation as described
above. All values are real values between zero and one.

4This method was explained by Pomerleau in [34]
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Figure 4.5: How the steering radius for the transformed images is calculated (image from [34])

4.2.2 The Learning Program

With this recorded information a neural network can be trained. This takes place in the learn

program, a command line tool which uses the recorded data and the parameters from the con�g
�le to train a neural network. The number of epochs to train (each epoch the training data is
presented once to the neural network), the desired error (specifying when the training should stop)
and the architecture of the neural network can be controlled.

For the neural network implementation FANN 5 (Fast Arti�cial Neural Network Library [26]), a
free open source neural network library in C, was used. It supports multilayer neural networks
and back-propagation training and is quite fast. Training and saving the neural network and also
loading and running the network in the simulation is done with FANN.
To use FANN the training examples �rst have to be converted to an appropriate �le format
containing only the information from that sensor types that should be learned now. If the neural
network should be trained with more than one recorded �le all the training examples of the �les
in a folder are combined. However, before training the neural network on this preprocessed data
the weights of the connections in the neural network should be initialised.

4.2.3 Weight Initialisation

Weight initialisation is important since it improves the learning process. If this is done reasonable
learning will be a lot faster. Thereto, random values can be chosen. This works in most cases
better than an uninitialized network, e.g. all weights set to zero. The learning is usually faster
and the behaviour improved.
For a fully connected two layer neural network exists a method that leads in general to even better
results. The Nguyen-Widrow layer initialisation function [25] sets weights for each layer so that
the active regions of the layer's units are distributed approximately evenly over all possible input
values. The main idea of this algorithm is to initialise the weights with small random values. These
are then modi�ed in order to divide the region of interest into small intervals. To make training
faster it is reasonable to initialise the weights of the �rst layer so that each node is assigned its

5Available from http://leenissen.dk/fann/ as at August 2006
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own interval at the beginning. During the network's training each hidden unit can still adjust
its interval size and location. But most of them will probably be small since the most weight
movements have already been eliminated by the Nguyen-Widrow method to set the initial weights
[28]. This leads to more stable networks and a much faster learning process.

4.2.4 Back-Propagation

The neural network is trained with the back-propagation learning algorithm [45]. This learns the
weights for a multi-layered feed-forward neural network on training examples. As inputs the sensor
information is used and as desired output the steering value representation. With this information
the back-propagation algorithm uses gradient descent to minimize an error function which is the
squared error between the network's output and the desired output provided within the training
examples [40]. The training process has already been described in more detail in section 2.1.
The chosen learning rate in
uences the convergence time of the learning process. A better way
to determine the update amount for the weights is the use of a momentum term (see [7] for
more detail). Thereby, the previous update step has in
uence on the current one. This makes
the learning process more stable and accelerates the convergence in shallow regions of the error
function. However, the momentum parameter and the learning rate are problem dependent and
work better on some problems but lead to no general improvement on others. Furthermore, they
have to be chosen before starting the learning process.

Therefore, an adaptive learning algorithms is used here. It is tried to �nd an appropriate weight
update at the beginning and this parameter is updated during the learning process. The learning-
rate is modi�ed regarding the observed behaviour of the error function. The weight-step (the
change value for the weight updates) depends not only on the learning rate but also on the
partial derivation of the error function, as explained in more detail in the next section. Thus, the
adaptivity is not determined a priori. This is an advantage of the RPROP learning algorithm [36]
which changes the size of the weight-update directly.

4.2.5 RPROP & iRprop

RPROP [36] stands for `resilent propagation' and is an e�cient learning algorithm with direct
adaptation of the weight step using local gradient information. Each weight has an individual
update-value and only this is used for the weight-update. The update-value can be changed
during the learning process regarding the weight's local sight on the error function.
The adaption rule reveals that when the partial derivative of the error function changes its sign
(which means the last update was too big and the algorithm stepped over a local minimum), the
update-value is decreased by a factor. As long as the derivative retains its sign the update-value
is slightly increased in order to accelerate the convergence in shallow regions.
The weight-update method itself uses the described update-value and follows a simple rule: If the
derivative of the error function is positive (which means an increasing error) the weight will be
decreased by the update-value. If the derivative is negative the update-value will be added.
Both update-values and weights are changed every time the whole sample set was presented once
to the neural network. This learning by epoch goes on until a prede�ned minimal error value or
a maximal number of epochs is reached.

An advantage of RPROP is that for many problems no parameters have to be chosen for optimal
or at least nearly optimal convergence time. The method uses a direct adaptation for the size
of the weight-update which does not dependent on the derivative value but only on its sign for
both learning and adaption. It can easily be implemented and e�ciently computed concerning
both time and storage. The learning does not take place mainly in some layers or units but is
spread equally all over the entire neural network. RPROP is robust against the choice of its initial
parameters. The number of learning steps is reduced signi�cantly which leads to a much better
convergence time.
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Here iRprop [15], a variation of RPROP, is used to train the neural network. This algorithm is
only slightly modi�ed in contrast to the one described above. The adjustment of the step-size
(the update-value) is still the same but the weight-update works di�erent. The derivative will be
set to zero if the sign of the partial derivative of the error function changes. This ensures that
in the next step the weight is modi�ed with the reduced step-size but with the current gradient
direction.
These variations lead to a signi�cant improvement of learning speed without increasing the com-
plexity of the algorithm. Setting the derivative to zero strongly in
uences the learning speed. The
iRprop learning algorithm performs better and converges faster than the original algorithm.

With this algorithm the weights of the neural network were trained on recorded training examples.
The trained network was saved for usage in the simulation.

With the learn program various neural networks for di�erent input sizes and with varying network
architectures (number of units in the hidden layer etc.) can be learned. It is also possible to
train two networks for processing stereo camera information, each network for one camera. Since
all these parameters are read in from the con�g �le no recompiling is necessary when changing
parameters.

Figure 4.6: The learn program

Figure 4.6 shows an execution of the learn program. In this example �rst the two training
data �les in the speci�ed directory are converted to the FANN format and combined in one �le
(fanninput.fan). Afterwards, the neural network is created in consideration of the parameters
like the number of inputs, hidden and output units speci�ed in the con�g �le. Then the weights
of the network are initialised with the Nguyen-Widrow layer initialisation function and trained on
the created �le fanninput.fan. This is realised with the iRprop training algorithm as explained
above. The maximal number of epochs is set to 10,000 and the desired error is 0.005. Each 1000
epochs the current error is reported. Here, after 3432 epochs this error is achieved and the learning
process stops. The neural network with the trained weights is saved to a �le (brain.txt) to be
used in the simulation.
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4.3 The Simulation

In the simulation the pre-trained neural network is loaded to autonomously control the agent for
obstacle avoidance or road following. The network which should be used can be de�ned in the
con�g �le. This neural network is loaded in the Robot class and used to determine the agent's
steering direction.

The input for the neural network is the current view of the agent which is reduced and converted
to greyscale. These values are written to an array each frame by the class AgentView. The scene
is rendered from the agent's point of view in sub-windows depending on the currently used sensors
as explained in section 4.2. The brightness of the pixels is stored in an array. The Robot class calls
a FANN method which gives these input values to the neural network and stores the output in an
array. There are di�erent possibilities of interpreting the neural network's output. Each output
unit represents a steering direction and for each a real value between zero and one is presented.
To control the agent a single steering value between zero and one is needed. One possibility is to
take just the unit with the maximal activation as steering direction. This maximum can easily
be found and can be fast computed. Another possibility is to use the weighted average over all
output units and a further to take the mean of the best �tting Gaussian curve of activation over
the output units.
All these techniques were implemented and tested. The method used here is to take the mean of
the best �tting Gaussian curve near the maximal output unit as the next steering direction. The
reasons therefore are given when the results of all methods are compared and discussed in section
5.1.4.

It is also possible to use two neural networks to process the two input images of the stereo cameras
and to combine their output values afterwards. Di�erent ways of combining the outputs of these
two networks to one steering direction are possible, e.g. to take the maximal value of both outputs
and re�ne the steering direction with the best �tting Gaussian curve over both outputs near this
maximum.

After having determined the steering direction the desired movement is checked for collisions with
the environment. Here ColDet6, a free 3D collision detection library, was used.

Figure 4.7: Simulation for obstacle avoidance... Figure 4.8: ... and road following

The neural network controls the agent autonomously. The path taken by the agent so far can be
drawn on the ground (see �gures 4.7 and 4.8). This helps to evaluate the neural network's driving
ability. For obstacle avoidance it can be determined how well the agent behaves with di�erent
sensors, varying view sizes etc. Furthermore, it can be seen how smooth the curves are, how early
the agent starts to avoid obstacles and so on. While following a road it can be measured how often
the agent leaves the road, if it swerves a lot and how far away it is from the centre of the road.

6Available from http://coldet.sourceforge.net/ as at August 2006
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In some cases it is helpful to analyse a trained neural network to gain some further information
about the learned features. To visualise the network a weight graph can be created with fannEx-
plorer7, a graphical environment for training, testing and analysing neural networks. Figure 4.9
shows the network topology and the weight graph of a trained fully connected two layer neural
network in fannExplorer.

Figure 4.9: Analysing neural networks with fannExplorer

7Available from http://www.geocities.com/freegoldbar/indexExplorer.html as at September 2006

28



Chapter 5

Results

This section summarises the results obtained within the described investigations for both obstacle
avoidance (section 5.1) and road following (section 5.2). The use of neural networks is shown
in a virtual environment. Obstacle avoidance worked with di�erent neural networks and input
information and the agent was able to follow the road as well. In some cases fannExplorer was
used to analyse the trained neural networks. Useful information for applications in both real world
and virtual environments was gained. The results are presented in the following sections.

5.1 Obstacle Avoidance

With the help of a neural network it was possible to avoid obstacles. The usage of di�erent sensor
types for this task as well as di�erent view sizes and varied network architectures was investigated.
Furthermore it was tested to combine di�erent sensor types and stereo information.

Therefore, a simple world with varied obstacles in a

Figure 5.1: Virtual environment

bounded area was created (see �gure 5.1) to gather train-
ing data and to simulate the trained network in. Di�er-
ent scenes were used to train and to test the neural net-
work in. It was shown that approximately four minutes
of training are enough to learn how to avoid obstacles.

The neural network learned features that are important
for obstacle avoidance, e.g. that objects in the distance
are not as important as nearer ones. Therefore, the
agent only had the information it saw from its own point
of view and no map or other representation of its envi-
ronment that would have allowed to compute an opti-
mal solution. The agent was not told any explicit rules.
They would be di�cult to name since when creating
such rules one has to take many circumstances in ac-
count. Instead it only learned from the training examples without being told what to do exactly,
and tried to imitate the human driver's behaviour. For example, if the driver turned very early
when driving towards an obstacle the trained network would do that as well and the other way
around. If the driver behaved very stupid or did nothing the neural network would imitate this
behaviour as well.

While recording training data for the neural network the human driver has to take care of the
equilibrium between steering to the right and to the left since if the training data is biased to one
direction the network's driving will be as well.
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Figure 5.2: Obstacle avoidance on two di�erent maps in a virtual environment

Avoiding obstacles worked not only on the map the agent had been trained on but also in a new
environment (see �gure 5.2). This shows that the neural network really has learned to avoid
obstacles and not only to do exactly what the human driver did on that particular map. This
a�rms that neural network driving is good especially for arbitrary and unseen environments
and therefore a useful application in robotics (e.g. intelligent transport systems) and virtual
environments like there are in computer games, for example.

The results with di�erent sensor types and for combining di�erent sensors are presented in sections
5.1.1 and 5.1.2. Diverse neural network architectures and other variations of the learning process
are explained in sections 5.1.3 and 5.1.4.

5.1.1 Di�erent Sensor Types

For obstacle avoidance di�erent sensor types were tested. With the chosen sensor input the training
examples were recorded and the trained neural network was used to process the steering direction
from them.
A single vision camera, stereo cameras, depth information as from a laser range �nder and linear
cameras were tested with varying view sizes.

With a single vision camera obstacle avoidance worked

Figure 5.3: Di�erent sensor types

quite well. The agent reacted when driving towards an
obstacle with turning, avoided so the obstacle and passed.
When driving towards a wall or corner it turned to drive
along the wall or away from it again. This worked well even
when driving fast (see table 5.2).

Even higher speeds were possible with depth information

(see �gure 5.3, top left). With this input obstacle avoidance
worked best as the agent drove very solidly also at high
speed (see table 5.2). Depth information like from a laser
range �nder or the depth bu�er is very useful for obstacle
avoidance.

With stereo vision cameras (see �gure 5.3, bottom) the results were not better than with a
single vision camera. Obstacle avoidance was possible but it could have been more stable (see
table 5.2). Sometimes, the agent seemed to be unsure which direction to take when avoiding an
obstacle especially when driving towards a wall.
Probably, for two stereo cameras more learning is required to gain some additional information out
of the two images since the network is bigger and more complicated. The network has not learned
that there are two similar images, which input units belong to which sensor image, and which of
the pixels in one image corresponds to which pixel in the other image. This would be necessary to
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get depth information from the two images which the neural network was not able to. Perhaps,
a preprocessing of the images is required to use this information but this would be di�cult and
computational expensive and it was not goal of these investigations. Another reason for these
problems could be that the resolution of the input images was not high enough since images with
very high resolution and at best also textures are needed for gathering depth information from
images [5].
To combine the inputs of stereo images it was also tried to use two neural networks, one for each
camera, and to consolidate the outputs of both. This process is described in more detail in section
5.1.2.

Linear cameras are cameras with only one line as input (see �gure 5.3, top right). The line with
a high of one third of the vision camera was used since in this line obstacles appear in a reasonable
distance to react on them. This one line already contains enough information to avoid obstacles.
With a single linear camera obstacle avoidance already worked with a view width of three pixels,
but not very well. Much better results were obtained with a width of 10 pixels and more, the
more the better. Table 5.1 shows the collisions with the environment that occurred in a certain
time while driving with a linear camera as sensor input and di�erent camera widths with the same
high speed for each width.

camera width 3 6 16 24 30
collisions 10 9 7 5 4

Table 5.1: Collisions with a linear camera
and di�erent camera widths

Furthermore, driving with a linear camera led to more immediate turns since the sight of such a
camera is obviously not that far. Because of this limited view the agent only driving with linear
camera information had problems when it was too close to an obstacle, especially when this was
a wall. Nevertheless, it was possible to avoid obstacles with only that one line of information.
And of course the learning was faster since there were only few input units. However, it was only
slightly faster.

With stereo linear cameras the results were quite similar (see table 5.2). For two linear cameras
the view width even has to be bigger for successful obstacle avoidance. It only worked above a
minimal width, e.g. not with 16 or fewer pixels but with 20 or more. With too few pixels the
agent was sometimes not sure which direction to take when an obstacle or especially when a wall
was straight ahead. Furthermore the turns were not sharp which led to slower possible speeds.
In summary stereo linear cameras were not as good as a single linear camera. Two linear camera
inputs seem to contradict each other. The agent was not able to learn features from stereo vision,
the second linear camera only disturbed the steering. Nevertheless, obstacle avoidance was possible
with two linear cameras as well.

Recapitulating, linear cameras already provide enough information to avoid obstacles. It works
well above a certain minimal image width. The agent does not behave as cleverly as with the
whole image as it has much less information. Such a simple network (with that few input units)
can already learn obstacle avoidance. And of course learning is much faster since there are much
less input units.

Altogether, depth information like from a laser range �nder worked best for obstacle avoidance.
This information is very useful for that task. With a vision camera it worked quite well, too, but
a linear camera is already enough to avoid obstacles properly above a necessary camera width.
The stereo information did not lead to better results since the neural networks did not seem to be
able of gaining new information out of the stereo images.

Table 5.2 shows the collisions with obstacles that occurred with di�erent sensor types in a certain
time. For each sensor the driving speed was the same high value. The number of collisions can
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be seen as a measurement of stability and obstacle avoidance quality of a neural network. That
there occur so many collisions in some cases originates from the high driving speed.

sensor n view size 3� 2 24� 18
single camera 2 2

depth information 0 1
stereo cameras 3 2
linear camera 10 4

linear stereo camera 9 5
depth info + single cam. 4 0
depth info + linear cam. 4 3

Table 5.2: Collisions with di�erent sensors

5.1.2 Combining Information

As described above neural networks had problems to combine stereo information. They did not
learn to get depth information from stereo images like a human would do. Instead of providing
advantages the network was more complicated, needed longer time to learn and did not lead to
better results. The neural network could not determine which input was from which picture.
It was tried to go about this problem with two neural networks for stereo cameras, one for each
camera image. The networks were trained with only one of the stereo images each. Afterwards,
they were used to process the same stereo image (left or right, respectively) and to compute a
steering direction from that. The two outputs were combined to a single steering value either by
taking the maximum of both network's outputs or by taking the average between the maximum
of each networks or by other methods. However, in all cases the agent was biased to drive to
one direction or mainly straight ahead in the simulation. The result of using stereo cameras for
obstacle avoidance was not satisfying.
With two linear cameras the result was quite similar. The agent was mostly biased to one direction
and made many mistakes, e.g. driving against a wall or an obstacle.
Altogether, this method did not work very well, at least not better than one neural network for
both inputs or only a single camera. Perhaps the results would be better with a pre-processing
of the stereo images that extracts the depth information from them. However, this is not part of
this project. Thus, the method using two neural networks for stereo images was not investigated
any further.

Another way to combine stereo information instead of using a fully connected neural network
might be to use a neural network only providing a carefully selected subset of connections.
Thus, a network in which the inputs of each stereo image are connected to only one half of the
hidden units can be created. Until this �rst processing of each image the stereo information is not
combined in the next layer which is fully connected to the �rst hidden layer. With this method,
the two stereo images can be reduced to the activation of much less units and can be combined
afterwards. However, the used neural network library1 does not allow such kind of in
uence to
the neural network architecture. Therefore, investigating variations like this is future work.

To obtain better driving results in the purpose of obstacle avoidance combining di�erent sen-

sors was tried. With the input from two sensors more information is available to rely on in order
to avoid obstacles. This was tried with the combination of a normal camera and depth information
and with the combination of a linear camera and depth information. Combining linear cameras
with normal cameras makes no sense since the normal camera already contains the line of infor-
mation the linear camera provides. Neither does the combination of depth information and stereo
images make sense since depth information with normal cameras were tested anyway and stereo

1FANN, available from http://leenissen.dk/fann/
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cameras were shown to work no better than a single camera (see section 5.1.1).
Combining the normal camera with the depth information resulted in a slightly better driving
behaviour than with each information alone when the view size was big enough. The analysis
of the network showed that the agent relies on both inputs and not only on one, e.g. only on
the depth information as one could guess since depth information worked best for road following.
With depth information and a linear camera the agent behaved better than with only the linear
camera. Again, the network analysis showed that both inputs were used.

Figure 5.4: Weight graph of neural network trained on depth information and a linear camera

Figure 5.4 shows the weight graph of a neural network trained on both depth information and
the input of a linear camera. The network consists of nine input units (left), �ve hidden units
(middle) and �ve output units (right). Blue lines represent positive weights, red ones negative
weights. The thicker the lines the stronger the weights. The lower six points on the left are the
input units for the depth information, the three above those of the linear camera. Obviously, not
only information of one sensor is used to determine the steering direction since for both sensor
types strong weights exist. The weight graph was created with fannExplorer.

Altogether, it was shown that two neural networks lead to no better result when processing stereo
images but combining di�erent sensor types with a neural network can result in better driving
behaviour than with each of the sensors alone.

5.1.3 Neural Network Architectures

While testing the neural networks it turned out that the quality of the trained network di�ered
when training with the same data and the same parameters again. Especially for big view sizes
the networks have been sometimes very good and sometimes quite bad with the same training.
This became much better when initialisation of the network weights was used. With this
technique not only the results were better and much more stable but also the learning was faster.
�rst random values were used to initialise the weights. With initial weights between -10 and 10 it
worked well, better than with other tested values, e.g. between -100 and 100 or between -1 and 1.
Even better results were obtained with the Nguyen-Widrow layer initialisation function [25]. This
worked very well and resulted in stable networks and faster learning than without weight initiali-
sation or with taking random weights.
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Additionally, di�erent network topologies were tried. The neural network's architecture was
varied, especially the hidden layer. More and less hidden units have been tested as well as no
hidden layer at all.
Normally, approximately four to seven hidden units were used, depending on the number of output
units. Using only three hidden units there was not much di�erence to using four or �ve hidden
units. Using only one hidden unit obstacle avoidance still worked, but not as well as with more
hidden units. The turns were not that sharp and so the speed had to be slower. If there is only one
hidden unit this unit will represent the steering direction. Thus, only one real value representing
the steering direction is enough, but using more output units allows smoother driving and more
accurate learning. More hidden units than usual (for example 15 or more) resulted in not much
di�erence regarding driving but the learning process took longer.
Table 5.3 shows the training times for 10,000 epochs (see section 4.2.5) for di�erent number of
hidden units. Values for a neural network with no hidden layer and for networks with up to 15
hidden units are given. The neural networks were trained on depth information with a three times
two sensor view (i.e. six input units) and �ve output units on a 3.40GHz PC).

hidden units 15 10 7 5 3 1 0
learning time 14.8s 9.7s 8.9s 8.0s 6.9s 5.4s 5.1s

Table 5.3: Training times for di�erent number of hidden units

With no hidden layer at all obstacle avoidance

Figure 5.5: Weight graph of neural network
with no hidden layer for depth information

worked well for small view sizes. The steering
direction depends directly on the input val-
ues. However, for bigger view sizes it did not
work very well, e.g. with a width of six pixels
the driving was good, with 16 it was not that
good anymore and with a width of 30 pixels
obstacle avoidance did not work at all without
any hidden layer. Thus, using no hidden layer
is only appropriate for very small neural net-
works or rather few input units.
Figure 5.5 shows the weight graph of a neural
network trained on depth information with a
view size of three times two pixels and no hid-
den layer. The units on the left are the input units, those on the right the output units. The
neural network relies mainly on the lower line of pixels (the units on the left bottom) since ob-
stacles occurring there are closer and more likely to react on them. Obstacles on the right side
mainly activate output units representing steering directions to the left and vice versa.

Another way to vary the neural network topology is to use a network consisting only of a carefully
selected subset of connections instead of a fully connected one. Thus, two di�erent sensor
inputs cannot be combined until the second layer, for example, or features can be extracted by �rst
combining pixels next to each other or on certain positions. However, FANN does not support
such a kind of in
uence on the neural network architecture. Therefore, those investigations are
future work.

Finally, the connection rate of the neural network was varied. The connection rate is the
percentage of connections which exist between each layer and the next one in comparison to all
possible connections between these layers. Normally, the connection rate was set to one which
means that the network is fully connected, thus every unit is connected to every unit in the
following layer. If the connection rate is less than one (it has to be above zero) learning is faster
since less weights need to be learned. It was investigated how much the connection rate can be
reduced without loosing too much quality.
Di�erent connection rates were tested; with a connection rate of 1.0 obstacle avoidance worked
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well as described above. Using a connection rate of 0.5 it still worked but the curves were longer
and not as sharp as before. Nevertheless, the result was satisfactory. Testing this connection
rate with a very small view size (e.g. three times two pixels) the result was not as good as before
but remained acceptably. With a connection rate of 0.2 there were still observable tries to avoid
obstacles but the network was not very robust. The agent made many mistakes and the driving
behaviour was not satisfactory anymore. Using only a small view size nearly no turning and
therefore no obstacle avoidance at all could be observed. With 0.1 as connection rate nearly no
obstacle avoidance was observable but the agent changed the direction only slightly which was not
enough to avoid all obstacles. Some examples with neural networks using a sensor view of three
times two pixels, depth information, and di�erent connection rates is shown in �gure 5.6. Figure
5.7 shows the weight graph of a neural network with a connection rate of 0.2. Only 20% of the
possible connections between the units exist.

Figure 5.6: Driving behaviour of neural networks with a connection rate of 1.0, 0.5, and 0.2,
respectively (from left to right)

The training times for 5,000 epochs (see sec-

Figure 5.7: Weight graph of neural network
with a connection rate of 0.2

tion 4.2.5) for the di�erent connection rates
are given in table 5.4 (here a �ve times four
sensor view (i.e. 20 input units) and four hid-
den units were used on a 3.40GHz PC).

connection rate training time
1.0 2914 ms
0.5 2473 ms
0.2 2055 ms

Table 5.4: Training times for di�erent
connection rates

Altogether, 50% of the connections can be enough for successful obstacle avoidance if the network
or rather the view size is big enough. Below that value the driving behaviour is not satisfactory
anymore, especially for small networks and input sizes. Therefore, a connection rate of 1.0 is most
reasonable here because on the one hand the gain of time during the network's training by using
a lower connection rate is rather small and not necessary and on the other hand a connection rate
of 1.0 works better and leads to more reliable networks.

5.1.4 Further Variations

Other tested variations include di�erent view sizes for neural network input, the use of the last
steering output as further input and di�erent methods to compute the steering direction out of
the activation of the network's output units.
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The view size (the size of the view in pixels which a sensor produces) was varied while testing to
investigate which di�erences occur in the driving behaviour and which minimum of pixels is needed
to avoid obstacles. It was shown that only a few pixels are already enough. With six pixels of
depth information (a three times two pixels view) very stable obstacle avoidance was possible and
since the resulting network was very small learning was quite fast. Using a single vision camera
with the same view size worked as well but not as solidly as with the depth information. For linear
cameras good results were obtained with a width of ten pixels and more. It was also possible with
three pixels but not very stable as described earlier. With more pixels per image (up to 30 times
24 were tested here) the steering became more accurate until a threshold was reached above which
there were no changes anymore. However, as explained, a very small amount of pixels is already
enough to avoid obstacles. The neural network learned features with such little information from
the sensor image so that a human would have di�culties to react on in order to avoid obstacles.

The last steering value of the neural network was used as further input to give the network
information about the current turning direction and amount of the vehicle. This could be helpful
to avoid driving into a corner where the wall on the left and the wall on the right in
uence the
agent to drive to the right or to the left, respectively. Without the information of the last steering
output the agent sometimes was likely to drive directly in the corner and against the wall while
alternating from the left to the right and vice versa. If the agent relied on the last steering output
this alternation could be avoided and the agent would be able to decide one driving direction and
to avoid the corner.
However, when the last steering direction was used as further input for the neural network the
agent drove in circles and mostly did not avoid obstacles well. That seemed to be the case because
the neural network learned to rely mainly on the last steering but hardly on the sensor information.
Especially with no hidden layer the agent drove in a circle when it started to turn the �rst time.
It avoided the �rst obstacle but kept turning to the same side afterwards. This was not much
better when hidden units were used. Using weight initialisation improved the behaviour a bit but
the agent was still not avoiding obstacles but driving in circles. With the last steering value the
learning converged faster and the errors were smaller which is also an indication for the supposition
that the neural network learned mainly to rely on the last steering value.

Figure 5.8: Networks using the last steering value (�ve and zero hidden units)

To verify this assumption the trained neural network was analysed with fannExplorer. In �gure
5.8 the weight graphs of trained networks for depth information with a view size of �ve times four
pixels using the last steering value as further input with �ve and without hidden units, respectively,
is shown. It is obvious that the input unit with the last steering input (the unit at the very left
bottom) has much higher absolute weights than the other inputs (the units on the left). The
current steering direction depended mainly on the last steering value and not on the sensor input.
Therefore, the last steering value seemed not to be useful and was not used here.

While gathering training data for the neural network the human driver had to take care of
the equilibrium between steering to the right and steering to the left. When there was a strong
disequilibrium between the two directions the agent was biased as well and was more likely to
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drive to one direction than to the other. This could be corrected by recording more training data
where the driver steered more often to the other direction and then training the neural network
again on both the old and the new data.

Di�erent output interpretations of the neural network were tested.

Figure 5.9:
Obstacle avoidance

Since the neural network has several units of which each has a certain ac-
tivation as output it is not trivial to get one steering direction out of this
information. During the training the desired output was set to a hill of acti-
vation representing a Gaussian curve around the current steering direction.
This was done to allow more accurate steering and more diverse driving be-
haviour than with only one output unit representing the driving direction.
To use the neural network's output activation to obtain one steering di-
rection di�erent methods were tested. First, simply that steering direction
represented by the output unit with the maximal activation was used as cur-
rent steering direction. This worked very well for the purpose of obstacle
avoidance but the agent's driving was not smooth. It drove straight ahead
until an obstacle was in the way and then turned with a discrete radius
before suddenly driving straight again. This did not look very naturally.
To get a smoother driving behaviour it was tried to use the weighted average
over the output units and the best �tting Gaussian curve, too. Both did
not result in good obstacle avoidance since the curves were not sharp and the agent drove nearly
straight ahead most of the time. A possible reason for that is given in the following; since all units
have a certain degree of activation the weighted average of them is very often near the centre.
The same will hold for the best �tting Gaussian curve if the activation is not already formed as a
Gaussian curve. Especially when it was unclear to which direction the agent should drive in order
to avoid an obstacle both weighted average and best �tting Gaussian curve resulted in a steering
direction straight ahead. Furthermore, the calculation of the best �tting Gaussian curve over all
output units is computational expensive.
The best results were obtained by using the mean of the best �tting Gaussian curve near the
maximal value as representation for the next steering direction. With this method the agent drove
smoother than with only the maximum as steering direction since this method avoided the dis-
advantages of the weighted average and the best �tting Gaussian curve over all output units as
described above. The agent drove real curves, was able to avoid obstacles very well, and steered
very smoothly. Smaller curves were possible since the steering was not discrete anymore but con-
tinuous now. Additionally, the calculation is quite fast.
It has been shown that with this method the activation of several output units can be translated
into a single steering direction e�ectively and satisfyingly for the purpose of obstacle avoidance.
It was quick to compute, worked well and resulted in a really smooth driving behaviour.
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5.2 Road Following

In this section the results of using an neural network for road following are described. The goal
was to train the neural network to follow the road as accurately as possible, i.e. stay in the centre
of the road or a lane. The agent should turn when the road is curved and drive straight when
there are no curves on the road. Furthermore, the neural network should be able to correct from
swerving if the agent left the road.

Therefore, a map with a curved road was used to train and to test the

Figure 5.10: Road
following

neural network. The agent had no prior information about the road
geometry like a map or another description. It had only the information
it saw from its point of view to steer in order to stay on the road. Thus,
a human or a real robot with a vision camera trying to follow the
road would be in the same situation. Especially in the �eld of virtual
environments other techniques like to compute optimal steering values
from a road geometry representation in a map for example are possible.
However, using only the visible information results in a more natural
behaviour. Therefore, deploying neural networks for road following is
appropriate to both virtual environments such as in computer games
and the real world.

A neural network trained on the data recorded by a human driver
following the road was able to follow the road. After having trained
the neural network the agent stayed mostly on the road and therefore
followed it. The agent imitated the human's driving behaviour, e.g. drove in the middle of the
road when the driver did so and mainly on one lane when the driver did. Moreover, the agent
could follow curved roads (see �gure 5.11). Thereby, the white stripes in the middle of the road
did not seem to be important since the agent followed the road regardless the presence of such
white stripes.
However, the driving behaviour was not smooth, the agent was swerving from the centre of the
road and sometimes even left the road (see �gure 5.12).

Figure 5.11: The agent following the road Figure 5.12: The agent leaving the road

This unstable driving behaviour was improved by the method to transform the images and to
compute the appropriate steering direction for those situations to get more diversity in the training
data as described in section 4.2.1. With the resultant additional information the neural network
was able to learn how to correct mistakes. Hence, when leaving the road it knew how to drive
back to the road. Then admittedly the agent did not drive only on the lane of the road it was
trained on but on the whole road. Furthermore, the agent still swerved on the road but now with
higher amplitude over the whole road. Both may originate from the transformation of the images
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adding information to the training data in which the road is seen from di�erent position and
angles. It is possible that the parameters for the calculation of the appropriate steering direction
to the transformed images, e.g. the look-ahead distance, were not chosen perfectly adequate.
Additionally, while recording data the performance was decreased radically with this method
since instead of one image 17 images had to be rendered.

Altogether, the agent learned to follow the road only using the information it could see from its
own point of view. To improve its driving behaviour the method to transform the images is two
edged: on the one hand, the neural network can be shown how to correct mistakes and how to
drive back to the centre of the road. On the other hand, driving while recording data is a lot
slower and the driving is not much smoother afterwards.

Nevertheless, neural networks have been shown to be useful for road following in a virtual en-
vironment, especially if a natural driving behaviour is desired. Such a system can be used in
computer games, for example. Autonomous agents can be controlled simply without telling them
any complex rules or giving them a detailed representation of their environment like a map. An
agent can learn how to behave just from the visual information it gets from its point of view.
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Chapter 6

Conclusion

The purpose of this project was to investigate the use of arti�cial neural networks for autonomous
driving. Therefore, the processing of inputs from various sensor types like a single camera, stereo
vision, depth information (like that from a laser range �nder) and linear cameras was tested for
obstacle avoidance and road following. For that purpose a human driver can gather training
data in a virtual environment. This recorded data is used to train a neural network which then
generates the steering values for an autonomous mobile agent as output.

It was shown that neural networks are an appropriate method to gain a steering direction out of
sensor information in order to drive a vehicle and to avoid obstacles or to follow the road.

For the purpose of obstacle avoidance, depth information like from a laser range �nder is most
useful. A vision camera also works very well, and a linear camera gives enough information for
that task as long as the view size is above a certain threshold. Stereo cameras do not lead to
better results since they require more training and the emerging network is more complicated.
Combining di�erent sensors can help to improve the driving quality. In contrast, using two neural
networks to process stereo images results in a defective driving behaviour.
Initialisation of the neural network's weights is essential for an accurately driving agent. Indeed,
the connection rate can be reduced to 50% in most cases neither providing any disadvantage nor a
big advantage. Furthermore, it was shown that only a very small view size is needed to avoid ob-
stacles. The representation of the steering direction with several output units works well. Thereby,
using the best �tting Gaussian curve near the maximal activated unit to get the steering direction
out of the activation of the output units is the most successful method. It permits smooth and
stable obstacle avoidance.
Neural networks are particularly useful for obstacle avoidance. Especially the results concerning
the ability of an autonomous agent to avoid obstacles with di�erent sensor information can be
helpful for both agents in virtual environments and robots in the real world. Combining informa-
tion from di�erent sensor types with neural networks can be useful for obstacle avoidance and can
improve the driving behaviour. The results about the output interpretation are interesting and
the chosen Gaussian curve was shown to work very well.

It was shown that a neural network controlled agent is capable of road following even after a very
short time of training. The agent can be trained to follow one lane or the whole road. In the latter
case it was proven that the agent does not rely on the white stripes in the middle of the road.
Nevertheless, the agent is swerving while following the road and sometimes even leaves it. Using
image transformations the neural network is presented training examples that show how to correct
mistakes. Therefore, the human driver does not have to leave the centre of the road during
the training since the images are shifted and rotated and the appropriate steering direction is
computed. However, this makes the recording process computational expensive. With this method
the agent drives on the whole road and is still swerving but not so likely to leave the road anymore.
Thus, the technique to transform the images helps to follow the road.
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These investigations proved that neural networks are useful means to control autonomous mobile
agents. There are various possible applications. In a virtual environment neural networks can
help to achieve a more realistic behaviour of driving agents. For example, the computer controlled
opponents in a computer game could be controlled by a neural network. Thus, their behaviour
becomes more natural since they would only see what a human driver would see from their point
of view. Moreover, no complex rule based algorithms are necessary to control the agents' steering.
The obstacle avoidance and road following abilities can also be useful for real autonomous driving
agents as they exist in the industrial �eld, e.g. intelligent transport systems in factories or repos-
itories. Furthermore, neural networks can help to improve driving control systems that warn the
driver when he is about to leave the road. Thereby, di�erent sensor types are deployed and neural
networks were shown to be capable of processing diverse information.

Altogether, neural networks are an appropriate method to teach autonomous agents obstacle
avoidance and road following. They are capable of combining di�erent sensor information and
of producing an adequate steering output. The results of this project can help to optimise the
sensor types, the view sizes, the neural network topology, the output interpretation and further
parameters for autonomous neural network driving tasks.
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Chapter 7

Future Work

Even though many sensor types were already tested in the investigations of this project, more
di�erent sensors like infrared distance sensors or sensor systems with structured light could be
tested for their use in obstacle avoidance. For road following di�erent road types like roads with
several lanes can be used to train a neural network on. To avoid a biased training set the mirrored
image and the appropriate steering direction for each image could be used as well.

Moreover, the environment could be more complex. Although a 
at world was su�cient for the
investigations of this project the in
uence of an environment with hills would be interesting.
Textures could be added to the world as well as some objects like trees. To gain a more realistic
look the use of a game engine (e.g. Ogre or Irrlicht) instead of OpenGL could help.

Furthermore, other network topologies could be tested, especially to combine the stereo informa-
tion. Further variations to the network topologies than those described earlier were not tested in
this project since the used neural network framework does not allow the desired kind of in
uence
on the neural network topology. However, with another framework neural networks with only a
carefully selected subset of connections existing can be possible. Therewith, each stereo image
can be connected to one half of the hidden units and the stereo information is split up to the
second hidden layer, for example. It could be tested to combine the two images, similarly to how
it happens in the human's eyes and brain. It could be possible to extract some features �rst
and combine this information afterwards in order to get an appropriate steering direction for the
current situation. Therefore, the pixels near each other or those on one line can be combined �rst
to get some further knowledge about the image on a higher level than just the pixel values. This
information can be used additionally to train a neural network.

Moreover, a neural network could be used to control not only the steering direction but also the
velocity of a virtual vehicle. Another idea is to use two networks to control an agent, one for the
steering direction and one for the velocity.

It is also possible to test the driving behaviour of multiple agents. Therefore, the views of the
agents should be rendered o�-screen. Several agents could be trained to react on each other, to
avoid each other or to follow each other.

Another improvement for the system could be the use of a steering wheel as control input for
the human driver. Therewith, the steering values recorded in the training data could be more
accurate. It could be investigated whether this leads to a better obstacle avoidance or road
following behaviour.
Additionally, a further idea would be to use especially the road following for a computer racing
game. However, for that purpose several adjustments to the existing system would be necessary.
Furthermore, a neural network could be trained to detect and to traverse intersections.
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