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ABSTRACT 

 

In this paper, several nerve fiber tracking methods which are used to visualize the 

connectivity of brain regions in vivo are analyzed using noise-affected synthetic diffusion 

tensor fields with crossing tracts geometry. The simulated DTI dataset is constructed 

using B-Spline curves wrapped with a tube, which represents a bundle of never fiber 

tracts. Particularly, we compare three fiber tractography methods, Streamlines, 

Tensorlines, and Tensor deflection (TEND). The analysis of the simulations revealed that 

when estimating the crossing trajectories of white matter tracts in human brain, 

Streamlines simulation completely deviate from the ideal pathway, whereas Tensorlines 

and TEND methods keep a part of integrated tracts inside the ideal pathway, and are 

suitable to be used to simulate the tracts of a diffusion tensor field with crossing, 

branching, merging and brunching tracts geometries. 
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INTRODUCTION 

Diffusion tensor image measures diffusion properties of water inside living 

fibrous tissues such as nerves, muscles, ligaments, tendons, etc. (Basser, Pajevic et al. 

2000). The diffusion tensor defines the directions of highest and lowest diffusion and 

the diffusion coefficients in these directions of water in the living tissues. The 

directional information of water diffusion in the brain can estimate the structure and 

the orientation of the never fiber tracts as water tends to diffuse within white matter 

along the axonal fiber direction in brain (Figure 1).  

Figure 1: The basic structure of a nerve cell [1]. 

 

Nerve fiber tractography using DTI is a promising medical research tool for 

studying and visualizing the nerve fiber tracts in vivo. Streamline algorithm can be 

used to propagate the nerve fiber trajectories from a vector field which is computed 

from the diffusion tensor field. It uses only the tensor major diffusion direction to 

estimate the fiber direction, hence it fails to accurately follow the ideal pathways 

when it meets the degenerated points as on such points the there are no particular 

diffusion directions. To remedy such fault, the Tensorlines algorithm (Weinstein, 

Kindlmann et al. 1999) incorporates information about the nearby orientation of the 

local tensor to propagate stable tracts, and the Tensor Deflection algorithm (TEND) 
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(Lazar, Weinstein et al. 2003) uses the entire diffusion tensor information to deflect 

the estimated fiber trajectory.   

The three tractography methods, Streamlines, Tensorlines, and Tensor Deflection 

were implemented in the project. To compare and analyze the three tractography 

methods, synthetic diffusion tensor fields with crossing tracts are constructed. The 

tracts simulated by the methods are compared with the ideal pathways of the synthetic 

tensor fields that are well known in advance. To make the dataset more realistic, 

Complex  Gaussian normal noises with different levels of SNR are added to the real 

and imaginary channels of the ideal signal for every voxel in the tensor fields (Skare, 

Li et al. 2000; Jonasson, Hagmann et al. 2003).     
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DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING 

The Diffusion tensor T is a symmetric second-order tensor and is presented by a 

3x3 symmetric, semi-positive definite matrix only using 6 independent elements 
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The six independent elements are determined from a set of diffusion weighted 

signals. After acquisition ofT , the three principal diffusivities (eigenvalues) known as 

321 ,, λλλ  and diffusion directions (eigenvectors) known as  can be calculated 

from the tensorT  as the eigenvectors and the eigenvalues fulfill the equator Eq. [2] 

(Young 1993). 
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DTI data acquisition 

A diffusion tensor image is estimated from a series of diffusion weighted images 

that are acquired with applied different diffusion weighted gradient direction vectors. 

Two commonly used DTI schemes employ 6 or 7 diffusion weighted gradient 

directions. The relationship of the diffusion weighted (DW) pixel intensity , the 

tensor T  and DW gradient vector is described by the equation Eq. [3] (Papadakis, 

Xing et al. 1999).  

S

)exp(0 d
T
d GTBGSS ••−=       Equation 3 

where is the baseline pixel intensity with the DW gradients are set to zero; is 

the unit vector describing the DW gradient direction; 

0S dG

B is called the b-factor, which 

does not rely on DW gradient direction at all.  and0S B  are usually constants for a 

tensor field.  

We look at the details of the matrix production of . d
T
d GTG ••
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Defining the six-dimensional (6D) vectors  
 

( )dzdydzdxdxdxdzdydx GGGGGGGGGg 222222= ,  

( )Tyzxzxyzzyyxx DDDDDDt = ,  
 
as a result,  the Eq.[3] can be rewritten to )exp(0 tBgSS •−= , then we have 

)ln(1 0

S
S

B
tg =•        Equation 4 

 

Provided the baseline signal , b-factor0S B , the diffusion weighted image pixel 

intensity and the DW gradient direction vectors, then Eq.[4] is a linear function. By 

solving it, the six unknown elements of the tensor are determined. Actually, the 

S

tg • in the Eq. [4] is called the apparent diffusion coefficients (ADC) (Skare, Li et al. 

2000). 

 

DTI data processing 

A general tensor is uniquely defined in terms of its three principal diffusivities 

(eigenvalues: 321 ,, λλλ ) and three corresponding diffusion directions (eigenvectors:  

) (Young 1993; Jonasson, Bresson et al. 2005). For a diffusion tensor field, 321 ,, eee
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the tensor at any point is a 3x3 symmetric, semi-positive definite matrix. Its three 

eigenvalues are all real and the three eigenvectors are mutually orthogonal (Young 

1993). The Eq. [5] is used to construct a diffusion tensor field using three real 

eigenvalues and three orthogonal eigenvectors.  
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where 321 λλλ ≥≥ ,  is the major eigenvector associated to the max eigenvalue 

(

1e

1λ ),  is the medium eigenvector associated to the middle eigenvalue (2e 2λ ), and  

is the minor eigenvector associated to the minimum eigenvalue (

3e

3λ ).  

The 1λ and  determine the magnitude and direction of the primary principle axis 

of the ellipsoid of the tensor. The shapes of the tensor field’s ellipsoids are described 

by the 

1e

321 :: λλλ  ratio. Figure 2 shows the ellipsoids of a tensor field have three types 

of shapes: highly prolate (e.g., 321 ,λλλ >> ) depicted in Figure 2a, oblate 

(e.g., 321 λλλ >>≈ ) depicted in Figure 2b, and isotropic (e.g., 321 λλλ ≈≈ ) depicted 

in Figure 2c. 

 
 

(a) (b) (c) 
 

Figure 2. Tensor shape classification: Linear case (prolate) (a), Planar case (oblate) (b) and 

Spherical case (isotropic) (c). 

Westin (Westin, Peled et al. 1997) introduced three definitions of linear ( ), 

planar ( ) and spherical ( ) anisotropy coefficients in 1997: 

lc

pc sc
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321

33
λλλ

λ
++

=sC        Equation 8 

The three coefficients defined by Eq. [6-8] quantify the continuum of 

classifications within the three cases (linear, planar, and spherical) for real diffusion 

tensor data.  

If a tensor has a planar shape ellipsoid (planar anisotropy) depicted in Figure 2b or 

a spherical shape ellipsoid (isotropy) depicted in Fig. 2c at a point P, the point P is a 

degenerate point (Hesselink, Levy et al. 1997), at which the fiber tracts may cross, 

merge, branch. The two eigenvectors with nearly equivalent eigenvalues have not 

particular orientations, and span a particular plane in the case of planar anisotropy, 

and water diffuses uniformly in the plane.  For isotropy region, none of three 

eigenvectors are individual meaningful, they have not particular orientations and span 

a sphere, and water is distributed uniformly in any direction. The noise in the MRI 

data may make a point as degenerate point which should not be. 

The diffusion tensor has two important measurements: mean diffusivity and 

anisotropy. The mean diffusivity is defined as the average of the three eigenvalues of 

the tensor as Eq. [9]. The anisotropy is defined as Eq. [10] (Wuensche and Lobb 

2003).    

    
3

321 λλλλ ++
=mean        Equation 9 

22 /))(( meanmeananisotropy ITtrace λλλ −=     Equation 10 

 

where the I is an identity 3x3 matrix.  

The mean and the anisotropy are used to identify the regions of grey matter, white 

matter and cerebrospinal fluid(CSF) (Pierpaoli, Jezzard et al. 1996; Wuensche and 

Lobb 2003) in human brain. White matter region has the properties of 

25.0≥anisotropyλ and , while CSF region with , grey 

matter region with 

36 1010*5 −− << meanλ 310−≥meanλ

25.0<anisotropyλ and . 36 1010*5 −− << meanλ
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Limitation of Diffusion tensor imaging 

When studying the axonal architecture using DTI data, we should understand 

there are some limitations with the data due to the conventional DTI data acquisition 

and processing techniques. Mori(Mori and Zijl 2002) pointed out three main 

limitations: a voxel containing more than one fiber tracts with different orientations 

may not be handled properly; DTI can not provide information on cellular-level fiber 

connectivity, which multiple fiber tracts from individual cells may merge into or 

branch out from one voxel; Afferent pathways of axonal tracts which carry 

information from the sense organs towards the CNS and efferent pathways of axonal 

tracts which carry signals from the CNS towards the target organs (Shahar),  can not 

be verified from the direction of water diffusion. Moreover, the noises generated 

during the DTI acquisition processing due to several reasons such as the air, patient’s 

motion, can affect the accuracy of the measured DT data, and may destroy the 

property that it is semi-positive definite.   
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FIBER TRACTOGRAPHY MEHTODS 

There are mainly two classification of the nerve fiber tracking methods, physics-

based and statistical methods. Streamlines, Tensorlines and Tensor deflection which 

are based on the diffusion direction information of the tensor field when propagating 

the tracts belong to neither category. They are simply based on the diffusion 

information at a point and they are no real underlying physical or statistical methods. 

To simulate the nerve fiber tracks using the three methods, first find the initial 

locations (seed points) in the region of interests which are determined by the mean 

diffusivity and the diffusion anisotropy, then from the starting point, bidirectional 

tracks determined by the diffusion tensor T at the current position are been 

propagated as the eigenvector calculated from the local tensor is without sign. The 

integration is along with a certain direction which is calculated differently for 

Streamline, tensor Line, and tensor deflection methods. For example, the propagating 

of streamline method just follows the principal diffusion direction ( ). The tracks 

were terminated where they reach the volume boundary of the tensor field or they 

enter into the regions of non-interest, such as the regions of grey matter and CND in 

human brain.  

1e

 

Streamline tracking 

Streamlines tracking is used on vector fields. It visualizes the structure of the 

vector field. When it is employed to diffusion tensor fields, it integrates the fiber 

tracts only based on the major diffusion direction ( ) of the local tensor. It is defined 

as the solution to the differential equation 

1e

))(()( tSv
dt

tS
=         Equation 11 

where the  is the unit tangent vector at , t  is the time step. The fiber 

trajectories of the vector field can be generated by integrating Eq. [11] with an initial 

condition  which specifies a starting point of the fiber tract trajectory. The 

Taylor series expansion can be used to derive a solution method. There are three most 

common solvers, Euler, second-order Mid-point and fourth-order Runge-Kutta (RK4) 

which take one, two and four terms of the expansion of the Taylor series respectively.  

))(( tSv )(tS

0)0( SS =
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The higher order the solver is, the bigger time step it can use, but more derivation 

computation on each step it costs. Hence, RK4 is computational more expensive than 

Mid-point (Basser, Pajevic et al. 2000; Wuensche 2004). The streamline integration 

using a first order Euler method is depicted in Figure 3.  

 

)( 1tv   

)( 0tS
) ( 1tS  )(tS  

  

Figure 3: Streamline integration using a first order Euler method.  

 

The degenerate points of the tensor fields described in section “DTI processing” 

need to be checked when simulating the fiber tract trajectories due to lack of 

particular meaningful diffusion direction on such points and the diffusion direction 

spins on a plane or a sphere (Hesselink, Levy et al. 1997). The streamline integration 

should be terminated at singularity points as the fast diffusion direction is arbitrary 

which will mislead the streamline propagation. Figure 4 shows such example. The 

degenerate point is checked only as 21 λλ ≈  rather than at least two eigenvalues equal 

(e.g. 323121 ,, λλλλλλ ≈≈≈ oror ) as the major eigenvector corresponding to the 1λ  

still is meaningful on the case of 32 λλ ≈ . 

 

Figure 4: The ideal fiber tracts path denoted by the dotted white line and the visualization of 

streamline in red through anisotropy (left and right) and isotropic (middle) regions in synthetic 

tensor field.  



  
 

Tensorline algorithm 

Weinstein(Weinstein, Kindlmann et al. 1999) introduced Tensorline fiber tracking 

method in 1999. Their technique not only counts on the principal diffusion direction 

of the local tensor, but also the nearby orientation information of the local tensor by 

adding an advection term in a standard diffusion-based propagation method. Hence, 

the propagation direction is a combination of the principal diffusion direction ( ), the 

incoming vector from the previous integration step ( ) and the outgoing vector 

which is the incoming vector transformed by the tensor matrix ( ). 

1e

inv

outv

When doing propagation of fiber tracts, first an outgoing direction vector  is 

computed using the incoming direction  and the tensor (Eq. [12]). The  is the 

direction of the previous propagation step, and the  is the incoming vector 

transformed by the tensor matrix.  

outv

inv inv

outv

inout Tvv =            Equation 12 

The principal diffusion direction ( ),   and  are combined using Eq. [13] to 

gain the proper propagation direction  for current step.  

1e inv outv

propv

))1)((1(
1 outpunctinpunctllprop vwvwcecv +−−+=      Equation 13  

where,  is the linear anisotropy coefficient of the local tensor computed using Eq. 

[6];  is a weighting factor controlled by users, which varies from 0 to 1. The 

weighting factor affects how much the propagation should be encouraged to 

“puncture” to the incoming path when it goes through planar tensors by changing the 

weights on the incoming vector and the outgoing vector (Weinstein, Kindlmann et al. 

1999). Weinstein claimed that when integrating the fiber tracts in human brain, the 

 of 0.20 worked well in practice.  

lc

punctw

punctw

 

Tensor deflection 

Lazar(Lazar, Weinstein et al. 2003) introduced Tensor Deflection fiber tracking 

method in 2003, which was called TEND. The method uses the entire diffusion tensor 

information to deflect the incoming vector ( ) direction which is got from the 

previous integration step. 

inv
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inout Tvv =         Equation 14 

where  is the incoming vector transformed by the tensor matrix.  outv

inv  

1e  

outv  

 

Figure 5:Illustration of tensor deflection for a diffusion tensor 

 

In the TEND algorithm, the incoming vector can be described using a linear 

combination of the eigenvectors of the tensor. 

332211 eeevin ααα ++=       Equation 15 

where 1α , 2α , 3α  are the projections of incoming vector  onto the axes of the 
coordinate system given by , , .  1e 2e 3e

33

22

11

ev
ev
ev

in

in

in

=
=
=

α
α
α

        Equation 16 

The incoming vector is deflected toward the predominant principal eigenvector for 

a tensor is more anisotropic. The less anisotropic the tensor is, the less amount the 

incoming vector is deflected by the tensor.  

For the formula of the Tensorlines algorithm (Eq. [13]), if  equals 1, the 

Tensorlines algorithm is equivalent to Streamlines method; if  equals 0 and the 

puncture coefficient  is set to 1, the tensorlines algorithm is equivalent to Tensor 

deflection method. We can see that the Tensorlines algorithm is the combination of 

the Streamlines and the Tensor deflection methods.  

lc

lc

punctw
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Synthetic Tensor Field 

In order to quantitatively compare the fiber tracts trajectory algorithms Synthetic 

tensor fields (Westin, Maier et al. 1999; Basser, Pajevic et al. 2000; Jonasson, 

Hagmann et al. 2003; Lazar and Alexander 2003; Lazar, Weinstein et al. 2003) are 

required. A synthetic tensor filed is reconstructed using Eq. [5] in terms of three 

eigenvalues and eigenvectors. To make the synthetic tensor more realistic, Rician 

noise should be added to the tensor filed. But when the SNR of the DTI imaging is 

above 3, we can approximate this noise with Gaussian normal noise.   

Construction of Eigenvalues and Eigenvectors 

The three eigenvalues and three eigenvectors need to be determined before 

applying Eq. [5] to construct the synthetic tensor fields. Different types of fibers have 

eigenvalues in certain range (Papadakis, Xing et al. 1999).  

The three eigenvectors are determined by piecewise functions. In isotropic region, 

they can set to uniformly distributed unit vectors which are mutually orthogonal.  In 

anisotropic region, the tangent unit vector of the ideal pathways of the synthetic fiber 

tracts in the synthetic tensor fields is set to . Because a Frenet-frame of a space 

curve is made of three vectors: tangent, normal, binormal vectors which are mutually 

orthogonal, the Frenet-frame can be used to define the values for .   and . Its 

tangent vector indicates the direction of the pathway and is assigned to .  Its normal 

and binormal vectors are assigned to  and  respectively. The synthetic fiber tracts 

should be smooth and low curvature to correspond with the natural properties of the 

real never fiber tracts.  

1e

1e 2e 3e

1e

2e 3e

2e  
1e  

3e  

 

Figure 6: Using the Frenet-frame of a space curve to determine the eigenvectors of tensors of a 
synthetic tensor field. 
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Simulation procedure for adding noise to a synthetic tensor field 

To make the synthetic diffusion tensor data more realistic, complex Gaussian 

normal noise with zero mean and the standard deviation corresponding to the desired 

SNR should be added to the real and imaginary channels of the ideal signal for every 

voxel in the data. The procedure of adding noise to a synthetic tensor field is the 

reverse of the process for DTI data acquisition, which solves the linear Eq. [4] to get 

the six independent elements of a diffusion tensor from the baseline signal , b-

factor

0S

B , the diffusion weighted image pixel intensity and the DW gradient 

direction vectors.  Now, we have the noise-free tensor matrix, from that the ideal 

signal can be computed.  After knowing the ideal signal, we need to compute the 

noised tensor with desired SNR level by assuming the baseline signal , b-factor

S

0S B , 

and the DW gradient direction vectors. The detail procedure is depicted in 7 steps 

(Skare, Li et al. 2000).    

1) Compute the noise-free tensor using Eq. [5] in terms of user-defined three 

mutually orthogonal eigenvectors and three corresponding eigenvalues, and get 

the six independent elements ( ) from the tensor.  yzxzxyzzyyxx DDDDDD ,,,,,

2)  Define the six diffusion weighting gradient direction vectors , as  iq
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    Equation 17 

The six apparent diffusion coefficients (ADC) without noises corresponding to the  

 can be computed from the tensor iq T  and the six diffusion weighting gradient 

direction vectors using Eq. [18].  iq

i
T
ii TqqADC =        Equation 18 

By replacing the  in Eq. [18] with the vectors defined in Eq. [17], we can get a 

transformation matrix for transforming the six independent elements of tensor 

iq

T to six 

ADC.  
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3) Once the ADC is determined using Eq.[18] by step 2, the “ideal” noise-free DW 

signal  are calculated from Eq.[3], assuming a constant ideal value of 

the baseline signal  , and a constant value of the B-factor 

6..1, =iSi

10000 =S

21000 mm
sb =  for each fiber type and DTI scheme. The choice of is very 

arbitrary, but the ratio of  to the standard deviation of the noise is very 

important. The ration is called signal-to-noise ratio (SNR). As long as the noise is 

scaled according to the ratio,  can be set to one.  

0S

0S

0S

SD
SSNR 0=        Equation 21 

where is the standard deviation of normal Gaussian noise. For a standard DTI 
the currently accepted value for the B-factor is around

SD

215001000 mm
s− , 

however some people believe that high values for the  B-factor of  
around 240003000 mm

s− are needed to  help to resolve more complex fiber 

connectivity, such as crossing fiber tracts (Tuch 2004). 
 

4) To get complex noise-contaminated signals, the noise-free signal 

computed in previous step is treated as a complex number , 

where . For simplicity, we set

6..1, =iSi ibaZ +=

)()( 22 basqrtSZMod +== 0, == bSa , and 

independent normal Gaussian noises are then superimposed upon to the complex 

number’s real and imaginary parts separately, which is demonstrated in Eq. [22].  
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6..1),(*)(' =++= inoiseBinoiseASZ i     Equation 22 

 where  and are independent random samples from a Gaussian 

distribution of mean zero and standard deviation SD. The SD is defined by the 

desired SNR in Eq. [21] which can be set to any desired level depending on the 

simulations requirements. It is not hard to get a Gaussian random sample with a 

desired mean and variance. First the unit normal random variables with  

and 

noiseA noiseB

0=mean

1var =iance  are computed using gasdev (Press, Flannery et al. 1992), then 

the noise is modified using Eq.[23].  

noiseunitSDmeannoise _*+=      Equation 23  

The noise-contaminated signal is computed as the magnitude of the complex 

number.  

   Equation 24 ))()(()mod( 22' noiseBnoiseASsqrtZnoiseS ii ++==

 

5) From the step 4, the noise-contaminated signals are obtained, then the noise-

contaminated ADC can be calculated using Eq. [4] (note: the tg • in the Eq. [4] is 

the ADC). 

6) The relationship of the ADC and the elements of a tensor are showed in Eq. [19] 

and Eq. [20]. The six noised affected independent elements of a tensor can be 

obtained by reversing step 2. The inverse matrix of A is showed in Eq. [25]. 
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7) The six noise-affected elements are used to construct the noised-synthetic 

diffusion tensor using Eq. [1] as the diffusion tensor is symmetric.  

Using this method to superimpose noise to the DT data guarantees the final noise-

contaminated DT is a 3x3 symmetry, semi-positive definite matrix. 
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IMPLEMENTATION 

The Streamlines, Tensorlines and TEND methods are tested using a synthetic 

tensor filed with crossing fiber tracts with different levels of SNR. We first create a 

synthetic tensor field with crossing fiber tracts, superimpose uniformly distributed 

Gaussian noise with different levels of SNR to the tensor and integrate the fiber 

pathways using Streamlines, Tensorlines and TEND techniques.   

Construction of a Synthetic Tensor Field 

The synthetic tensor fields we construct have 32x32x3 sample points. A B-Spline 

space curve wrapped with a tube is used to present a synthetic fiber tract. The basic 

idea is that tensors inside the tube are anisotropic; their eigenvectors are defined by 

the Frenet-frame of the B-Spline space curve. On the other hand, the tensors outside 

the tube are isotropic; their eigenvectors are random mutually orthogonal vectors. The 

diffusion values of the isotropic tensor and anisotropic tensor are the following: 

( ) ( )
( ) ( )444

321

444
321

10*4.010*5.210*7

10*310*310*3
−−−

−−−

=

=

λλλ

λλλ

anisotropy

isotropy

T

T
 

The value’s units are s
mm2

(Lazar, Weinstein et al. 2003).  

The Frenet-frame of a B-Spline curve is made of the tangent, normal and binormal 

vectors. The tangent vector is computed by differentiating the parametric function of 

the B-Spline curve. The normal vector is the cross production of the tangent vector 

and the acceleration vector that is assumed normally to be a unit vector (0, 1, 0). If the 

assumed acceleration vector is collinear to the tangent vector, it is reset to a unit 

vector (1, 0, 0). The binormal vector is computed by taking the cross production of the 

tangent and normal vectors after obtaining the tangent and normal vectors. 

Each tensor in a 3D volume is tested if it is in the tube of the B-Spline by finding 

the closet point on the B-Spline curve and computing the distance between the tensor 

and the closet point. In this application the closest point is found using binary 

searching the B-Spline curve which won’t cause ambiguity case as the B-Spline is 

constructed to be smooth and low curvature (Figure 7). 
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Closest point Tube wrapping the curve 

Tensor B-Spline 

Figure 7: Finding closest point on the B-Spline curve using binary searching. 

 

The synthetic tensor imaging with crossing fiber tracts is constructed by 

combining two synthetic tensor fields with single fiber tracts in a way of averaging 

their tensors in a region containing the crossing tracts. Figure 8 shows the crossing B-

Spline tubes and the synthetic tensor field constructed by the B-Spline tubes. It is 

noticed that the tensors in the region containing crossing tracts are isotropic.  

 

 

Figure 8: Right image shows the synthetic tensor fields constructed by the crossing tracts which 
are presented using two pink B-Spline tubes displayed in left image.  
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In the application, we also constructed a synthetic tensor field in which the fiber 

tracts merge together (shown in Figure 9). For this tensor field, the tensors in the 

region containing the merging tracts are anisotropic.   

  
Figure 9: Right image shows the synthetic tensor fields with merging tracts which are presented 
using two pink B-Spline tubes displayed in left image.  

 

To make the synthetic tensor field more realistic, Rician noise should be add to it 

(Henkelman 1985; Gubjartsson and Patz 1995).  In this application, Gaussian normal 

noises are added to the tensor rather than Rician noise as the SNR level of the noises 

are assumed greater than 3 (Jonasson, Hagmann et al. 2003).  

 

Generating of noised-contaminated synthetic tensor fields 

The procedure of adding Gaussian normal noises to the synthetic tensor field is 

strictly followed the seven steps depicted in the previous section of “Simulation 

procedure of adding noise to synthetic tensor field”. The noises with SNR of level 8, 

16, 32, 64 …100000 are superimposed to the tensor field to test the fiber tracking 

algorithms. Figure 10 shows the results of adding Gaussian normal noises with 

different levels of SNR to the synthetic tensor field containing crossing fiber tracts.   
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Figure 10: Noised-contaminated synthetic tensor fields with the geometry of crossing fiber tracts 
with different level of SNR. 

  

Simulations of fiber tracks 

 

Streamlines, Tensorlines and Tensor Deflection (TEND) with Mid-point and RK-

4 integration methods are implemented and tested on the noised-affected synthetic 

tensor fields with crossing fiber tracts with different levels of SNR. The simulations 

start with choosing seed points for propagating observed fiber tracts. For each fiber 

tractoraphy method, each tensor is test if it meets the seed point’s criteria. For instant, 

if the tensor’s anisotropy is greater than 0.6 in the application, then it is a seed point. 
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After determining the seed point, two simulated tracts are issued from the seed point’s 

center with a little offsets on XYZ directions. The two tracts extend along with the 

positive  direction and negative direction as  is not able to verify if the 

pathway is afferent or efferent.  The simulation is terminated when the integration of 

fiber tracts into a region where the tensors’ anisotropy is less than 0.2.  

1e 1e 1e

On each step of computing the outgoing vectors of the local tensors from the 

incoming vectors obtained from previous simulation step, the  of the local tensors 

are test first with the incoming vectors to see if the angle between them is less than 

great than 90 degree. If the angle is, then the  should be flipped, hence the outgoing 

vectors are calculated based on the flipped .   

1e

1e

1e

The main goal of the simulations is to test which fiber tracking algorithm is 

reliable and stable on the regions containing fiber tracts with complex geometries, 

such as crossing, merging, branching. Figure 11 shows the simulation results. The 

integrated pathways of the fiber tracts in the synthetic tensor fields are colored in 

different colors which show the pathways’ orientation in 3D (actually in 2D as the 

simulation results are only displayed on a XY plane). The pathways extending mainly 

on X, Y, Z directions are colored in blue, red and magenta respectively, other 

pathways are colored in yellow.   
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Figure 11: Simulations of fiber tracts propagation using Streamline, Tensorline, TEND on 
noised-affected synthetic tensor fields containing crossing tracts with different levels of SNR.  

 

Figure 11 indicates that Tensorlines and TEND perform similarly for the 

simulated tensor field. 

 

Software architecture of the application 

The application is implemented in C++, using the OpenGL, GLU and GLUT 

libraries. There are two main classes: TensorField class and FibertractMethods class. 

The mainloop is developed using the GLUT API rather than Windows 32 API in 

order to make the application Operating System platform independent. It is very easy 

to add new subclass for new types of synthetic tensor fields to the TensorField class 

without changing any structure of the software. Similarly it is very easy to implement 

new fiber tracts algorithms and test them on existing tensor field without any 

changing to the structure of the software. Figure 12 demonstrates the software design 

of our framework for the fiber tracking simulations.   
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Figure 12: Software architecture of the platform for the fiber tracts simulations.  

 

User Guide 

In the application, the mouse movements are used to rotate the rendered tensor 

fields and the simulated fiber tracts around the center of the 3D space in a similar way 

of rotating a 3D object in both hands. The following keys can be used to change 

application settings:.  

Key s/S: switch the rendering among  

• Tensor field showed in ellipsoids with pathways simulated using 

Streamline 

• Colored pathways simulated using Streamline 

• Tensor field showed in ellipsoids with pathways simulated using 

Tensorline 

• Colored pathways simulated using Tensorline 

• Tensor field showed in ellipsoids with pathways simulated using TEND 

• Colored pathways simulated using TEND 

TensorField 

Synthetic 
TensorField 

Human Brain 
TensorField 

Linear 
Synthetic 
TensorField 

Crossing 
Synthetic 
TensorField 

FibertractMethods 

FibertractMethods 

FibertractMethods 

FibertractMethods 

main 

Is-A relationship Has-A relationship 

 22  



  
 

• Ideal pathways of the synthetic tensor field showed tubes constructed by 

B-Spline space curves.  

Key w/W: increase/decrease the user-controlled parameter for Tensorline 

simulations. The parameter  varies from 0 to 1.  

punctw

punctw
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Error Measurements 

The error of the three tract methods, Streamlines, Tensorlines, Tensor Deflection 

(TEND) can be measured in three ways: 1. The average length of the simulated tracts; 

2. The number of the tracts which follow the ideal tracts correctly; 3. The least square 

error (LSE) of the simulated tracts.  In the follow sections, SL stands for Streamline, 

TL for Tensorlines in the charts and the tables. 

 

Error Measurements of a Synthetic tensor field containing crossing tracts 

The error measurements are done on the synthetic tensor field containing the 

crossing fiber tracts which are described in Section “Implementation” and depicted in 

Figure 8. First, we look at the changes of average length of the integrated tracts on the 

synthetic tensor field with different levels of SNR without considering the tracts’ 

correctness.  

Error measurements of the average length of the simulated tracts 
The average length is defined as a function of the minimum length which is the 

integration condition for the simulation of the tracts. The whole length of the ideal 

pathway in the synthetic tensor field is approximate 28 units. 
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Average Length (SNR=16)
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Average Length (SNR=32)
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Average Length (SNR>1000000)
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Figure 13: The changes of Average length of estimated tracts with levels of SNR ( 8, 16, 32 and 
over 1000000). 

 

From the four charts rendered in Figure 13, it is obvious that TEND and 

Tensorline generate much longer tracts than Streamline in the tensor filed with lower 

SNR. At same situation, TEND is better than Tensorlines in terms of propagating 

longer pathways. 

When we study the white matter connectivity in vivo, the correctness of the tracts 

are most important than other aspects, such as length, smoothness of the tracts. If the 

simulated tracts can not represent the correct fiber tracts, it is pointless to study and 

analyze such estimated tracts. Hence, another error measurement which has been done 

in the application is measuring the number of correct tracts which follow the ideal 

pathways which are constructed by using B-Spline space curves.   

Error measurements of the correctness of the simulated tracts 

A simulated tract is verified as correctly following the ideal pathway by testing 

both of its end points inside the B-Spline tube which represent the ideal pathway. 

Figure 14 includes 4 charts which demonstrate the changes of the number of the 

correct tracts along with the minimum length on the synthetic tensor fields with 

different levels of SNR.  For example, the three methods can not propagate any 
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correct tracts when the minimum length that is the integration condition is increased 

more than 13 units when the tensor field with SNR of 16.      

Correctness of Simulated tracts (SNR=8)
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Correctness of Simulated tracts (SNR=16)
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Correctness of Simulated tracts (SNR=32)
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Correctness of Simulated tracts (SNR>1000000)
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Figure 14: Error measurement of correctness of tracts of a synthetic tensor field containing 
crossing fiber tracts. 

  

We can see the three methods do not make much difference in generating correct 

tracts when the synthetic tensor fields with lower SNR (such as 8, 16, and 32) from 

the first three charts. When the SNR increases to almost an infinite number, the 

synthetic tensor field is not affected by any noises, and the tensors are homogeneous 
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in all regions except the center where the two ideal pathways cross. In such situation, 

Streamlines method can not generate any correct tracts when minimum length is 

increased over half of the ideal pathway’s length. Though Streamline still propagates 

longer and smooth tracts, all tracts deviate away from the right tracks when the 

simulation enters into the region containing complex connectivity, such as tract 

crossing, merging. On the other hand, Tensorlines and TEND methods do a much 

better job than Streamline in such complex regions. Moreover, from the last chart of 

Figure 14, TEND does a little bit better job than Tensorlines in terms of integrating 

correct tracts.   

Least Square Error of the simulated tracts 
 

The least square error (LSE) is defined in Eq. [26]. 

( )

n
LSE

n

i
∑
=

∆
= 1

2ε
      Equation 26 

where  is the number of the correctly simulated tracts which are following the ideal 

pathways; 

n

ε∆ is the minimum distance from the each sample point on the simulated 

tracts to the ideal tracts, which is computed by finding the closest point on the B-

Spline curve. The finding the closest point on the space curve is described in 

Implementation section.  
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Least Square Error (SNR=16)

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14

Min Length

Le
as

t S
qu

ar
e 

Er
ro

r

SL
TL
TEND

 

Least Square Error (SNR=32)
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Least Square Error (SNR>1000000)
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Figure 15: The Least Square Error of the simulated tracts. 

The first three graphs in Figure 15 indicate that the three methods do not make 

much difference when the tensor fields with lower levels of SNR and the minimum 

length is set to a small number. The last graph shows that on the synthetic tensor field 

with higher levels of SNR that is great than 1000000, the simulated tracts generated 

by using Tensorlines and the Tensor deflection methods have much more lower LSE 

which keeps lower than 0.5, than the simulated tracts propagated by using Streamlines 

which have much more bigger LSE which is never lower than 1. The last graph also 

indicates that the TEND method does a little better job than the Tensorlines on such 

synthetic tensor fields. The result is similar as the error measurement results of the 

correctness of the tracts described in previous section.  

 

Error Measurements of a Synthetic tensor field containing merging tracts 

 

The error measurements are also done on the synthetic tensor fields containing the 

merging fiber tracts which are described in Section “Implementation” and depicted in 

Figure 9. Similarly as the error measurement done on the synthetic tensor fields 

containing crossing fiber tracts, first we exam the changes of average length of the 

integrated tracts on the synthetic tensor field with different levels of SNR without 

considering the tracts’ correctness, then test the correctness of the tracts, finally exam 

 31  



  
 

the Least Square Error of the simulated tracts. The whole length of the ideal pathway 

in the field is about 29 units.  

Error measurements of the average length of the simulated tracts 
 

The error measurements are presented in graphs.  
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Average Length (SNR=32)
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Average Length (SNR>100000)
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Figure 16: The changes of Average length of estimated tracts with levels of SNR ( 8, 16, 32 and 
over 1000000). 

 

From the first two charts in Figure 15, The Tensorlines algorithm generates longer 

simulated tracts than Streamlines and TEND methods do when the tensor fields with 

lower levels of SNR. In order to see the difference among the Streamlines, 

Tensorlines and TEND methods in the last chart in the Figure 15, Table 1 shows the 
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dataset which is depicted in the last chart. From the last two charts and the Table 1, 

we can see that when the levels of SNR of the tensor fields become to 32 and over 32, 

the three methods have quiet similar results. 

Table 1: The average length over the min length (SNR>1000000) 

minLength SL TL TEND minLength SL TL TEND 
1.1 21.8241 22.4662 22.4921 14.1 27.7164 28.0264 28.0323 
2.1 22.5336 23.1963 23.2232 15.1 27.9353 28.0264 28.0323 
3.1 23.0103 23.4407 23.4679 16.1 27.9353 28.0264 28.0323 
4.1 23.2411 23.674 23.7014 17.1 27.9353 28.2072 28.2132 
5.1 23.7014 24.1454 24.1735 18.1 28.1023 28.2072 28.2132 
6.1 23.9339 24.3732 24.4017 19.1 28.4495 28.3745 28.3793 
7.1 23.9339 24.3732 24.4017 20.1 28.4495 28.3745 28.3793 
8.1 24.1392 24.7963 24.8255 21.1 28.4495 28.3745 28.3793 
9.1 24.5376 25.4404 25.4708 22.1 28.4495 28.3745 28.3793 

10.1 24.7304 25.4404 25.4708 23.1 28.4495 28.3745 28.3793 
11.1 24.9148 25.8418 25.873 24.1 28.4495 28.3745 28.3793 
12.1 27.273 26.0375 25.873 25.1 28.4495 28.3745 28.3793 
13.1 27.273 26.0375 25.873 26.1 28.4495 28.429 28.4339 

 

Error measurements of the correctness of the simulated tracts 
Then three methods are tested in term of generating the correct tracts which are 

following the ideal pathways. The datasets obtained from the error measurement 

employed on the synthetic tensor fields with different levels of SNR are listed in 

Table 2 to Table 5 rather than graphs as it is hard to see the difference from graphs.  
Table 2: Number of the correct tracts over the min length (SNR=8) 

minLength SL TL TEND minLength SL TL TEND 
1.1 29 25 28 6.1 0 1 1 
2.1 17 14 13 7.1 0 1 1 
3.1 8 9 7 8.1 0 1 0 
4.1 3 6 4 9.1 0 0 0 
5.1 1 3 2

 

Table 3: Number of the correct tracts over the min length (SNR=16) 

minLength SL TL TEND minLength SL TL TEND 
1.1 37 36 35 7.1 2 2 3 
2.1 24 25 23 8.1 1 1 1 
3.1 13 15 12 9.1 1 1 1 
4.1 9 11 9 10.1 1 1 1 
5.1 3 5 4 11.1 0 0 0 
6.1 3 5 4
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Table 4: Number of the correct tracts over the min length (SNR=32) 

minLength SL TL TEND minLength SL TL TEND 
1.1 40 44 41 14.1 3 3 3 
2.1 31 35 33 15.1 3 3 3 
3.1 23 26 24 16.1 3 3 3 
4.1 16 19 18 17.1 3 3 3 
5.1 12 14 16 18.1 3 3 3 
6.1 11 13 12 19.1 3 3 3 
7.1 8 9 9 20.1 3 3 3 
8.1 7 9 9 21.1 3 3 3 
9.1 5 6 6 22.1 3 3 3 

10.1 4 4 5 23.1 2 2 2 
11.1 3 3 3 24.1 2 2 2 
12.1 3 3 3 25.1 1 2 2 
13.1 3 3 3 26.1 0 2 1 

 
Table 5: Number of the correct tracts over the min length (SNR>1000000) 

minLength SL TL TEND minLength SL TL TEND 
1.1 61 60 60 14.1 55 55 55 
2.1 61 60 60 15.1 54 55 55 
3.1 61 60 60 16.1 54 55 55 
4.1 61 60 60 17.1 54 54 54 
5.1 61 60 60 18.1 54 54 54 
6.1 61 59 59 19.1 54 54 54 
7.1 61 59 59 20.1 54 54 54 
8.1 60 58 58 21.1 54 54 54 
9.1 58 57 57 22.1 54 54 54 

10.1 57 57 57 23.1 54 54 54 
11.1 56 55 55 24.1 54 54 54 
12.1 55 55 55 25.1 54 54 54 
13.1 55 55 55 26.1 54 53 53 

When SNR is lower and minimum length is smaller, Tensorlines and TEND 

methods do a little bit better job than Streamlines algorithm. However the results of 

the error measurement for the three methods are very similar when the value of the 

SNR of the synthetic tensor fields is higher than 1000000. This is different from the 

same error measurements done to the synthetic tensor fields with geometry of 

crossing tracts, which are described in previous section. This is because the synthetic 

tensor fields (Figure 9) containing merging tracts with high level of SNR almost are 

anisotropic in the regions containing the fiber tracts which merge together to be a 

single bundle of tracts, and the synthetic tensor fields (Figure 8) containing the 

crossing tracts with whatever level of SNR are not anisotropic in the region where two 

tracts cross each other.   
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Least Square Error of the simulated tracts 
The LSE is computed using Eq. 26 and the results of the error measurement are 

presented in tables rather than graphs as the differences of the three methods are not 

obvious to be seen in graphs.  

Table 6: Least Square Error (SNR=8) 

minLength SL TL TEND minLength SL TL TEND 
1.1 0.187352 0.228236 0.228929 5.1 1.15345 1.05002 1.26614
2.1 0.245145 0.339293 0.416951 6.1 Not valid 2.69748 2.30686
3.1 0.401325 0.476245 0.512679 7.1 Not valid 2.69748 2.30686
4.1 0.852262 0.635407 0.758163 8.1 Not valid 2.69748 Not valid 

 

Table 7: Least Square Error (SNR=16) 

minLength SL TL TEND minLength SL TL TEND 
1.1 0.150924 0.150036 0.153241 6.1 0.891907 0.607536 0.813095
2.1 0.207892 0.192014 0.207385 7.1 1.26167 1.13778 1.05
3.1 0.339747 0.285552 0.344629 8.1 0.510967 0.564326 0.519166
4.1 0.430911 0.348086 0.427186 9.1 0.510967 0.564326 0.519166
5.1 0.891907 0.607536 0.813095 10.1 0.510967 0.564326 0.519166

Table 8: Least Square Error (SNR=32) 

minLength SL TL TEND minLength SL TL TEND 
1.1 0.167134 0.173625 0.181884 14.1 1.47771 1.58867 1.64694
2.1 0.207339 0.205514 0.218633 15.1 1.47771 1.58867 1.64694
3.1 0.26786 0.268389 0.290786 16.1 1.47771 1.58867 1.64694
4.1 0.356267 0.339106 0.356317 17.1 1.47771 1.58867 1.64694
5.1 0.44814 0.426445 0.381744 18.1 1.47771 1.58867 1.64694
6.1 0.488404 0.45886 0.506477 19.1 1.47771 1.58867 1.64694
7.1 0.629796 0.638573 0.654455 20.1 1.47771 1.58867 1.64694
8.1 0.695319 0.638573 0.654455 21.1 1.47771 1.58867 1.64694
9.1 0.966629 0.90241 0.955252 22.1 1.47771 1.58867 1.64694

10.1 1.20334 1.28251 1.14289 23.1 1.13969 1.14511 1.1202
11.1 1.47771 1.58867 1.64694 24.1 1.13969 1.14511 1.1202
12.1 1.47771 1.58867 1.64694 25.1 1.67759 1.14511 1.1202
13.1 1.47771 1.58867 1.64694 26.1 Not valid 1.14511 1.60319

Table 9: Least Square Error (SNR>1000000) 

minLength SL TL TEND minLength SL TL TEND 
1.1 0.235111 0.234524 0.235674 14.1 0.213207 0.215855 0.217251
2.1 0.235111 0.234524 0.235674 15.1 0.207818 0.215855 0.217251
3.1 0.235111 0.234524 0.235674 16.1 0.207818 0.215855 0.217251
4.1 0.235111 0.234524 0.235674 17.1 0.207818 0.216664 0.218136
5.1 0.235111 0.234524 0.235674 18.1 0.207818 0.216664 0.218136
6.1 0.235111 0.232685 0.233861 19.1 0.207818 0.216664 0.218136
7.1 0.235111 0.232685 0.233861 20.1 0.207818 0.216664 0.218136
8.1 0.235114 0.232242 0.233497 21.1 0.207818 0.216664 0.218136
9.1 0.226538 0.226592 0.227823 22.1 0.207818 0.216664 0.218136

10.1 0.22454 0.226592 0.227823 23.1 0.207818 0.216664 0.218136
11.1 0.218967 0.215855 0.217251 24.1 0.207818 0.216664 0.218136
12.1 0.213207 0.215855 0.217251 25.1 0.207818 0.216664 0.218136
13.1 0.213207 0.215855 0.217251 26.1 0.207818 0.209722 0.211252
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From the datasets listed in Table 6-9, we can see that the three methods have very 

similar results of the measurements of the Least Square Error. However, when the 

synthetic tensor fields which contain merging tracts have high levels of SNR, the 

simulated tracts generated by using Streamlines algorithm have smaller LSE than the 

tracts generated by using Tensorlines and TEND methods. The results of the 

measurement of LSE are similar as the results of the error measurement of the 

correctness of tracts for the synthetic tensor fields with the geometry of merging tracts.       

The results of the three error measurements are in accordance with the purpose of 

the Tensorlines and Tensor Deflection methods, which are designed to deal with the 

un-anisotropic tensors. In a anisotropic tensor field, the three methods should generate 

similar tracts.  
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CONCLUSIONS 

A platform is created to test fiber tracking algorithms on noise-affected synthetic 

tensor fields. The platform is easy to be extended by adding new types of synthetic 

tensor fields or new fiber tractography methods for testing. Due to time constraints, 

we could stimulate and test only two fiber configurations. The error measurements in 

terms of average length of the estimated tracts, the number of correct tracts and the 

Least Square Error of tracts are analyzed on noise-contaminated synthetic fields 

containing crossing tracts and merging tracts with different levels of SNR respectively. 

The limit results of error measurements indicate Tensorlines and TEND are more 

suitable for inhomogeneous tensor fields than Streamline.  

The three methods are not tested on linear or radiant homogeneous tensor fields in 

this project as Lazar and Alexander have done it in 2003(Lazar and Alexander 2003). 

More testing has to be done to obtain a better understanding of the advantage and 

disadvantage of the three fiber tracking methods. And also, more fiber tractography 

methods should be tested, such as Markov chain algorithm.  

When adding noises to the synthetic tensor in the project, the B-factor is assumed 

to 21000 mm
sb = simply. The value may not be suitable for inhomogeneous tensors 

containing more complex fiber connectivity. The effect of choosing of B-factor 

should be considered when constructing synthetic tensor fields for testing fiber 

tractography methods.    

 38  



  
 

ACKNOWLEDGEMENTS 

Many thanks to Burkhard for his supervision on the project. I greatly appreciated 

the help from Lisa Jonasson, Donald Tournier and Peter Basser who answered my 

questions promptly and clearly and sent me the papers that I could not find on the 

internet. Without their help, I doubt I could finish the work.  

 

REFERENCES  
Basser, P. J., S. Pajevic, et al. (2000). "In vivo fiber tractography using DT-MRI 
data." Magnetic Resonance in Medicine 44(4): 625-632. 
  
Gubjartsson, H. and S. Patz (1995). "The Rician distribution of noisy MRI data." 
Magn Reson Med 34: 910-914. 
  
Henkelman, R. (1985). "Measurement of signal intensity in the presence of noise in 
MR images." Med Phys 12: 232-233. 
  
Hesselink, L., Y. Levy, et al. (1997). "The topology of symmetric, second-order 3D 
tensor fields." IEEE Transactions on Visualization and Computer Graphics 3(1): 1-11. 
  
Jonasson, L., X. Bresson, et al. (2005). "White matter fiber tract segmentation in DT-
MRI using geometric flows." Medical Image Analysis 9(3): 223-236. 
  
Jonasson, L., P. Hagmann, et al. (2003). White Matter Mapping in DT-MRI using 
geometric flows. 9th International Conference on Computer Aided Systems Theory, 
Las Palmas de Gran Canaria, Spain. 
  
Lazar, M. and A. L. Alexander (2003). "An error analysis of white matter 
tractography methods: synthetic diffusion tensor field simulations." Neuroimage 20: 
1140-1153. 
  
Lazar, M., D. M. Weinstein, et al. (2003). "White matter tractography using diffusion 
tensor deflection." Human Brain Mapping 18(4): 306-321. 
  
Mori, S. and P. C. M. v. Zijl (2002). Fiber tracking: principles and strategies - a 
technical review. NMR in Blomedicine. 15: 468-480. 
  
Papadakis, N. G., D. Xing, et al. (1999). "A Comparative Study of Acquisition 
Schemes for Diffusion Tensor Imaging Using MRI." Journal of Magnetic Resonance 
137: 67-82. 
  
Pierpaoli, C., P. Jezzard, et al. (1996). "Diffusion tensor MR imaging of the human 
brain." Radiology 201(3): 637-648. 
  

 39  



  
 

Press, W. H., B. P. Flannery, et al. (1992). Numerical Recipes in C: The Art of 
Scientific Computing. Cambridge, Cambridge University Press. 
  
Shahar, A. R. B. "The Human Brain." http://www.imt.co.il/humanbrain.htm. 
  
Skare, S., T.-Q. Li, et al. (2000). "Noise consideraions in the determination of 
diffusion tensor anisotropy." Magnetic Resonance Imaging 18(6): 659-669. 
  
Tuch, D. S. (2004). "Q-Ball Imaging." Magnetic Resonance in Medicine 52: 1358-
1372. 
  
Weinstein, D. M., G. Kindlmann, et al. (1999). Tensorlines: Advection-diffusion 
based propagation through diffusion tensor fields. Proceedings of Visualization. 
  
Westin, C.-F., S. E. Maier, et al. (1999). Image processing for diffusion tensor 
magnetic resonance imageing. Medical Image Computing and Computer-Assisted 
Intervention, Cambridge, UK, Springer Verlag. 
  
Westin, C.-F., S. Peled, et al. (1997). Geometrical diffusion measures for MRI from 
tensor basis analysis. Proceeding of ISMRM. 
  
Wuensche, B. (2004). Visualization Techniques for Vector Fields. Comupter Science 
716 lecture notes, The university of auckland 
(http://www.cs.auckland.ac.nz/compsci716s2t/lectures/). 
  
Wuensche, B. and R. Lobb (2003). The 3D visualization of brain anatomy from 
diffusion-weighted magnetic resonance imaging data. Computer graphics and 
interactive techniques in Australasia and South East Asia. 
  
Young, E. C. (1993). Vector and Tensor Analysis, Marcel Dekker, Inc. 
  
 
 

 40  

http://www.imt.co.il/humanbrain.htm
http://www.cs.auckland.ac.nz/compsci716s2t/lectures/)

	An Analysis of Algorithms for In Vivo Fiber Tractography Usi
	ABSTRACT
	DIFFUSION TENSOR MAGNETIC RESONANCE IMAGING
	DTI data acquisition
	DTI data processing
	Limitation of Diffusion tensor imaging

	FIBER TRACTOGRAPHY MEHTODS
	Streamline tracking
	Tensorline algorithm
	Tensor deflection

	Synthetic Tensor Field
	Construction of Eigenvalues and Eigenvectors
	Simulation procedure for adding noise to a synthetic tensor 

	IMPLEMENTATION
	Construction of a Synthetic Tensor Field
	Generating of noised-contaminated synthetic tensor fields
	Simulations of fiber tracks
	Software architecture of the application
	User Guide

	Error Measurements
	Error Measurements of a Synthetic tensor field containing cr
	Error measurements of the average length of the simulated tr
	Error measurements of the correctness of the simulated tract
	Least Square Error of the simulated tracts

	Error Measurements of a Synthetic tensor field containing me
	Error measurements of the average length of the simulated tr
	Error measurements of the correctness of the simulated tract
	Least Square Error of the simulated tracts


	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

