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Abstract 

As the number of robots in the world increases, from automatic vacuum cleaners, to 

toy robot dogs, to autonomous vehicles for the military, the need for effective 

algorithms to control these agents is becoming increasingly more important.  

Conventional path finding techniques have relied on having a representation of the 

world that could be analysed mathematically to find the best path.  However, when an 

agent is placed into the real world in a place it has not seen before, conventional 

techniques fail and a fundamentally different approach to path finding is required.  

The agent must rely on its senses, such as the input from a mounted camera, using this 

information to get around.  In this project, a virtual city is implemented, and agents 

must navigate their way around it by using only what they see from their point of 

view.  By feeding what the agents see into a neural network, they are able to learn 

how to avoid obstacles, follow the road, and they also show promise in using this 

technique for path finding. 
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Introduction 

The control of agents in an environment is a difficult problem that has been 

approached in a variety of ways, from discretising the world into cells to giving 

obstacles repellent forces to push agents away from them, among many other 

methods.  But in some situations, such as a robot in the real world, the agent has no 

representation of the world and can only rely on its visual sensors. In these cases, 

traditional navigation and path finding techniques do not work. 

 

The goal of this project is to investigate the use of neural networks to analyse the 

visual input of an agent in order to control its navigation. The use of neural networks 

was inspired by the difficulty in hand coding algorithms to control obstacle avoidance 

in an arbitrary environment, and the success of the ALVINN system (explained in [1]) 

which successfully controlled the steering of a vehicle on real roads by analysing the 

visual input. 

 

This would be achieved by creating a virtual city that agents could navigate around, 

but importantly the agents would be given no information about the city other than 

what they saw.  The goals of the project are to train an agent to follow the road in 

much the same way as the ALVINN system, train an agent to avoid obstacles, train an 

agent to obey traffic lights, and finally use the neural network for path finding. 

 

This report does not explain the theory behind neural networks and it is assumed that 

the reader has a basic understanding of them. 

 

It is hoped that this project will give an idea of the sort of functions that a neural 

network is suitable for when controlling an agent based on its visual perception, and 

which functions are not suitable. 

 

 



Literature review 

The key paper central to this project was "Neural Network Vision for Robot Driving" 

by Dean A. Pomerleau [1]. In this paper, the ALVINN (Autonomous Land Vehicle In 

a Neural Network) is described.  ALVINN controlled the steering of a modified van 

while driving on public roads by analysing the image of the road ahead captured by a 

camera mounted at the front of the vehicle.  The image was resampled to the small 

size of only 30 x 32 pixels, and each of the pixel values were input into a neural 

network.  The neural network had only one hidden layer with four nodes, and the 

output layer had 30 nodes. Each of the output nodes was a linear representation of the 

steering amount, from hard left to hard right.  When the input was received from the 

camera, the pixels were put into the neural network and the values propagated down 

the network into the output layer.  The direction to steer was determined by finding 

the node with the highest output value, and using the values of the surrounding nodes 

to "fine-tune" the steering value. 

 

Using this technique, the neural network could successfully navigate the vehicle along 

the road after only around five minutes of training.  It is worth keeping in mind that 

images from the real world were used, which are always noisy and always changing.  

Trying to "hand code" an algorithm to perform the same task would be supremely 

difficult, and the fact that the very simple neural network was able to learn so quickly 

showed that neural networks may have a very important role to play in visual 

perception systems. 

 

Subsequent papers using the ALVINN system include "Vision Guided Lane 

Transition" [3] which examines the issues involved in allowing an autonomous 

vehicle to change lanes while "DAMN: A Distributed Architecture for Mobile 

Navigation" [4] looked at integrating perception driven navigation with higher-level 

goals. 

 

The only other related research found was entitled "AI Driven Vehicle" [5], which is 

from a university project.  In this is a vehicle needs to steer its way around a world 

that has obstacles in various positions.  At each time step, the world was partitioned 



into three areas: the area to the left and in front of the vehicle, the area directly in 

front of the vehicle, and the area to the right and in front of the vehicle, with 

everywhere else ignored.  The distances to the closest obstacle in each partition was 

used as inputs into the neural network, which would use this information to avoid the 

obstacles.  This was therefore only simulating robot vision, and was a huge 

simplification of vision guided navigation, however it did manage to avoid the 

obstacles with only a few neurons. 

 

 

Design 

This section gives a high-level overview of the system, starting with an overview of 

the virtual city, followed by an explanation of the training, which includes some notes 

on design features included to enhance the performance of the neural network. 

 

Overview of the city 

The simulation takes place in a virtual city; figure 1 shows an overview of the city.  

The city was designed to be simple, yet at the same time provide a variety of 

situations for the agent.   

 



 
Figure 1: an overview of the city 

 

In terms of simplicity, the places that the agent can walk in all take place in the same 

plane, so there are no hills, steps or slopes etc.  While this makes it easier to program, 

this simplification was decided upon in order to make it easier for the agent to learn.  

For example, a staircase or a hill in front of the agent may appear to look the same as 

a wall or an obstacle, so it would take a lot longer for the agent to learn how to 

distinguish the difference.  Banishing this simplification is future work. 

 

Another immediately apparent simplification is the level of detail of the graphics.  For 

example, many of the buildings are simply blue boxes and there are no complicated 

objects such as trees etc.  Again, this was done to keep it simple, and as is explained 

below, the view from the agent's point of view is very low resolution so little details 

would not be seen by the agent anyway.  Of course if this technology was to be used 

in a real-life situation, then the simulation should be as lifelike as possible.  For the 

purposes of this project however, the simple graphics used were satisfactory. 

 



What was important though, was the use of perspective so that the agent can learn to 

distinguish between objects close to it and far away from it. Basic lighting was also 

used (ambient and diffuse lighting to be specific) as this also gives clues as to the 

distances of objects.  These considerations were important because as we have all 

experienced, sometimes a large object far away can cast a similar pattern on our retina 

as a small object close to us, however we are still able to distinguish between the two 

due to several reasons such as perspective etc. 

 

It is important to note that the agent only knew what it saw, or in other words it had 

no information about the city, such as a map nor which objects existed where, nor 

how far apart the different objects were. This is because the object of this project was 

to investigate how an agent could find its way around a given area where none of this 

information was available, such as a robot when placed in a before unseen area in the 

real world. 

 

Figure 2 shows several features of the city and why those features were chosen. 

 

(a) The streets 
 

(b) The grass and river 

  



(c) Skyscrapers (d) The beach 

Figure 2: a selection of features from the city. In (a), a typical street scene is shown.  The 

roads are dark-coloured and include fixed size, white coloured road markings.  These help 

the agent identify where roads are, and to follow the roads.  There are also working traffic 

lights that agents should obey.  Finally, the footpaths surrounding the road are light grey.  

In (b), the grassy area and river are shown, along with the bridges.  These exist solely to 

give more variety to the city so that, for example, an agent will learn to follow the road 

regardless of whatever is surrounding the road.  In (c), the skyscrapers are shown.  These 

are here not only for show as their existence further challenges the neural network due to 

their size. This is because a distant skyscraper may be the same size and shape as a small, 

close object, so the network must learn to distinguish between the two.  Finally, (d) shows 

the waterfront, which again exists to provide more variety in the world. 

 

Training 

Training a neural network is composed of two parts: gathering training data, and back 

propagation, which is using the gathered training data to modify the weights of the 

neural network. 

 

Gathering Training Data 

Gathering training data was simply a matter of controlling the agent with the cursor 

keys.  If the goal was to keep the agent in the centre of the road, then the human 

trainer would simply steer the agent around the city, ensuring that the agent stayed in 

the middle of the road.  Every 10 frames a screenshot was taken from the agent's point 

of view, and this was saved along with the steering amount and some other 

information into a text file, which would create one training instance. 

 

When gathering the training data, there were several important points: 

• The screenshot taken was very small compared to what would be shown on a 

computer screen.  If the simulation was run at 640 x 480 pixels, then there 

would be a total of 480,000 pixels to input into the neural network, which 

would be slow and memory intensive.  This high level of detail is not needed 

when controlling the agent; rather having only around 750 pixels was 

sufficient. 

• Even though the agent's view of the world was much smaller than the trainer's, 

it was important that the aspect ratio (i.e. the width to height ratio) was 

maintained.  This is because otherwise the human trainer may see and react to 



some obstacle near the side of the screen which the agent would not be able to 

see, and so from the agent's point of view the human trainer would be reacting 

to something which was not there, and so the agent would learn to perform 

evasive actions, even when nothing was there. 

• The agent also sees the world in greyscale.  The red, green, and blue pixel 

values were converted into one greyscale value between zero and one.  Due to 

the three-dimensional nature of colour (i.e. hue, luminance and saturation), 

allowing the agent to see in colour would mean each pixel would require three 

values, and hence the already large input size of the neural network would be 

three times larger.  For a task such as obstacle avoidance or path finding, the 

actual colour of objects is not so important as seeing that they are there.  After 

all, we can watch black-and-white footage of street scenes and know where 

the road is, where buildings are etc, so this simplification was seen to be 

perfectly acceptable.  When talking about the "blue river" or the "green grass", 

even though the agent will see them both as grey, they will almost always 

have different intensities and so the agent will be able to distinguish between 

them. 

• A common problem with this type of training is that because the human trainer 

is able to stay on the road, almost all the training instances will be of the agent 

in the middle of the road, where it should be.  However, when the agent is 

using the network to decide how to drive, it is likely that sometimes it will end 

up on one side of the road, or off the road completely, or heading directly 

towards an obstacle, all of which were not covered in the training examples.  

The trainer cannot simply just steer the agent off the road in order to show it 

how to recover because otherwise the agent will learn to sometimes swerve off 

the road for no apparent reason.  The obvious solution was to allow the trainer 

to turn the recording of the training on and off.  When driving along the road, 

the trainer could stop recording, move the vehicle to the side of the road, start 

recording again and immediately correct the agent's position.  This allows the 

agent to learn what to do in such situations without teaching the agent to get 

into those situations. 

• Above it was stated that only every 10th frame was recorded. This was simply 

done to reduce the number of very similar training instances in the training set.  



Obviously from one frame to the next, neither the scene nor the steering will 

have changed much so not only is it unnecessary to record every single frame, 

but it would slow down the back propagation stage of training. 

• Controlling the agent in the simulation is much like controlling a character in a 

first person shooter game.  However, in most games of that type, when either 

the left or right arrow key is held down, the character turns at a constant 

velocity until the key is released, when the character immediately stops 

turning. While this is easy to control, if used as training data there would be 

only three values: a value for left, a value for no turning, and a value for right.  

The network would not be able to easily figure out when to turn gently (e.g. 

when there is an obstacle in the distance) and when to make a hard turn (e.g. 

when the obstacle is right in front of the agent).  Therefore the agent had 

angular velocity as one of its properties, and pressing the left or right buttons 

would decrease or increase this respectively.  The human trainer could then 

make long, gentle turns, or sudden sharp turns as required.  Using an analogue 

input device such as a steering wheel would remove this requirement. 

• Using a neural network of this type has the problem of remembering what the 

agent has seen, or short-term memory loss.  The problem is not simply that the 

network can't remember where it has been before, but it can't even remember 

what happened a fraction of a second earlier.  If it was heading straight for a 

wall, it may decide to turn left, but one frame later the inputs may have 

changed slightly such that it now decides to turn right.  This was a common 

problem in this simulation, where the agent, approaching a wall straight on, 

would swerve to the left, then to the right, then to the left and so on until it hit 

the wall. This was combated by inputting the previous steering value into the 

neural network, which would allow the agent to "remember" what it was just 

doing, so in the example above if it decided to turn left, in the next frame the 

fact that was previously turning left would help to persuade the agent to 

continue turning left. The forward velocity was also input, just in case this had 

an influence on the steering. 

• When training the agent for path finding, a random destination is calculated, 

and the goal is to reach that destination while avoiding obstacles.  When the 

destination is reached, a new random one is calculated. The destination was 



input into the network as the angle between the vector pointing in the direction 

that the agent is currently moving in and the vector between the destination 

and the agent's current position. Because the agents and the destinations were 

at the same height, this angle therefore represented the angle that was needed 

to turn in order to be moving directly towards the destination
1
.  In addition to 

this, the distance to the destination was also used as input, as the distance may 

affect the behaviour of the agent when path finding.  As in any programming 

paradigm, “garbage in, garbage out”.  In other words, it was very important 

that the human trainer perform the path-finding job well.  Rather than giving 

the numerical values of the angle and the distance to the destination, a large 

arrow was displayed at the top of the screen pointing to the destination, and 

the destination itself was highlighted with a bright red cylinder that extended 

into the sky.  With these two additions, it was always very clear where the 

next destination was, and hence good training examples could be made.  It is 

important to note that these visual features were not made available to the 

neural network though. 

• All inputs were normalised to be a number between zero and one before being 

used as input to the neural network, which meant minimum and maximum 

values had to be defined for each input.  For the pixel data, this was easy; zero 

was black, one was white, and everything in between was grey. Minimum and 

maximum rotational and linear velocities were defined to make, for example, 

zero hard left and one hard right.  The angle to the destination obviously had 

minimum and maximum values of negative and positive 180 degrees 

respectively.  The maximum value for distance to destination is not so obvious 

however, so a value of 300 metres was used as a cap, where any value over 

that was set to be one
2
.  By normalising all values, any bias about which inputs 

are more important than others are eliminated, leaving the neural network to 

find for itself which inputs are the most important. 

                                                
1
 The usual way of calculating the angle between two vectors is to take the arccosine of the dot product 

of the two normalised vectors.  However, just using this formula will not show whether the current 

movement vector is to the left or to the right of the destination.  To achieve this, the "left" vector was 

defined as the destination vector rotated ninety degrees counter clockwise around the Y-axis.  The 

angle between the movement vector and the left vector was then calculated.  If the angle was less than 

90°, then it meant that the current movement vector was to the left of the destination vector. 
2
 The city had dimensions of 400 x 400 metres. 



• While neural networks can tolerate some noisy data, it is of course beneficial 

to minimise the amount of noisy training data.  For this reason, each time 

training started a new file was created using the current date and time as the 

filename.  During training, the training examples were written to this file, and 

over several training runs several files would be created.  This meant that if 

the human trainer made a mistake, the mistake could be removed from the 

training examples by deleting the most recently created training file, rather 

than having to delete all the training examples. 

• The background colour was set to light blue to look like the sky for the human, 

and pure white for the agent in order to help it to better distinguish between 

the objects in the background. 

 

Figure 3 shows an example of what the human trainer sees compared to what the 

neural network "sees". 

 

(a) A screenshot from the human trainer's window 



(b) The (enlarged) view the agent gets for the same scene 

Figure 3: an example of what the human trainer sees (a) compared to what the neural 

network "sees" (b).  The human trainer's window includes at the top of the screen an 

arrow pointing to the destination, a large red marker showing the destination in the scene 

(in this case on the left), a visual representation of the current steering value at the bottom 

of the screen, a red square at the bottom left of the screen meaning that training is in 

progress, and finally a small window at top left-hand corner of the screen shows what the 

agent is seeing. The view the agent gets is greyscale and is of a much lower resolution 

than the trainer's window.  It is also without the auxiliary graphical components described 

above, however the neural network is given the numerical values of the angle and 

distance to the destination along with the linear and angular velocities. 

 

Back-propagation 

The back-propagation stage is where the neural network gets trained. While the 

purpose of this report is not to explain the theory behind neural networks in any detail, 

a brief explanation of what happens during back-propagation will be given now.  The 

inputs of the neural network are each linked to all of the hidden nodes in the network, 

which in turn are all linked to the output node.  Each of these links has a weight, so 

that when inputs are put into the network, they are multiplied by the weights and these 

become the inputs for the next layer of the network, until the output layer is reached, 

which will then have a value which is the network's estimated answer.   



 

The training of the neural network is therefore just the job of finding the weightings 

of the links which give good results, which it does using the training examples 

provided.  It does this by first giving the weights random values, and then going 

through a loop, with each iteration using one of the training examples.  For each 

training example, the inputs are fed into the neural network and the neural network 

output is calculated.  This calculated value is compared to the actual value supplied in 

the training example, and the difference between these two values gives information 

about how the weights need to be changed.  For example, if the calculated value is too 

large, then the weights need to be lowered.  The links which already have the largest 

values are presumed to be the most incorrect, and so those links need to be changed 

the most, so each of the nodes in the previous layer are given estimates of what they 

should have been, and these estimates are compared to the calculated values, so that 

this process can bubble up to the top of the network.  This process can continue until 

either the error of the network is small enough or a predefined number of iterations 

have run. 

 

Upon completion of back-propagation, the network is written to a text file, which can 

be loaded later when running the simulation. 

 

Commandeering 

When providing training data for a neural network there are several aspects to 

consider.  One of these is the amount of training data to provide, which in most cases 

is unknown until training has been completed and the network can be tested.  Another 

is the need to provide a distribution of training examples which is not biased and 

which approximates what the neural network will see when used with new data.  For 

example, if in the training data there were significantly more left turns than right 

turns, then on new data the neural network would be more inclined to turn left even 

when it should turn right.  Without a variety of data the neural network will not learn 

to generalise or to observe the features of its inputs that are important, or more likely 

will observe features that are not important.  For example in this simulation, when an 

agent was taught to follow the centre of the road, only turning when it was 

approaching a wall, but was only taught in the areas of the virtual city where the road 



was surrounded by the grey foot paths, the agent performed well in areas of the city 

that it hadn't seen before as long as the foot paths remained.  However, when the road 

went through the section of the city surrounded by green grass and next to the river, 

the agent got confused, turning wildly to the left and then to the right.  While the best 

strategy for the agent would have been to concentrate on the white lines in the middle 

of the road, clearly it was also taking into account the areas around the road.  In this 

example, it is quite obvious that while training a greater variety of areas should have 

been gone over, however it is not always so obvious, for example when avoiding 

obstacles, there may be some combinations of obstacles together which may confuse 

the network, without being obvious what those combinations would be to the human 

trainer. 

 

For these reasons, the idea of “commandeering” was used.  After initial training of the 

neural network, the agent would then be allowed to run in the environment, using its 

neural network to decide how to react.  If the training data was biased to always turn 

to the left for example, the agent may start to turn left when it should really turn right.  

At this point, the human trainer can “commandeer” the agent, turning it to the right, 

and then relinquishing control to the neural network once again.  During the time the 

trainer was controlling the agent, the agent was recording what was happening, adding 

this new training data to its training set.  In this way, the training set becomes less 

biased, and any unforeseen difficulties or situations that the agent encounters will 

become covered in the training set. 

 

An old saying says that when a pole is leaning too far to one side, it will lean the same 

amount in the opposite direction after being "fixed". There is certainly the danger that 

a biased neural network will become biased in the opposite direction if too much 

commandeering is performed.  The human trainer is relied upon to use their judgment 

to know when to stop training.  If, after some commandeering, the network is 

retrained with the new data, using the newly created network for subsequent training, 

then the risk of this happening is diminished greatly.  Other methods do exist, such as 

that used in [1], which used a bounded sized training set.  In this case, when a new 

example was added, the example removed was that which made the average steering 

direction of all the examples to be straight ahead, which ensured that the neural 



network was never biased to turn in one direction. No such methods will be used in 

this project. 

 

 

Implementation 

This section will first go over the implementation of the virtual city in terms of the 

graphics and collision detection and then over the implementation pertaining to the 

neural network. 

 

City implementation 

The simulation was implemented in C++ using OpenGL and the GLUT extensions. 

ColDet, an open source library written by Amir Geva
3
, was used for the collision 

detection. 

 

The objects in the world could be broadly broken into movable objects and static 

objects, with the former including people and cars and the latter including roads, 

traffic lights and buildings.  Object-oriented programming was used represent the 

objects, with Car and People objects extending the MovableObject object while the 

buildings etc extended from the StaticObject object, with both the MovableObject and 

the StaticObject objects extending the WorldObject object. The WorldObject object 

contained properties common to all objects such as its position in space and methods 

such as a draw method, among other fields.  The MovableObject object then had 

properties such as angular and linear velocity and a method to move the object in each 

time step. 

 

The collision detection software worked using triangles, so all objects in the world 

were represented using triangles.  Rather than hard coding the city into the simulation, 

a proprietary text file format was created to load in the map.  The following shows an 

example of the map input file: 

 
Road 96.0 0.05 0.0   0.0 90.0 0.0   0.1 0.1 0.1   200.0 0.0025 8.0 

                                                
3
 Available at http://photoneffect.com/coldet/ as at June 2005 



TrafficLights -96.0 0.1 40.0   0.0 90.0 0.0   0.1 0.1 0.1   9.0 5.0 

9.0   3 600 300 600 0 

Model -10.0 0.0 -25.0   0.0 180.0 0.0   0.0 0.0 0.0   18 100 18   

boc.model 0 

 

The first line says to create a road, with the following three numbers being the X, Y, 

and Z location of the centre of the road, followed by the rotation of the road (in this 

case, it is being rotated 90° around the Y axis), the colour of the road (i.e. the red, 

green, and blue components between zero and one) followed by the size of the road 

(in metres). 

 

The next line creates some traffic lights.  It has much the same format as the road, 

however it contains four extra numbers.  The first extra number specifies the number 

of roads coming into the intersection, which in this case is three which means it is a T-

intersection.  The following numbers specify the phasing of the traffic lights, that is to 

say each number is an amount of time that the light should stay green for.  In this 

case, one of the lights stays green for only half the time as the other two (the extra 

zero on the end is not used as there are only three roads coming into this intersection). 

 

Finally, a building is created.  The keyword "Model" specifies that this will be a 

StaticObject object and that a file exists including the model information for the 

object.  The final number on the end specifies whether to use the triangles that will be 

loaded from the file for collision detection or not.  In this case, the '0' specifies that the 

model should not be used for collision detection, so rather just a simple box which 

takes up the same space as the model will be used.  This means that a complicated 

model with hundreds of triangles can be drawn on the screen, while only a few 

triangles are needed for the collision detection, which is obviously much more 

efficient, but can only work if the model is box shaped. The model files are in another 

proprietary format. The following shows an example of a model file: 

 
0.5 0.1587 0.5 

# the scale factors to multiply it so all the  

# numbers are between -0.5 and 0.5 

# recommended ratios are 1.0 6.3 1.0 

Colour 0.5 0.5 0.5 

Box 0.0 0.0 0.0   2.0 1.0 2.0 

Rotate 45.0 0.0 0.0 



Translate 0.0 1.0 0.0 

Triangle   -1.0 0.0 -1.0   0.0 5.5 0.0   -1.0 5.0 -1.0 

 

When a model is loaded, it is expected that the dimensions of it are one metre by one 

metre by one metre (so they can be easily stretched by the amount specified in the 

map file), which would mean all coordinates in the model file should be between -0.5 

and 0.5.  However, it may be inconvenient to work with such numbers, especially 

when creating something such as a tall building where the height is so much greater 

than the width and depth.  Therefore, in the model file any numbers may be used, but 

when being loaded into the simulation they need to be transformed so that every 

number is between -0.5 and 0.5.  The first three numbers of the model file specify the 

scaling factor needed for each axis when loading the model to achieve this.  In this 

example, the width and depth are specified as numbers between -1 and 1, while the 

height is between -6.3 and 6.3 (although anything below zero would mean the 

building went underground).  The "recommended ratios" line is to help when 

specifying the size of the building when adding it to the map, so that the building is 

not relatively stretched or compressed in any direction.  In this example, the width and 

depth of the building should be the same, and the height should be 6.3 times the 

width/depth.  The subsequent lines show all the functionality of the model files, which 

were designed to work in a similar fashion to how OpenGL receives information 

about vertices.  The "colour" line specifies the colour of all subsequent parts of the 

model; the "box" line creates a box (which is really a shortcut for creating 12 triangles 

in a box shape) centred at the given (model) coordinates with a specified size; the 

"rotate" line rotates all subsequent parts of the model by the specified amount around 

each of the three axes; the "translate" line translates all subsequent parts of the model 

by the specified amount; and finally the "triangle" line creates a triangle with the three 

specified vertices. 

 

The simulation is run with the filename of a map file passed in as a command line 

argument.  The program goes through the map file, building up a vector of 

WorldObject objects.  At each time step during the simulation, every object has its 

"process" and "draw" methods called.  Most static objects will do nothing in their 

"process" method, except for the traffic lights, which work by changing the colours of 

certain triangles in the model when it is time to change the colours of the lights.  The 



"process" method of movable objects updates the position of the object and checks for 

collisions.  It also runs the neural network to update the rotational velocity, which will 

be explained more in the following subsection.  The "draw" method simply loops 

through the vector of triangles for the model, simply feeding the vertices to OpenGL, 

which takes care of the rest (i.e. drawing the 3-D scene onto the 2-D screen buffer, 

taking care of clipping and perspective mapping etc). 

 

Each agent needs to be able to see the world from its own point of view.  Currently, a 

sub window is created for the agent with a size of 32 x 24 pixels (which has the same 

aspect ratio of the 640 x 480 pixel window that the simulation defaults to).  In each 

time step then, both the main window display and the agent's display are updated 

using the same draw method, only from different points of view.  The agent can then 

read the pixel values from its sub window to use as input into the neural network.  

Using a sub window in this manner is quite restricting because each agent would 

require its own sub window.  If it was found that an agent only needed to run the 

neural network every x frames, then this could be improved by having each sub 

window share x agents.  This is still not optimal however, so a future improvement 

would be to use off-screen rendering so that no sub windows would need to be 

created. 

 

It is important to remember that due to the nature of this project, i.e. controlling an 

agent based on pixel values, any language and graphics API would be suitable as long 

as the scene could be rendered from the agent's point of view with perspective, and 

likewise the representation of objects in the world is not important. 

 

Neural network implementation 

A neural network library named FANN (which stands for "Fast Artificial Neural 

Network") written by Steffen Nissen and Evan Nemerson
4
 was used in this project.  

This library exposes a neural network structure, which each movable object has as one 

of its properties.  The two most important methods are the "train" method and the 

"run" method. 

                                                
4
 Available from http://leenissen.dk/fann/ as at July 2005. 



 

Training 

The back-propagation stage is where the neural network gets trained, and takes place 

in a separate program, called the "Learner".  FANN expects all of the training data, 

where each example is just a space-separated line of the numerical input values with 

the expected output on the following line, to be in one large text file. The first step of 

the Learner is therefore to combine all the training data files created by the simulation 

into one large text file in a format suitable for the neural network software.  The next 

step is to call the "train" method in FANN. 

 

The "train" method takes in the filename of the newly created file containing all the 

training data, along with the requested network structure (i.e. the number of layers and 

the number of nodes in each layer), the learning rate, the maximum number of times 

to train for, and the desired error level to reach.  The method then trains the network, 

writing regular progress reports to the standard output.  Upon completion, it creates a 

".net" file on the disk which holds information about the trained neural network so 

that it can be loaded later. 

 

Implementing this part of the project was therefore a very simple task. A command 

line program was written in C++ that simply combined all the separate training files 

into one file, and then called the "train" method.  The neural network specifications 

such as the number of layers and nodes were hard coded into the program, so that to 

change these specifications the program needed to be recompiled. Figure 4 shows an 

example of the Learner program training and writing a network to the disk. 

 



 
Figure 4: example output of the Learner neural network-training program.  In this 

example two training files are combined to train the network up to 2100 times. 

 

There is no specific way to calculate the required network topology for a given 

problem, particularly one like this where pixel values are used as input.  Therefore, 

experimentation is needed to find a good network topology.  The input layer had 776 

nodes (which is made up of the 32 x 24 pixels, the angle and distance to the 

destination, and three values each for the linear and angular velocities specifying the 

velocity in each axis
5
), and there was just the one output layer.  Having just one 

hidden layer with five nodes was sufficient to allow an agent to successfully avoid 

obstacles or follow the road. 

 

Running 

The location of the agents was specified in the map file, and along with the location 

and size of the agent was the filename of a FANN network file, which is the output of 

the training programme. In this way, it is possible to specify different neural networks 

for different agents, so you could, for example, train one agent to move aggressively 

and another to move calmly. 

 

                                                
5
 This would allow information such as how fast the object was moving forward, sideways and 

vertically, along with the rotations in three directions.  However, currently only the forward velocity 

and angular velocity around the Y axis was used, so all remaining velocities were set to 0.0 which 

meant that the neural network would ignore them. 



When an agent was created, the filename of the FANN “.net” file was supplied to a 

method in the FANN library, which creates and returns a pointer to a neural network 

structure.  At each time step, the pixel values and auxiliary information were copied 

into an array of floats, a FANN method was called with a pointer to that agent's neural 

network structure and the array of input floats, and the output of the neural network 

was returned.  This output was denormalised and then set to be the agent's steering 

value. 

 

Thanks to the excellent design of FANN, the steps involving the neural network were 

very simple to implement. 

 

 

Results 

As was stated in the introduction, four areas were being looked at when trying to train 

the neural network.  These were obstacle avoidance, following the road, obeying the 

traffic lights, and path finding, which will now each be looked at in turn. 

 

Obstacle avoidance 

The first goal was to make sure the neural network could control an agent by 

analysing the pixel values.  Therefore, a very simple world was created, which was 

simply four enclosing walls with different sized obstacles distributed within them.  

There was neither floor nor ceiling, and the walls and obstacles were all the same dark 

colour.  Figure 5 shows an overview of the world created for this test. 

 



 
Figure 5: a simple world to test obstacle avoidance 

 

The results from this test were very promising.  After only a few minutes of training 

the neural network was able to steer the agent around the room, successfully avoiding 

all obstacles.  Furthermore, the agent was able to be put in a world with a different 

layout and successfully navigate around the obstacles without any further training.  

Figure 6 shows an example of the path taken by the agent in each of the two worlds. 

 



  
Figure 6: examples of paths taken by the agent.  The red lines show the path taken.  

The image on the left is the world that they agent was trained in, while the image on 

the right is a world that the agent had not seen before. 

 

The neural network had learnt to not worry about objects that were far away from it, 

or to the sides of it.  It learned that when an obstacle was close, it needed to turn left 

or right, depending on what was to the left or right of it.  Because the neural network 

had no information about the objects other than what it saw, it obviously learnt to 

categorise an object as being near or far. 

 

This type of obstacle avoidance is fundamentally different from others, where the 

agent has knowledge of the position and size of the objects.  In those systems, the path 

taken by the agent is arrived upon by mathematically analysing the situation, which 

can give optimal solutions when the world follows certain assumptions.  However, 

they are normally rather simplistic, ignoring much of the reasoning that a human 

would use.  For example, if there is a gap between two obstacles, can the agent fit 



through it?  This not only requires calculating the distance between obstacles, but also 

it requires reasoning about the shape and size of the agent.  And what if one of the 

obstacles was rotated, on a lean, or of an irregular shape?  Hand coding a function to 

take care of all the possible contingencies would be extremely difficult for a number 

of reasons, not least of all because we may not be able to identify all the rules we use 

as humans when performing obstacle avoidance, so training the agent by example 

seems ideal for obstacle avoidance in an arbitrary environment. 

 

Road following 

The next goal was to test the neural network's ability to follow the road, which was 

similar to the goal in [1]. The agent was trained to drive down the centre of the road, 

so it was presumed that the neural network would identify the white lines of the road, 

and steer the agent so that the white lines were centred in the middle of the road.  It 

would need to pass straight through intersections, ignoring the road, and its white 

lines, perpendicular to it. It would need to turn corners, and the if it approached a T-

intersection and had to choose between steering left and right, then it should turn in 

the direction that was easier (e.g. if it was already steering slightly to the left, then it 

should turn left). 

 

During training, it was important to train the agent in both directions (so that there 

were plenty of examples of turning both left and right), and it was also important to 

train the agent how to recover when it was not centred in the middle of the road by 

temporarily turning off the training, steering the agent away from the middle, turning 

training back on and then recovering.  Commandeering was also needed to improve 

the accuracy.  Figure 7 shows an example of the agent successfully navigating itself 

around the roads.  Figure 8 shows how the performance was improved using 

commandeering after it was found that the agent performed poorly around the grassy 

areas. 

 



 
Figure 7: an example of an agent following the road.  The agent was travelling in the 

counter clockwise direction, only turning when it needed to. 

 

While the agent performed reasonably well, at times it did deviate from the centre of 

the road.  In a situation such as driving on a road, it is very important that the agent 

does not deviate off course as this may lead to an accident.  In cases where the agent 

has a representation of the roads in its knowledge base, it may be safer to use this 

representation to calculate the agent's position rather than using a neural network.  

Nevertheless, the research in [1] proves that with sufficient and high-quality training, 

a neural network can learn to steer safely on real-world roads. 

 



 
(a) Before 

 
(b) After 

Figure 8: an example of using commandeering to improve performance.  On the left is 

the path taken by an agent when approaching the grassy area.  The change in colour of 

the ground surrounding the road initially confused the agent.  The image on the right 

shows the improvement after retraining (although more training is still needed at this 

stage to keep the agent in the middle of the road), and illustrates the use of 

commandeering: the point where the agent gets confused can be seen and corrected, 

rather than trying to guess where the agent may have problems. 

 

 

Obeying traffic lights 

For this step, the neural network was used to control the linear acceleration of the 

agent, with steering being human-controlled. It was hoped that the agent would learn 

to stop for red lights and go for green lights.  The behaviour for orange lights should 

depend on the current velocity.  Furthermore, traffic lights in the distance should be 

ignored, and the agent should stop only when it gets a certain distance away from the 

intersection. 



 

It was found that the agent was not able to learn this behaviour at all.  It may be that 

when converted to greyscale, the different colours of the lights were too similar to 

distinguish between each other.  Also, the size of the lights were quite small, and 

depending on the exact location and orientation of the agent, the lights were always in 

different parts of the screen, which again would increase the difficulty of this task. 

 

Path finding 

The final goal of the project was to use the neural network for path finding.  This 

involved telling the agent to move to a random destination, and when this destination 

was reached a new random destination was given.  This is a more difficult task than 

the others because the agent must head towards a destination while at the same time 

avoid obstacles, with these two tasks often conflicting with each other. To make it 

easier, the agents did not need to stay on the road and they were allowed to walk 

across the river rather than crossing it by a bridge. 

 

The results were promising but far from perfect.  While most of the time the agent 

was able to avoid obstacles and head in the general direction of the destination, its 

movements were sometimes erratic, it didn't take the shortest path, and it would 

sometimes head in the complete opposite direction of what it should have. It seemed 

that the destination acted as an influence on where the agent went, rather than being 

its goal to get there.  

 

Several network topologies were tried; from having a single five node hidden layer up 

to having three hidden layers each with eight nodes. It was found that keeping it 

simple was the best strategy, with a single hidden layer with seven nodes giving the 

best performance, whereas having multiple hidden layers often resulted in a strategy 

for the agent such as "turn left no matter what", causing it to go around in circles. 

 

Despite the problems, the fact that the agent normally headed in the correct general 

direction of the destination showed promise.  It looks probable that with better 

training and more experiments with different network topologies, the agent should be 



able to successfully path-find its way around the city. Figure 9 shows some example 

results from the simulation. 

 

(a) 

(a) The agent started in the top left of the screen, narrowly avoided some buildings, 

crossed the bridge, but then had a little difficulty in getting to the correct spot as can be 

seen by the loop at the end of the path. 

 



(b) Long-distance path finding, with the agent starting at the bottom left-hand corner of 

the screen. One of the features to note is the smoothness of the path, which, in the 

bottom left-hand side of the screen for example, resembles the kind of obstacle 

avoidance while heading to a destination that a human pedestrian may perform.  In other 

situations though, it only serves to increase the distance travelled, as in the second half 

of the path where it should have just headed straight across the river. 

 
(c) More long-distance path finding, with the agent starting at the bottom left corner.  

Near the middle of the path, next to the brown building, the agent got stuck and had to 

be helped out.  Once again, at the end of the path the agent had trouble getting to the 

correct spot, doing a loop before finally arriving at its destination. 

Figure 9: examples of path finding. There was no requirement for the agents to follow 

the road, and they were also free to walk across the river. 

 

It would be useful to study this further because if successful, it may be a good way to 

move an autonomous agent from A to B.  In other words, higher-level planning could 

determine where the agent should go (or in which direction), and this visual based 

neural network navigation system could be used to get there, with the advantages 

given earlier such as the neural network's ability to deal with noisy data and a 

constantly changing environment which is inherent in the real world.  Obstacle 

avoidance on its own is not so useful, because if a different method was used to drive 

the agent until an obstacle was detected, then the neural network could avoid the 

obstacle, however it may end up turning the agent in the completely wrong direction.  

Furthermore there are difficulties in knowing when to turn the obstacle avoidance on 

and off, or how to combine it with another method, so if the neural network could deal 



with keeping the agent in the correct direction, then it should be able to smoothly 

guide the agent around obstacles and then smoothly turn back towards the destination. 

 

 

Conclusions 

In this project a virtual city was implemented in order to simulate vision guided 

navigation of autonomous agents.  The agents were given no information about the 

layout of the world or which objects existed there, and instead rendered the scene 

from their points of view and decided how to move based on this information, much 

as a robot would do situated in the real world. 

 

Specifically, the pixel values of the rendered scene were used as inputs into a neural 

network, with the output of the neural network giving information on how the agent 

should be moved.  The agents were separately trained to avoid obstacles, follow the 

road, obey traffic lights, and path find.  Training consisted of a human trainer 

controlling the agents as in a video game, with a log of the rendered scene and the 

action the human controller was taking at each time step.  Separately, the neural 

network was trained using the data from these log files. 

 

The results of this project were mixed, with very good performance in obstacle 

avoidance and path following, but poor performance in obeying traffic lights.  The 

path finding, which involves both obstacle avoidance and travelling towards a goal 

destination, showed much promise.  It is probable that with further training the neural 

network could learn to do this better, and it was speculated that in autonomous agents 

situated in the real world, neural network-based visual guidance might be suitable for 

moving the agent to a goal destination, with this destination being decided by other 

higher-level methods. This is because the neural network is able to learn in 

environments where lots of noisy data is present, and there are many variations in the 

scene, because with enough training the neural network is able to generalise out the 

important parts of a scene in a way that would be very difficult with hand coded 

algorithms.   

 

 



Future work 

As there are already working traffic lights in the simulation, an obvious next step is to 

have the agents successfully control the acceleration of the car.  There would then be 

two neural networks: one for the steering and one for the acceleration, both working 

independently.  It may be that a third neural network is required that classifies the 

colour of the lights, which would need to ignore the lights in the distance, and perhaps 

even the lights in front of it until the agent was close enough.  While it may be 

possible to combine this with some kind of rule-based system (e.g. "if lights = red 

then stop") it may be better to feed the result of this network into the acceleration 

network.  This is because acceleration depends on more than just the traffic lights; it 

depends on whether there are corners, obstacles etc, which would make it difficult or 

impossible to combine with rules. It may be that more networks need to be chained 

together in this fashion to achieve optimal performance.  Having specialised networks 

chained together has the advantage of allowing each part of the chain to be trained 

independently, for example once the network had learnt to classify the traffic light 

colours correctly, there would be no danger of "untraining" it when training it to do 

something else, and it should also be easier for it to learn a few, separate concepts 

than one complicated concept. 

 

Another important step would be to change it so the scene from the agent’s point of 

view was rendered into its own off-screen buffer, allowing multiple agents to interact 

at once.  The agents would need to avoid each other, and it could be a novel approach 

to crowd simulation.  Rendering the scene from each of the agents' points of view 

may prove to be too computationally expensive however, so it would be interesting to 

see how many agents could run at once, with performance be improved x-fold by 

having each agent's point of view being updated only once every x frames. 

 

In [2], Reynolds identified three rules that can be followed in order to simulate 

flocking behaviour seen in animals such as birds. These rules are "separation" (i.e. 

moving to avoid collisions with others), "alignment" (i.e. moving in approximately 

the same direction as the others who are close), and "cohesion" (i.e. staying close to 

the others). It would be interesting to see whether flocking could be implemented in 



the system by having the trainer follow those three rules rather than explicitly 

programming them in.  To achieve this, the set-up of the agent's point of view would 

have to be looked at carefully as animals that flock, such as birds, have their eyes 

located at the sides of their head to give a larger field of vision, compared to the 

relative tunnel vision that is currently used in the simulation. 

 

There are many other possibilities that could be explored.  For example, can a car 

learn to indicate before it starts turning?  This would require the network to know that 

it was going to turn before it did.  Or, can one car learn to follow another?  Would it 

get confused when the car it was following went close to other cars?  This problem 

may further expose the problem of the network having no memory, because if the car 

being followed managed to escape the field of view of the follower for even one 

frame, then the follower would have no idea where to go. 

 

Perhaps the most important future work then is to investigate which problems can be 

solved by a neural network, and which are better to be solved using other methods. 
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