

Computer Science 780 Project Report

Game Engines for Interactive Collaborative Biomedical
Visualizations

Andrew Gits

Supervised by:

Burkhard Wuensche

Semester One 2005
Department of Computer Science

University of Auckland

2

Table of Contents

1 Abstract .. 3

2 Introduction ... 4

3 Background... 5
3.1 Computer Game Graphics ...5
3.2 Computer Games Architecture ...6
3.3 Existing Computer Game Engines...7

3.3.1 Open Source Engines..8
3.3.2 Commercial Engines ...9

3.4 Existing game-based visualizations..11
3.5 Medical Visualizations ..13

3.5.1 VTK – Visualization Toolkit..13

4 The Visualization Tool .. 14
4.1 Design ...14

4.1.1 The Requirements ...14
4.1.2 The Engine ..15
4.1.3 The Modifications ...17

4.2 Implementation ..18
4.1.1 Preprocessing ..18
4.1.2 Game-code...20

4.3 Usage ..22
4.3.3 Collaboration...24

5 Evaluation .. 26
5.1 The Tool ...26
5.2 The Quake 3 Engine ..26

6 Conclusion ... 28

7 Future Work .. 29
7.1 Visualization...29
7.2 Collaboration ..30

8 References ... 31

3

1 Abstract

The overall aim of this project was to investigate the use of existing computer game

technology for collaborative biomedical purposes. This involved implementing a simple

visualization tool into a 3D game engine. Various game engines were researched, and

reviewed based on their features and flaws. Three critical factors were taken into

consideration when reviewing the engines – rendering ability, network capability, and

ease of use. Commercial engines were preferred over open-source engines, as they are

widely obtainable, and often have superior compatibility and stability than the open-

source alternatives.

The tool development involved three main steps – loading the dataset into the game

engine, visualizing the dataset, and extending the multiplayer features to utilize them for

collaborative visualization. The engine chosen was Quake 3, as this satisfied the criteria

as best possible, and there was a huge amount of resources existing for Quake 3

modifications, making the task more achievable in the given time-frame. The resultant

tool, while slightly lacking in functionality, demonstrates the ability to use the Quake 3

engine for visualizing a dataset. Additionally, it allows several users to connect to a server,

and visualize the same information, provided they have the dataset on their computer.

4

2 Introduction

As biomedical technology advances, so does the size and complexity of the data sets.

As a result, it becomes much harder to utilize the information obtained. Visualization of

these data sets is fundamental for exploring, analyzing, and understanding the

biomedical data, so it is essential to find (or develop) a tool that will allow this.

A variety of commercial visualization applications exist, however most of them are

expensive and difficult to operate. Furthermore, they are usually not designed for

collaboration and interactivity in the exploration of data sets. Another drawback is that

all popular visualization tools use different data formats. This makes it difficult for

researchers to exchange data sets and results unless they all use the same software.

This project examines the use of game engines as a visualization tool for biomedical data

sets. A huge amount of research goes into the design of game engines, and they often

contain the most efficient, well tested implementations of algorithms from all areas of

Computer Science. Additionally, game engines are designed to allow multi-player

games over a network, and are typically easy and intuitive to use.

For these reasons, this project investigates the ability to adapt game engines for

biomedical visualization. Re-use of existing code and functions would mean minimal

work would be required to complete the modifications needed. This would result in a

free, easy-to-use tool which allows researchers world-wide to collaborate and explore

biomedical data sets.

5

3 Background

3.1 Computer Game Graphics

Computer game engines can be categorized as either 2D or 3D. While many 2D engines

do in fact utilize 3D APIs to draw content, they are of little use in a medical visualization

since they are designed for 2D graphics only. There are two main APIs created for 3D

graphics – OpenGL and DirectX [4, 5]. Most games support one of these, and some

engines occasionally support both.

OpenGL is a cross-language cross-platform API developed by SGI. The interface consists

of numerous functions which are used to draw 2D and 3D content. OpenGL focuses

solely on Computer Graphics, and the implementations available on various platforms

are very efficient, making it very popular with the Computer Game Industry.

DirectX is a collection of APIs developed by Microsoft, and includes support for sound,

networking, graphics, and video. At the current time, DirectX is only available on

Windows and, although quite different, Xbox. Direct3D deals with the 3D component of

DirectX, and is roughly equal with OpenGL in terms of speed and functionality.

One other aspect that should be mentioned is hardware. The majority of modern video

cards support hardware acceleration of both OpenGL and Direct3D. As such, almost all

current generation 3D game engines require one of these video cards to run at an

acceptable frame rate. The video card used for this project has an nVidia GeForce 4 Ti

[6] chipset, which performs sufficiently well even considering it is several years old.

An issue that might arise is that game developers cut corners in order to keep rendering

fast, so as to retain a high frame-rate for real-time interaction [2]. While these shortcuts

may make the game more enjoyable, this can not be replicated for medical

visualizations. Biomedical data provided to users to visualize and explore must be as

accurate as possible, otherwise it becomes almost useless.

6

3.2 Computer Games Architecture

A popular trend when designing computer game engines is to separate the game into

three modular, parts as shown in the diagram below.

The first part (the .exe) contains the low level “engine” code. This is where tasks such as

rendering, physics and memory management are performed. It handles all the functions

utilizing hardware, such as sound cards and I/O devices. The engine code also links all

the APIs, such as OpenGL, into the game.

The second part is higher level, and abstracts away from hardware specific code. The

main purpose of this part is to manage the game logic. This “game code” defines how

the game itself plays. The implementation can vary – sometimes a scripting language

such as Lua [7] is used, and other times the game code is written as a library and linked

into the engine.

The final part is the game content, which contains all of the media the game uses. It may

contain anything from images, to sounds, to 3D data. Many developers incorporate their

own proprietary formats for data, in particular 3D data, which has been optimized to for

use with the engine.

The main benefit of utilizing this type of game architecture is flexibility. It enables the

developer to open-source the game code, letting users create modifications – anything

from a small weapon addition, to an entire game – without the need to access the

engine source code.

7

3.3 Existing Computer Game Engines

A variety of existing game engines were looked at, ranging from free open source

engines, to commercial engines used in actual off-the-shelf games. There were several

important factors that were taken into consideration when choosing an engine. The most

significant, as expected from a 3D visualization, is the rendering power. A fast efficient

render system was desired, without needing ridiculous hardware specifications. Another

crucial factor is which 3D data format the engine uses – different formats vary in difficulty

to implement. The final main feature required is network support, enabling 2 or more users

to connect to a central server. This is vital for any sort of collaboration implementation.

The decision between using an older engine or a newer one was difficult. While older

engines generally have been patched to fix bugs and are a lot more stable, newer

engines have the advantage of utilizing the most recent graphics hardware, and thus

have much more rendering power.

8

3.3.1 Open Source Engines

The number of Open Source engines available at present is ever-changing, with a

constant flow of new engines replacing older engines. However, a few have stood the

test of time. Several of these engines are older commercial engines, open sourced simply

because of their age. The remaining are amateur engines, being created by a

community of programmers, and are continually being developed with improvements

being made every day.

OGRE [8]

OGRE (Object-Oriented Graphics Rendering Engine) is an established amateur 3D

engine, supporting both OpenGL and Direct3D on a number of platforms. It also

supports a number of 3D data formats, and rendering modes. It is quite advanced,

however it is only a graphics engine, and lacks any kind of networking, or other non-

graphic features. Thus, it will not be suitable for this project.

Irrlicht [9]

Irrlicht is another amateur engine which supports both OpenGL and Direct3D. It also

features its own software engine, which is an advantage for computers lacking

adequate 3D specific graphics hardware. It is written in C++ although it is also

available for .NET languages. However the lack of network functionality means this is

not suitable.

The Nebula Device [10]

The Nebula Device is essentially a C++ based rendering engine, and features

‘shader’ functionality – programs which run on the video card chip. It is scriptable,

but only currently supports DirectX 9. Like the previous open-source engines, it lacks

networking support, so is not suitable.

Quake 2 [13]

Quake 2 is an older commercial game and engine, produced by id software. It is

written in C, not C++, however it supports OpenGL, and has a reasonably sized

amateur community continually developing it. It uses a proprietary MD2 format for 3D

data, and there are numerous constraints on the format’s graphical complexity. It

does have network support however, as well as GUI functionality.

9

3.3.2 Commercial Engines

Whilst Commercial Engines can cost an incredible amount to license [3], in some cases

they can be used for free. This is achieved by modifying the “game code” portion of the

engine, which is often open-sourced to encourage amateurs to create their own add-

ons to the game.

Cipher [11]

Cipher is a 3D game engine based mainly on the Quake 3 Arena architecture. It

supports OpenGL, and includes many of the features found in complete game

engines. It has networking support, as well as a 2D GUI system, which make it an

attractive engine. While Cipher isn't actually being used in any existing commercial

games, it still costs $100 to license, and unfortunately there is no way to access the

game code without licensing the engine.

Quake 3 [13]

Quake 3 is one of the most mainstream game engines in the game industry at

present. It is OpenGL based, and features network support, efficient hardware

rendering, and an extremely easy-to-use GUI system. The engine has been around for

several years now, and is extremely stable, and many resources exist for modifying

and extending the engine.

Unreal Engine 2 [12]

Unreal Engine 2 is another complete solution engine. It features OpenGL and

Direct3D support, plus thoroughly tested networking capabilities, and ease of use.

However, it has its own proprietary scripting language, known as Unreal-Script, which

makes the process of modifying the engine slightly more complex.

Doom 3 [13]

The Doom 3 engine is one of the most advanced game engines available on the

market. It allows rendering extremely complex 3D data, and has a fully complete

lighting and shadowing system, at the expense of having massive hardware

requirements. However, the other features are similar to that of the other engines,

and there is no special advantage in using the Doom 3 engine.

10

All the above commercial engines are quite similar in feature-set, the only differences

being the licensing involved in using/modifying the engine. Another engine that should

be considered is Deep Creator [14]. While this isn’t truly a game engine, it is being

marketed as a “powerful authoring application to create interactive 3D environments,

assemblies and objects”. It doesn’t have the networking features present in these

commercial game engines, but there is a lot more room for customization and the

uniqueness of Deep Creator is in its ability to create specific interfaces which allow the

user to visualize and interact with the content. The application is versatile enough that

almost any type of application can be created from it [1], and it has detailed

documentation on every aspect of usage.

The figure above shows one sample of a Deep Creator application – in this example, the

user can customize a car with different colours, and rotate the car in full 3D to see it from

different points of view.

11

3.4 Existing game-based visualizations

There have been several attempts at using game engines for non-game purposes. Some

of the more successful projects have been investigated below.

Unrealty: Application of a 3D Game Engine to Enhance the Design, Visualization and
Presentation of Commercial Real Estate [15]

This paper discusses the various benefits and issues around the idea of using a game

engine as a tool for visualizing Real Estate. It discusses features that exist in the Unreal

game engine which can be utilized to create realistic representations of houses (and

other types of building). These representations can be used by Real Estate agents to

allow Clients to visually explore property without the need to actually visit the site.

12

UnrealTriage: A Game-Based Simulation for Emergency Response [16]

UnrealTriage is a “simulation of a mass casualty incident” based on the Unreal engine.

The aim of the simulation is to engage emergency response players in a small airplane

crash with 30 casualties. The players must suppress fires and locate and categorize the

casualties into varying levels of urgency.

13

3.5 Medical Visualizations

Biomedical Visualizations can be a huge benefit in the biomedical industry. They can be

used to teach medical students things such as bone, organ, or tissue identification, and

can even be used as a first look at the steps involved in performing complex medical

procedures [1].

3.5.1 VTK – Visualization Toolkit

The Visualization Toolkit (VTK) [17] is an open-source set of C++ class libraries organized

into 'kits', containing functionality for 3D computer graphics, image processing, and

visualization. It is used by researchers to build applications for biomedical, scientific and

information visualization. It is not a stand-alone application, but rather it can be used as

an addition to existing applications, enabling developers to build end-user products [26].

14

4 The Visualization Tool

4.1 Design

The design of the tool was split into three parts. The first part discusses the requirements of

the visualization tool in detail. The second section talks about the Quake 3 engine itself –

features that can be utilized, as well as constraints that need to be considered. The final

section describes what modifications are required to achieve the tool requirements.

4.1.1 The Requirements

The main goal is to create a visualization tool with the ability to visualize a biomedical

dataset, and allow multiple users on separate computers to collaborate and explore the

visualization.

Visualization

• Load Complex Dataset – the test data for this project was a 50,000 polygon

dataset generated by an implementation of the marching cubes algorithm.

• Display Dataset in real-time, from any perspective – this would allow the user

to move around the visualization, and explore it from different angles.

• Display Graphical Glyphs – this involves the addition of elements such as

arrows and streamlines to enhance the visualization.

Collaboration

• Allow multiple users to connect to a visualization server – ideally all the users

would be able to connect and visualize the dataset located on that server.

• Ability for users to all view the same dataset – the tool should offer the ability

for users to simultaneously view a dataset, rather than having to take turns.

• Enable communication between users whilst viewing dataset – some sort of

communication, most likely text based, would help user collaboration.

15

4.1.2 The Engine

For this project, Quake 3 was chosen as the game engine to be modified. There are

several main reasons for this, as listed above. But there are also some additional reasons.

Quake 3 was created by id software, and was programmed by John Carmack, who is

one of the top game engine programmers in the gaming industry. The engine has been

available long enough such that any bugs or instabilities that it may have possessed are

non-existent, as a result of numerous patches.

An extremely useful feature existing in Quake 3 that wasn’t mentioned before is its

extensive ‘shader’ system. Although having the same name, these have no similarity with

the shaders which are used with programmable graphics cards. The shaders in Quake 3

allow the creation and application of dynamic materials in-game. There are numerous

effects, including 2D translation, alpha blending, and environment mapping, all of which

are configurable by editing a .shader script file. This will come in handy when

implementing graphical glyphs in the visualization. An added bonus is that several tools

exist to visually create these shader files [25] (as shown in the figure below).

Another benefit of the Quake 3 engine is the ‘console’. This is an area in-game which

allows the user to input commands, or adjust variables. Commands can be useful

functions such as ‘screenshot’, allowing the user to capture the current screen, whereas

variables can have instant feedback in the engine – setting ‘r_showtris’ to 1 allows us to

see every triangle drawn on screen for example.

16

One minor setback is the lack of official documentation regarding the Quake 3 engine.

There are numerous unofficial specifications available on the internet [18, 19, 20], but

these are not always 100% accurate, and may be outdated, or just blatantly incorrect.

This is also a disadvantage when it comes to converting the dataset to the Quake 3

model format (MD3) as only one unofficial specification exists [18], and that document is

not 100% correct.

The idea behind the implementation of this tool was to modify the chosen game engine

as little as possible. Thus, existing features of the Quake 3 engine shall be used, and

extended if necessary, to satisfy the requirements above.

17

4.1.3 The Modifications

As the source code for the Quake 3 engine has not been publicly released, the tool will

need to be implemented using only the game code. The game code is freely available

under a ‘limited use’ license, and there are dozens of websites which contain tutorials

and information for extending it [21].

There are two methods of implementing the game code into Quake 3. The first involves

scrapping the existing code, and writing a visualization specific library from scratch. The

second method involves making minor additions to the current game-code to suit our

needs. For this project, one of the aims was to modify the game engine as little as

possible, thus learning the difficulty involved in implementing the visualization, so the

second method was chosen.

The first step would involve loading the dataset into the engine. Since the engine does all

the 3D data loading internally, the game code does not have the ability to load arbitrary

3D data into the game. Thus, Quake 3’s existing code will be used, and the data will be

converted into Quake 3 MD3 format prior to loading it into the game.

Unfortunately, because of the way Quake 3 deals with content during multi-player, each

of the clients would need the dataset on their computer if they were to view it on an

online server. However this isn’t really an issue, since the dataset file size is small, and

would be quick to download on most internet connections.

The only other modification required would be that of the physics engine – a visualization

tool does not need gravity. A user will want to fly around the dataset, with 6 degrees of

freedom. Although the game code doesn’t handle the math behind the physics engine,

it does have the ability to adjust user velocity and gravity, allowing us to create a

‘weight-less’ environment for the users to view the dataset in.

18

4.2 Implementation

The following sections detail the steps taken to implement the tool.

4.1.1 Preprocessing

The implementation of the tool begins with processing the data. Because of issues

discussed in the design, the dataset will need to be converted to MD3 format prior to any

modifications of the game code. Thus, several 3D tools were investigated. Data was

provided from a ‘marching cubes’ based application, and exported as an ASCII based

3D Studio format (.ASC), largely because of the simplicity in writing an exporter.

At this point, it was discovered that 3D Studio Max 7 [22] did not support directly

importing .ASC files in. So, a simple 3D application named ‘Milkshape 3D’ [23] was

purchased. This tool allowed the conversion between many formats, in particular for

game engines, so it allowed the conversion of .ASC format into .3DS format, and the

conversion of the mesh to a Quake 3 MD3, thus allowing the direct import into the game

engine.

However, one of the constraints of the MD3 data format (based on the unofficial

specifications) is that the maximum number of vertices allowed in a surface is 4096. The

converted mesh contained around 27,000 vertices, making it unsuitable for use in Quake

3. In hope of an error in the MD3 document, the dataset was tested anyway. It resulted in

Quake 3 throwing an error, stating the mesh had “more than 1000 vertices”. The MD3

format supports multiple meshes inside the one file, so the idea was to split a complex

mesh into a series of simple meshes, and export it as a single MD3 file.

19

At this point, the mesh was imported back into 3D Studio Max, and split up, each piece

containing less than 1000 vertices. It should be noted that the unofficial specifications

also claim the maximum number of surfaces to be 32, but as this mesh had less than

28,000 vertices, only 28 surfaces were used. Whether this 32 surface limit is accurate or

not remains unknown.

Shown above is the dataset loaded in 3D Studio Max. Although it is not possible to

distinguish, the mesh is actually split into 28 pieces. The idea was that the mesh should still

be identical once split up, and represent the original mesh when viewed in Quake 3.

Once the splitting process was completed, the mesh was exported back into Milkshape

3D, and then converted to an MD3 file. Upon retesting, Quake 3 loaded the dataset

successfully, and displayed it on the screen.

An optimal solution for this time-consuming process would be the creation of an

automated tool to convert from an existing popular 3D format to the Quake 3 MD3

format. However, because of the lack of MD3 documentation and the time constraints,

this tool was not created.

20

4.1.2 Game-code

The next step was to modify the Quake 3 game-code to suit the requirements. One of

the main aims was to modify the game engine as little as possible, so steps were taken to

maximize the use of existing code.

The first task involved adding an ‘entity’ into Quake 3, which represented the dataset. An

‘entity’ is simply a dynamic object in the Quake 3 game-world, with different properties

depending on what the entity represents. Every object in Quake 3 is an entity, including

players, weapons, rockets, and anything dynamic.

The simplest possible way to create an entity to represent the dataset was to modify the

grenade launcher function. Essentially, the ‘grenade’ properties were adjusted to suit an

entity that would eventually become the dataset. Any kind of explosions or game-play

related code (such as gravity) was disabled. Then, adjustments were made to the client

side, to allow for non-standard Quake 3 content to be used, and set the ‘grenade’

model to that of the dataset.

This was an important step, as Quake 3 has built-in protection against cheaters, in the

form of content-authentication. Essentially, when a user connects to a server, the server

verifies all the game content. If any data is not standard, the client is rejected from the

server. Thus, by setting sv_pure to 0, we are telling Quake 3 to allow custom content.

21

The above figure displays the results of modifying the grenade entity to create a

‘dataset’ entity.

Once these small modifications had been made, the basic framework for displaying a

dataset was complete. The next step was to alter the state of the users. In the original

Quake 3 game, players were all affected by gravity. As it happens, Quake 3 also allows

for ‘spectators’ to watch a game in progress, thus allowing the anti-gravity type of

control that is necessary in visualization. So with a few minor modifications to the server-

side game code, the user can now move freely in 6 dimensions, allowing them to view

the dataset from any point.

Another function necessary for visualization is the need for dynamic visualizations – the

use of graphical glyphs to represent additional information. This was implemented using

the Quake 3 shader system, detailed in the design section. The shader created was quite

simple, consisting of an arrow texture containing an alpha channel, and the script

configured to scroll the texture along one axis. Nevertheless, the result is impressive, and

shows how Quake 3 shaders could be used for much more advanced visualization tasks.

22

4.3 Usage

4.3.1 Installation

To use this tool, you will need a working installation of the full version of Quake 3 Arena.

You must also have the zip file of this implementation, named “q3vis.zip”. Since this

visualization is based on the Quake 3 engine, the files must be extracted to the Quake 3

Arena directory. The directory names must be preserved when extracting the archive, so

that the tool will function properly. Once the archive has been extracted, there will be a

file named “vistool.bat” located in the main Quake 3 Arena directory, which will begin

the visualization tool when executed.

4.3.2 Visualization

To use the tool to visualize the dataset, simply run the “vistool.bat” file. This will launch

Quake 3, and automatically load the modification. Once the game has loaded, the user

will drop into a simple room. At this point, the user should move to a position in the level

which isn’t near a wall, so the dataset can be placed with space to move all around it.

To move around in the game-world, the simplest method is to use the W, A, S, and D keys.

These correspond to the arrow keys (Up, Left, Down, and Right respectively) and allow

movement forwards/backwards and left/right. The Q and Z keys can be used to move

vertically up and down. Finally, the mouse can be used to rotate the view around (similar

to the way one would move their head around).

The user can activate the console by pressing the [`] key (normally located to the left of

the 1 key). The basic dataset that was converted for this project can be loaded by

typing “/vis_load” (without speech-marks) and pressing enter.

23

Once the dataset has been loaded, the user is free to fly around and observe it from

different angles. The figure above shows what the screen should look like once this point

has been reached. Although it is not possible to see from an image, the arrows are

actually animated, and scroll down in the direction they are pointing.

24

4.3.3 Collaboration

There are two main methods of collaboration for the visualization tool. Both require one

computer to be the server, and the others to connect to it.

The first method is simpler, but takes a little longer. Once the first computer has been set

up, any additional users who wish to connect to the server (the first computer) must press

[Esc] once the modification has launched, and click “Leave Arena” as shown below-left.

Once the user has entered the main menu (above-right), they need to click Multiplayer.

This will take them to the multi-player menu. The user must verify they are browsing ‘Local’

servers (shown below-left) providing they are on a local area network with the server.

Once they find the server they wish to connect to, they click the ‘Fight’ button (below-

right).

25

The second method is slightly more complex, but much quicker. It is also the easier

solution for connecting through the internet. First, the IP address of the server machine

has to be known. Then, any additional users wanting to join simply activate the console

by pressing [`] and then typing “/connect IP” where IP is the IP address of the server

machine. The user should connect after a few seconds, and the drop into the game-

world along with any other users currently on the server. Any datasets present in the level

should be visible instantly.

Chatting is quite simple too. The first step is to set an appropriate user name. This is done

by activating the console, and typing “/name” followed by the desired user name. At

this point, the console can be deactivated, and the user can send a message to the

other users on the server at any time by pressing the ‘T’ key. Pushing this shows a line at

the top of the screen saying “Say: “. From this point, the user simply types in a message,

and upon pressing the enter key, the message is sent to all other users on the server.

26

5 Evaluation

5.1 The Tool

The tool is quite simple in design, which is a result of minimizing modifications to the

Quake 3 game-code, and still achieving basic visualization. It meets the requirements of

loading an arbitrary dataset, and being able to visualize it. It also allows for the use of

custom animation effects on materials, which is more of a proof-of-concept for the tool’s

capability of representing graphical icons. Unfortunately, many of the features in a

normal visualization tool do not exist in this implementation. This is due in part because of

time constraints, but also because of the limitations of the Quake 3 engine.

The collaboration portion of the tool worked with very little modification to the existing

game-code. This is one of the many benefits of using a game-engine to implement the

visualization tool, as the code is already complete, working, and tested. The addition of

the visualization of the dataset ties in with no issues to the Quake 3 multiplayer code. It

allows any users (who have previously acquired and installed the dataset) to connect to

a server and collaborate with other users.

5.2 The Quake 3 Engine

The Quake 3 engine is ideal for rendering complex datasets. A small test was performed

using the dataset from the project, to test the speed of the engine when rendering a

considerable amount of polygons. A number of data sets were loaded into the

visualization tool simultaneously, and using Quake 3’s built-in performance statistics,

results were acquired.

27

As you can see from the figure above, the engine can handle 4 datasets quite easily,

which comes to a total of 218,484 triangles. And the frame-rate is still around 30fps, which

is easily enough for visualization of a dataset. As a point of reference, Quake 3 ran the

original dataset at around 90fps. This means the engine can easily render between 4 and

6 million triangles per second on a medium specification machine, which is more than

enough for most visualizations.

However, the engine contains numerous limitations. These are all a result of some

functionality that is built into the engine code, and since the source code is not yet

publicly available, there was no way to resolve these issues. With access to this code,

one could implement loading of an arbitrary 3D file format, possibly a well-known format

used in other biomedical visualization tools.

Another side effect of using the Quake 3 engine is the time taken to learn the inner-

workings of the game-code. With no official documentation available, it was an involved

process, and only community work could be relied upon for reaching the desired goals.

28

6 Conclusion

Game engines can – and should – be used as a base for a collaborative visualization

tool for biomedical data sets. With the amount of research and work put into game

engines, they serve as a perfect framework that has already been tested and optimized

to the extreme. With the addition of multi-player functionality, the visualization tool can

be easily extended as a collaborative tool. Moreover, game engines in general have

very intuitive interfaces, meaning very little modification would be needed if support was

being added to create an easy-to-use interactive visualization tool.

In general, it would be better to use an engine which is fully open-sourced, although (as

mentioned before) the Quake 3 engine will become open-source in the near future,

allowing any further work being done on this topic to utilize the Quake 3 engine to the full

extent. The only remaining issue would be the lack of documentation on the Quake 3

engine. This could perhaps be resolved by the use of a different engine – one of the

selling points of the Cipher engine is its extensive documentation [24] – although this

would require purchasing licenses and such, and may not be a feasible solution.

However, the rendering power and network capabilities of the Quake 3 engine in

particular outweigh the flaws, and if more time was spent on the development of the

tool, it could have a great deal more functionality added, resulting in better

performance as a true visualization tool.

29

7 Future Work

There are countless possibilities for extensions on this topic. Some of them are listed

below, split into two sections – visualization, and collaboration.

7.1 Visualization

- Automated conversion

The creation of a tool which automatically converts from any desired format

to the Quake 3 MD3 format would reduce the time needed for preprocessing.

- Ability to enable/disable specific visualizations

Certain datasets may have more than one visualization mode, and a

visualization tool should have the ability to switch between modes.

- Client side visualizations

A user may want to view the visualization in a different mode, and should be

able to, without affecting all the other users connected to the server.

- Ability to customize visualizations in-game

A simple interface on the client side could allow modification of the

visualizations in-game, allowing more flexibility on the user-end.

- Proper GUI designed for visualizations

A custom created user interface, allowing users a full range of options for

loading datasets, changing visualizations, and other functions.

- Ability to view datasets in alternative ways (rotate set, rather than user)

The user should be able to use the mouse to rotate the dataset, rather than

having to manually move around the dataset.

- Per-polygon detection (if possible) so users can tag individual triangles

This is a hard-coded limitation with the Quake 3 engine; however the

inevitable release of the engine source code will make this possible.

- Stereo-vision (viewing datasets in actual 3D)

The Quake 3 engine actually has built-in support for Red-Blue stereo

separation to create 3D. This could be extended for visualizations.

30

7.2 Collaboration

- Better text chat support

The current Quake 3 system is only designed for minimal chatting in-game. This

could be extended to allow public/private conversations and such.

- Voice-Over-IP support

Being able to discuss certain aspects of datasets by actually talking would be

a huge benefit for users collaborating from various parts of the world.

- Display where current users are in the game-world

A simple entity showing users position, as well as their name hovering above

them, would allow users to follow each other and interact.

- Possibly webcam support, to discuss with other users

An extension of the Voice-Over-IP would be to implement web camera

support, so users could see and talk to each other regarding the datasets.

- List of currently connected users, along with their location

This could help in distinguishing different users, by having an active list of who

they are and where they are connecting from (around the world)

- Ability to interact with datasets (point out problems, etc)

An extension of the visualization problem – it would be useful to be able to

point out features on the dataset and have other users see the same thing.

31

8 References

1. Blackman, S. Serious Games…and Less! Contributions to ACM Siggraph Computer

Graphics Volume 39 Issue 1 (February 2005), pp. 12-16.

2. Rhyne, T. Computer Games and Scientific Visualization. Communications of the ACM

Volume 45 Number 7 (July 2002), pp. 40-44.

3. Stang, B. Game Engines Features and Possibilities (2003)

 http://www.student.dtu.dk/~s958608/GameEngines2.pdf

4. OpenGL – http://www.opengl.org/

5. DirectX – http://www.microsoft.com/windows/directx/default.aspx

6. GeForce 4 Ti - http://www.nvidia.com/page/geforce4ti.html

7. Lua - http://www.lua.org/

8. OGRE - http://www.ogre3d.org/

9. Irrlicht - http://irrlicht.sourceforge.net/

10 The Nebula Device - http://www.radonlabs.de/nebula.html

11. Cipher Engine - http://www.cipherengine.com/

12. Unreal Engine 2 - http://udn.epicgames.com/Two/UnrealEngine2Runtime

13. ID Software - http://www.idsoftware.com/

14. Deep Creator - http://www.righthemisphere.com/products/dcreator/

15. Unrealty - http://www.unrealty.net/vsmm99/

16. UnrealTriage - http://www.ists.dartmouth.edu/library/58.pdf

17. VTK - http://public.kitware.com/VTK/

18. Quake 3 MD3 unofficial specifications -

http://www.icculus.org/homepages/phaethon/q3a/formats/md3format.html

19. Quake 3 Structs - http://linux.ucla.edu/~phaethon/q3mc/immutable1.html

20. Quake 3 Unofficial Shader Manual -

http://qeradiant.com/manual/Q3AShader_Manual/index.htm

21. Code3Arena - http://www.planetquake.com/code3arena/

22. Autodesk 3DS Max - http://www.discreet.com/3dsmax/

23. Milkshape 3D – http://www.swissquake.ch/chumbalum-soft/

24. Cipher Documentation - http://www.cipherengine.com/sampledoc.php

25. Q3ASE - http://www.bpeers.com/software/q3ase/

26. VTK Review - http://www.crd.ge.com/~lorensen/ExtremeTesting/ExtremeTesting.htm

27. The power of 3D in biomedical visualization –

http://vfxworld.com/?sa=adv&code=57c5ed8a&atype=articles&id=2437&page=1

