
A TESTING FRAMEWORK FOR FIBER TRACTOGRAPHY

Limin (Kevin) Xu

Department of Electrical and Computer Engineering

University of Auckland, Auckland, New Zealand

Abstract

This report outlines a toolkit that has been developed for

simulating DTI data as well as allowing the user to

compare various nerve fiber tracking algorithms.

Identifying and visualizing the nerve fiber tracts in the

human brain using biomedical imaging, such as

diffusion tensor imaging (DTI) can improve the

diagnoses, understanding and treatment of a large

variety of diseases. The process of extracting nerve fiber

tracts is called fiber tractography and it has been widely

used to diagnose various neuro-degenerative diseases.

There are several existing DTI visualization toolkits,

however they are not designed for testing and

comparing different nerve fiber tracking algorithms.

In has been concluded that the FiberTk toolkit is built

which is capable of generating and visualizing user-

specified nerve fiber tracts, evaluating various nerve

fiber tracking algorithms. It is recommended to enhance

the toolkit with various future developments including

generating analysis report, creating more complicated

nerve fiber shapes, allowing user to specify the starting

points for nerve fiber tracking algorithms and non-linear

interpolation for changing the fiber radius.

1. Introduction

In modern biomedical sciences, the in vivo

identification and analysis of anatomical structures of

the human brain still remains a tremendously

challenging research field. Identifying and visualising

the nerve fiber tracts in the brain using various

biomedical imaging technologies, such as diffusion

tensor imaging (DTI) can improve the diagnoses,

understanding and treatment of a large variety of

diseases. The process of extracting nerve fiber tracts

which consists of millions of parallel nerve fibers is

called fiber tractography [1]. It has been widely used to

diagnose various neuro-degenerative diseases and to

investigate the development of white matter tracts in

adolescents and adults [2].

The aim of this project is to develop a toolkit that

simulates DTI data as well as allowing the user to

compare various nerve fiber tracking algorithms. It

would involve design and development of a graphical

user interface for drawing the nerve fiber tracts in a 3D

environment and testing and representing the existing

fiber tracking algorithms in a constructive manner. In

the end, Fiber ToolKit (FiberTK) is developed, a toolkit

for simulating DTI data and evaluating various nerve

fiber tracking algorithms.

2. Project Background

2.1. Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI), also known as

diffusion-weighted MRI imaging (DWI) [1] or

diffusion tensor magnetic resonance imaging (DT-

MRI) [3, 4, 5] is a new imaging technology used in

biomedical imaging. The principle is based on

measuring the phase differences between spinning

water molecules due to the fact that different molecules

diffusing in different directions experience different

magnetic fields [4]. The output is a set of Diffusion

Weighted Images which is used to render the

information about how water diffuses in biological

tissues containing a large number of fibers, such as

brain white matter, into intricate three dimensional (3D)

representations of tissue architecture [5]. Thus, it can be

exploited to visualize and extract information about the

brain white matter and nerve fibers [6] in order to

understand its inter-structure.

Figure 1: Left: white matter segmentation

superimposed on anatomical and DTI data. Right: Major

neural fibers bundles (corpus callosum, corona radiata)

with an anatomical axial slice and segmentation of the

white matter [7].

Figure 1 illustrates some of the three dimensional

representation of the internal brain structures and tissue

architectures which is generated from DTI data. All

these images were generated from datasets acquired at

the Center for Magnetic Resonance Research,

University of Minnesota, Minneapolis, MN USA and at

the CEA, SHFJ Orsay FRANCE.

2.2. Fiber Tractography

Another important field of study related to DTI is fiber

tactography. Fiber tractography is the process of

extracting nerve fibers. There are several tractography

techniques that have been developed in the past to

simulate the basic structure of the nerve fiber tracts in

the brain, including streamline fiber tracking

techniques, diffusion tensor deflection strategy,

probabilistic Monte-Carlo method, fast marching

tractography based on level set principles, and diffusion

simulation-based tractography [5]. Figure 2

demonstrates the extraction of nerve fibers from DTI

data and figure 3 illustrates both the front view and side

view of a three dimensional representation of fiber

bundles which is generated from fiber tractography.

Figure 2: Extraction of fibers in the splenium of the

corpus callosum from DTI data [7].

Figure 3: Example of fibers bundles generated from

fiber tractography [7].

Both DTI imaging and fiber tractography is important

for not only understanding the inter-structure of a brain,

but also applying the knowledge to diagnose various

neuro-degenerative diseases such as multiple sclerosis.

2.3. Previous work

There are several existing software packages developed

for displaying the DTI for medical applications, such as

3DMRI [5, 8], 3D slicer [5, 9] and DTIChecker [5, 10].

However, most of these software applications are

designed for generating the DT-MRI and fiber

tractography from the existing data. In other words,

they are not designed for comparing different nerve

fiber tracking algorithms. Furthermore, the user can

only manipulate the visualization of the data that is pre-

loaded from the database; the software does not provide

any functionality for the user to manipulate the data

directly or to compare the fiber tractography from

different nerve fiber tracking algorithms. Due to the

limitations of existing software toolkits, a new toolkit is

required for simulating DTI data as well as analyzing

and evaluating various nerve fiber tracking algorithms.

3. Project Design

3.1. Specification and Structural Design

According to the specification, the software needs to

have the functionality of defining, saving and loading a

diffusion tensor field. The diffusion tensor field is

defined with user specified parameters such as the size

of the diffusion tensor field and distance between each

tensor point. Furthermore, the toolkit is also required to

have the functionality of defining, saving and loading

simulated fiber tracts. Simulated fiber tracts are

representations of millions of parallel brain nerve fibers

in the diffusion tensor field. After a simulated fiber

tract has been defined, the toolkit should also provide

the functionality for the user to manipulate the fiber

tract easily; such as to change the position or the shape

of a fiber tract, and to duplicate and delete a fiber tract.

After defining both diffusion tensor field and some

fiber tracts, the user can then run various nerve fiber

tracking algorithms and do some comparison and

analysis between various nerve fiber tracking

algorithms.

With a good understanding of the user’s requirements, a

structural layout of the FiberTK has been designed

based on the specification which is shown in figure 4.

Figure 4: Structural Design of FiberTK.

The basic structure of FiberTK can be divided into two

layers. On the top layer, there is the Graphical User

interface. It allows the user to interact with individual

internal work spaces and displays the graphical outputs

on the screen. The bottom layer consists of a number of

work spaces. Each work space contains a tensor field

and a set of simulated fiber tracts. The tensor field is a

set of simulated DTI data which is generated from user

defined fiber tracts. The User can then run various nerve

fiber tracking algorithms based on the tensor field and

generates another set of fiber tracts for comparing the

algorithms. All these data will be sent to the rendering

manager and displayed through the graphical user

interface.

In addition, in order to increase the usability and to

display the current state of the software, a console is

added to keep a record of user’s actions and the current

progress information. Error messages will also be

displayed through the console window.

3.2. User Interface Design

The Layout of the Graphical User Interface is requested

as the standard window user interface which consists of

elements such as menus, toolbars, tool menus, and work

spaces.

3.2.1. Work space

Due to the fact that the toolkit is implemented in a 3D

environment with three dimensional co-ordinate

systems, and that the screen of a computer is only two

dimensional, a way of defining the third dimensional

position needs to be considered. After investigating and

examining some existing 3D CAD programs such as

PTC ProDESKTOP 2000i2 [11] and Discreet 3D Studio

Max4 [12], it has been concluded that two possible

solutions can be implemented. Either use a single

viewport, which has only one display window, or use

multiple viewports, consisting of several but usually

four display windows. With the single viewport

solution, the user needs to define a working plane in the

3D environment first, and then construct the 3D object

based on the working plane. On the other hand, the

graphical user interface can be separated into four

quadrants, with one quadrant displaying a 3D model in

perspective mode and the other three displaying

orthographic projected views, including the top, the

front and the side views respectively.

Considering both advantages and limitations for each

solution and user’s expectations of the software, it has

been decided to use a single viewport for the graphical

user interface by default at the beginning of the project,

and the software also has the functionality of changing

the single viewport to multiple viewports. However,

after gaining some experience in programming, it is

discovered that the multiple viewport system is much

easier to implement and the user will have better control

over the 3D model as each orthographic projected view

only consists of two dimensional co-ordinates. In

addition, it is more efficient to construct a 3D model as

the user can specify the co-ordinates directly into three

different viewports. Therefore, the work space is

implemented with multiple viewports that allow the user

to define and manipulate fiber tracts in all three

orthographic projected views but not the perspective

view.

3.2.2. Console Window

The console window is embedded in the graphical user

interface and it is used as a message window. It gives

extra information on the current progress of the

software with some additional tips to help the user to

achieve some specific tasks. All the user’s actions will

be recorded and the user can refer back to them later on.

More importantly, it displays error messages in red on

any illegal operations or invalid inputs.

3.3. Curve Algorithms

The shape of a fiber tract can be defined by a curve as

its basic structure. There are many curve algorithms for

interpolating a curve, including Hermite Curves (refer to

appendix for formula), Bezier Curves (refer to appendix

for formula), Uniform B-Spline Curves, Catmull-Rom

Spline Curve, Non-uniform B-splines, Non-uniform

Rational B-spline [NURBS] and so on [13].

Considering the complexity and property of each

algorithm as shown in the table 1, it is decided to

implement FiberTK with both Uniform B-Spline Curves

and Catmull-Rom Spline Curve.

 Bezier Hermite B-Spline Catmull-

Rom

Spline

Continuity C1 C1 C2 C2

Local control no no yes yes

Curve segment lies

within the convex

hull

yes yes yes no

Interactive curve

modeling

Good Good Very good Good

Interpolate a

number of position

Poor Poor Poor Best

Interpolate with

tangent control

Often

used

Often

used

Good Good

Table 1: The table of individual properties among

various curve algorithms.

3.3.1. B-spline Curve Algorithm

The Uniform B-Spline Curve is best for use in

interactive curve modeling [14]. It defines a curve in

such a way that neither of the control points will lie on

the curve. However, it is easy to implement and have C2

continuity [13], which means that not only the end point

of each curve segment must match, but the tangent,

“speed” and “acceleration” around the curve with

respect to t must also match. Furthermore, it is more

flexible and has local control, which means changing

one of the control points will not affect the entire curve.

Figure 5 illustrate an example of a cubic B-spline curve

which is implemented in the FiberTK.

Figure 5: An example of a cubic B-Spline curve which

is generated by four control points.

Another very important feature is that each curve

segment of the B-Spline curve lies within the convex

hull of its associated control points. The convex hull can

be defined as a set of points which is the smallest set of

points, such that any line connected by any pair of the

points lie entirely within the set. Figure 6 illustrate this

by drawing the convex hull around four control points.

This allows the user to predict the position of the curve

more easily.

Figure 6: An example of a convex hull around four

control points.

Due to the fact that the software is developed for 3D

environment, the algorithm implemented in FiberTK is

a cubic B-spline curve algorithm with a function degree

of three, which means that there are four terms in the

polynomial function with a dominant term of t3 and

needs four control points to define each curve segment.

Every point on the curve can be calculated using the

formula in the equation below:

∑ −+=)()(4 itBPtP i

otherwise

t

t

t

t

t

tv

tv

t

tB

43

32

21

10

0

)4(

)2(

)2(

6

1
)(

3

3

4

≤≤
≤≤
≤≤
≤≤














−
−
−

= (1)

)463()(23 +−= sssvwhere

This formula can also be written in the matrix form, as

shown in the equation below:







































−−
−

−
=

4

3

2

1

32

1331

0363

0303

0141

6

1
)1()(

P

P

P

P

ttttp

 (2)

3.3.2. Catmull-Rom Spline Curve Algorithm

On the other hand, the Catmull-Rom spline curve is

different compared to the B-spline curve. It does not

have the property such that any of the curve segments lies

within the convex hull. However, it generates a smooth

curve that passes through a set of control points and it is

best at interpolating a number of positions [14]. Like the

B-Spline, it also has local control and has the continuity

of C2 [13]. Figure 7 illustrates an example of a cubic

Catnull_Rom spline curve which is implemented in the

FiberTK.

Figure 7: An example of a cubic Catmull-Rom Spline

curve which is generated by four control points.

More importantly, the tangent of any point is equal to

the previous point minus the next point divided by two,

which can be written as the following equation.

2/)(11 −+ −= iii PPV (3)

As with the B-Spline, the Catmull-Rom Spline curve

algorithm implemented in FiberTK is also a cubic

function with degree of three, and also needs four

control points to define each curve segment. Every point

on the curve can be calculated using the formula in the

equation below:

)4()
2

1

2

1
()

2

1
2

2

3
(

)1
2

5

2

3
()

2

1

2

1
()(

4

23

3

23

2

23

1

23

4

PttPttt

PttPttttC

−+++−+

+−+−++−=

This formula can also be written in the matrix form as

shown in the equation below:







































−
−−

=

4

3

2

1

32

1331

1452

0101

0020

2

1
)1()(

P

P

P

P

ttttp

 (5)

3.4. Simulated Fiber Tracts

Once the curve is defined in 3D space, the next step is

to generate a three dimensional representation of the

fiber tract. In another words, to construct a cylindrical

tubed shape to represent a fiber tract in 3D. In order to

achieve this, the tangent, principle normal and binormal

of the curve must be calculated in order to align each

cross-section properly with its neighbors so that the

structure does not twist [15] as illustrated in figure 8.

The tangent vector, T can be calculated by

differentiating the first derivatives of both curve

algorithms.

Figure 8: A wire framed view of a three dimensional

representation of a fiber tract [15].

From equation (1):

')()'(4∑ −+= itBPtP i

otherwise

t

t

t

t

t

tv

tv

t

tB

43

32

21

10

0

)4(3

)2('

)2('

3

)'(
2

2

4

≤≤
≤≤
≤≤
≤≤














−−
−

−−
= (6)

)129()(' 2 sssvwhere −=

And from equation (4):

)7()
2

3
()

2

1
4

2

9
(

)5
2

9
()

2

1
2

2

3
()'(

4

2

3

2

2

2

1

2

4

PttPtt

PttPtttC

−+++−+

−+−++−=

From these two equations, the tangent of any point on

the curve can be calculated. After the tangent is

calculated, the principle normal vector, V and the

binormal vector, U can be calculated by using the

following equations.

UPTU ×= (8)

UTV ×= (9)

Where UP is the up vector [0, 1, 0].

After the calculation of the tangent, principle normal

and binormal of a point on the curve, these three vectors

can then be used to align the cross-section of the fiber

tract. This is achieved by firstly drawing a unit circle

with the radius of one at the origin. Next, scale it to a

specific radius, and then rotate it to align the tangents of

the fiber tract by using the three vectors T, U and V.

Finally, translate the circle to its proper position in 3D

space as shown in figure 9.

Figure 9: Positioning and orienting a cross-section

[15].

However, there is a problem with this approach. Due the

fact that when the angle between the tangent vector and

the up vector is too small or close to 180 degree, the

binormal vector calculated using the equation (8) will

not be orthogonal to the tangent vector. Therefore the

shape of the fiber tract will be deformed. However, this

problem can be solved by using the previous principle

normal vector to substitute the up vector. The new

equation can be written as:

For P0:

 UPTU ii ×= (10)

For Pi where i ≠ 0:

1−×= iii VTU (11)

iii UTV ×= (12)

Where UP is the up vector [0, 1, 0].

3.5. Tensor Field

The Tensor Field is a set of simulated DTI data. Once

the user has defined some fiber tracts, the tensor field

can then be generated from the tangents of the fiber

tracts. Any tensor points that lie within the simulated

fiber tracts will be deformed with a high diffusion

weight along the tangents of the fiber tracts as shown in

figure 10.

Figure 10: An example of a tensor field in 3D space.

This is achieved by firstly checking whether the tensor

point lies in the simulated fiber tract or not. Then the

tangent, principle normal and binormal is calculated as

the three eigenvectors. The pseudo code in figure 11

briefly explains how this is done.

For every tensor point

 //tensor is the data structure for storing the matrix of diffusion

tensor

 Reset tensor to 0

 For every fiber tract

 Find the closest point in distance

 Compute the distance between the tensor point and fiber tract

 If the distance is less than the radius

 Compute tangent, principle normal, and binormal vectors

 Compute tensor values

 End if

 End loop

End loop

Figure 11: Pseudo code for computing the tensor field.

If the tensor point lies in the fiber tract, three

eigenvectors are calculated as the tangent, principle

normal and binormal of the corresponding point on the

curve for orienting the tensor point. The diffusion tensor

D is then calculated by the following formula.

SSD Λ= −1
 (13)

















=Λ

















=

3

2

1

333

222

111

00

00

00

e

e

e

Swhere

zyx

zyx

zyx

λλλ
λλλ
λλλ

321 ,, λλλwhere are the eigenvectors and

 321 ,, eee are the eigenvalures.

Due to the fact that the diffusion tensor matrix is

symmetrical, only six values are stored in the data

structure for each diffusion tensor matrix. Figure 12

demonstrates how the diffusion tensor matrix is stored.

],,,,,[cebfdaT

fec

edb

cba

D ⇒

















=

Figure 12: Every diffusion tensor matrix is stored in a

single dimensional array with a length of six.

Furthermore, when two fiber tracts intersect with each

other, their tensor eigenvalues and eigenvectors are

added together which generates a disc shape as

illustrated in figure 13. As a result, various nerve fiber

tracking algorithms will perform differently depending

on their individual properties.

Figure 13: An example of two fiber tracts intersecting

each other.

After the tensor field is generated, various nerve fiber

tracking algorithms can then be run for further analysis

and evaluation. Three nerve fiber tracking algorithms

were enclosed in this project, including stream line,

tensor deflection and tensor line [16]. All these nerve

fiber tracking algorithms were provided by Ms Jing Li

from the graphic research group of The University of

Auckland.

3.6. Implementation Language

FiberTK was implemented using various programming

languages which support multi-platform. These include

C/C++, OpenGL, Tcl/Tk, SWIG and TkOGL.

3.6.1. C/C++

C is a general-purpose language originally developed

for the UNIX operating system. It is both a high-level

and low-level language with better performance and

better control over low-level mechanisms such as direct

access to hardware.

3.6.2. OpenGL

OpenGL is the premier environment for developing

portable, interactive 2D and 3D graphical applications

[17, 18]. The advantage of using OpenGL is that it is a

multi-platform, high performance 3D graphics API [17].

3.6.3. Tcl/Tk and TkOGL

Tcl is the abbreviation for Tool Command Language

and Tk is the graphical user interface toolkit of Tcl

[19]. Tcl/Tk is used because it has a simple and

programmable syntax and can be used either as a

standalone application or embedded in application

programs [20]. Furthermore, Tcl is open source and it

can create powerful GUIs incredibly quickly.

TkOGL is a package extension of Tcl/Tk that enables a

user to utilize OpenGL. It wraps the GL and GLU

commands through SWIG, and it compiles the wrapper

code and generates the Tcl extension packages.

3.6.4. SWIG

SWIG stands for Simplified Wrapper and Interface

Generator, a software development tool that integrates

C/C++ with a variety of high-level programming

languages and various common scripting languages

such as Perl, Python, Tcl/Tk and Ruby [21].

3.6.5. Software Architecture

The fundamental software architecture of FiberTK is

illustrated in figure 14, as all the underlying principles

including various curve algorithms, nerve fiber tracking

algorithms and OpenGL functions are implemented in

C/C++. It is then compiled into Dynamic Link Library

(.dll) file in Windows or Shared Object (.so) file in

Linux using SWIG which wraps all the functions in

C/C++ and makes it callable by the graphical user

interface. The graphical user interface is constructed

using Tcl/Tk and TKOGL. At runtime, the Tcl/Tk code

would load the library file and the output is displayed

through the graphical user interface.

Figure 14: Software Architecture of FiberTk.

4. Project Implementation

4.1. Graphic User Interface

Figure 15 is a screenshot of the graphical user interface.

It consists of five parts: the menu bar, tool bar, toolbox,

work spaces and console window.

4.1.1. Menu

The menu bar contains a list of drop-down menus

including file, edit, view, tool, window and help. Each

menu also contains a list of sub-menus and

functionalities for the user to manipulate fiber tracts

and evaluating nerve fiber tracking algorithms.

4.1.2. Toolbox

The toolbox contains a list of buttons for various

functions and it is placed on the left side of the user

interface. Buttons in the toolbox can be divided into

several categories. The first category is the selecting

tool buttons such as select fiber, select control point

and select radius control point. The next category is the

modifying tool buttons. This includes delete fiber,

insert control point and delete control point. The third

category is the drawing tool buttons which only consist

of two buttons, B-Spline curve algorithm and Catmull-

Rom Spline curve algorithm. All these buttons are for

defining and manipulating fiber tracts.

The last category is the nerve fiber tracking algorithms

tool buttons. This consists of tensor field, stream line,

tensor deflection and tensor line. All these buttons are

used for running various nerve fiber tracking

algorithms.

Figure 15: The Graphical User Interface of FiberTK

4.1.3. Toolbar

The toolbar consists of some frequently used buttons that

provides some of the basic functions such as new, load, save

and so on. A separator is used to group icons with similar

functions such as cut, copy and paste. Apart form these

buttons, it also contains a large amount of buttons for

manipulating views such as changing the viewing mode of the

fiber tract from skeleton view to wire framed view, or to full

rendered view; setting the viewport back to original position

with alignment of a specific axis; rotating the 3D model in the

viewport; changing from single viewport to multiple

viewports; and zooming in and out of various viewports

including both perspective and orthographical views.

4.2. Drawing a Fiber

The user can define a fiber tract by selecting one of the

drawing fiber tract tool and start defining the position of

the control point in any of the three orthographical

viewports. The perspective viewport is only for

viewing. The user can also swap to single perspective

viewport for a close inspection of the 3D model.

4.3. Manipulating a Fiber

After a fiber tract is defined, the user can then

manipulate it using various tools. The user can change

the position of a specific control point by first selecting

the control point using the select control point tool.

Once a control point is selected, it will be rendered in

red to indicate that it has been selected. The user can

then drag the control point to a new position. The user

can also select and drag the entire fiber tract to move it

around in the work space by using the select fiber tool.

The color of the fiber will also change to purple to

indicate that it has been selected. The user can also

modify the radius of the fiber tract by selecting the

select radius control point tool. This can be achieved by

selecting and dragging the radius control point which is

sitting on top of each control point, except the first one

and the last one. The radius of each segment of the fiber

tract is defined by the distance between the radius

control point and the control point. By modifying the

position of the radius control point, the radius of the

fiber tract changes accordingly.

Furthermore, the user can also delete and insert a

control point by using the delete control point tool and

insert control point tool respectively. When the user

tries to insert a control point, depending on the current

number on control points on the fiber tract, the position

of the newly inserted control point will vary. When

there is only one control point, the position of the new

control point will be the same as the existing control

point. On the other hand, when there are multiple

control points, the new control point will be inserted

after the selected control point and the position is

calculated with the following equation.

2/)(
1++= selectedselectednew PPP

(14)

However, there is a special case when the last control

point is selected, then the equation becomes:

2/)(
1−+= selectedselectednew PPP (15)

Lastly, the user can also delete the entire fiber by using

the delete fiber tool.

4.4. Generating Tensor Field

Once the user has defined some fiber tracts, a tensor

field can then be generated by using the create tensor

field tool. This may take a few seconds for the

algorithms to compute and the progress information will

be displayed through the console window. The

difference between this button and other buttons on the

toolbar is that it acts like a switch. The second time the

user clicks this button, the tensor field will be removed

from the work space. The user can turn the button on

and off accordingly.

4.5. Running Tracking Algorithms

After the tensor field is generated, the user can then run

various nerve fiber tracking algorithms. There are three

buttons on the toolbar for running the algorithms

including stream line, tensor deflection and tensor line.

All these buttons work the same way as the create

tensor field tool button, as the user can turn them on

and off depending on what is required.

5. Conclusions

In conclusion, a toolkit FiberTk is built which is

capable of generating and visualizing user-specified

nerve fiber tracts and evaluating various nerve fiber

tracking algorithms. It can be used in biomedical

research and analysis to improve diagnostics of neuro-

degenerative diseases such as Multiple Sclerosis and

Schizophrenia

6. Future work

The future enhancement of this project is further

implementation on variable radius. Current

interpolation of the radius is linear interpolation, which

needs further enhancement. It is suggested that the

Catmull-Rom Spline should be used in order to increase

the curvature around the surface of the fiber tract.

Apparently, there is one shape for representing the

nerve fiber tract and it is very limited. However, more

complicated fiber shapes exists in real world

applications such as generating a three dimensional

representation of the internal structure of the brain. It is

encouraged to increase the capability of creating

different shaped fiber tracts.

Another important future enhancement can be to

automatically generate an analysis report for evaluating

various nerve fiber tracking algorithms. This can

include the calculation of the mean standard error and

percentage of deflected fibers.

Furthermore, there is a limitation on the current

software in which the starting point for the tracking

algorithms is randomly selected. A further

improvement would be to allow the user to define the

starting point for tracking algorithms

Acknowledgements

The student would like to thank the supervisor, Dr

Burkhard Wuensche for giving us the opportunity to

practice and develop our programming and design

skills, as well as all the help and advice that he has

given us along the way.

Second Examiner, Mr Chris Smaill for giving us much

useful advice on how to write both the interim report

and the final report.

Ms Jing Li for providing us with various nerve fiber

tracking algorithms and giving us various useful advices

on the project.

Project partner, Langping Wei for always encouraging

and supporting me on this project and I really appreciate

his devotion to his part of the project. And other

software engineering students including David Huai and

Yin Zili for giving us useful advice on this project and

helping us perform the usability test on the prototype of

our graphical user interface.

7. References

[1] Burkhard, C. W. and Richard, L. (2004).The 3D

Visualization of Brain Anatomy from Diffusion-

Weighted Magnetic Resonance Imaging Data. Division

for biomedical imaging and visualization, Department of

computer science. University of Auckland.

[2] Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R.,

Benner, Thomas P., Sorensen, A. G., and Fahlbusch, R.

(2005). Preoperative and Intraoperative Diffusion Tensor

Imaging-based Fiber Tracking in Glioma Surgery.

Neurosurgery. January, 56(1):130-138.

[3] “Diffusion Tensor Imaging”. Retrieved September 3,

2005, from http://www.sci.utah.edu/research/diff-

tensor-imaging.html
[4] Burak, A. and Roland, B. (2003). “MR-DTI FIBER

TRACTOGRAPHY and Beyond”. Retrieved September

3, 2005 from

http://www.vavlab.ee.boun.edu.tr/ProjectsNEW/links_D

TI.html

[5] Jun, Z., Hao, J., Ning, K. and Ning, C. (2005). Fiber

Tractography in Diffusion Tensor Magnetic Resonance

Imaging: A Survey and Beyond. Laboratory for high

performance scientific computing and computer

simulation, Department of computer science, University

of Kentucky, Lexington, KY 40506-0046, USA

[6] Beaulieu, C. (2002). The basis of anisotropic water

diffusion in the nervous system – a technical review.

NMR Biomed. 15:435-455.

[7] Center for Magnetic Resonance Research, University of

Minnesota, Minneapolis, MN USA and at the CEA, SHFJ

Orsay FRANCE.

[8] “DIT Software”. Retrieved September 5, 2005, from

http://cmrm.med.jhmi.edu/DTIuser/DTIuser.asp
[9] “3D Slicer: Medical Visualization and Processing

Environment for Research”. Retrieved May 4, 2005, from

http://www.slicer.org
[10] “Fiber Tracking”. Retrieved September 5, 2005, from

http://www.ia.unc.edu/dev/download/fibertracking/index.

htm

[11] “Autodesk 3ds Max”. Retrieved September 5, 2005, from

http://www4.discreet.com/3dsmax/

[12] “Orthographic projection”. Retrieved May 5, 2005, from

http://www.ider.herts.ac.uk/school/courseware/graphics/e

ngineering_drawing/orthographic_projection.html

[13] Burkhard, C. W. and Richard, L. (2004). Curves and

Surfaces. Course notes for paper 715.415. University of

Auckland.

[14] Hill, F.S. (2001). Computer Graphics Using OpenGL.

Second edition. Prentice Hall, United States of America.

[15] Bloomenthal, J. Calculation of Reference Frame along a

Space Curve. Graphics Gems, Vol1.

[16] Li, J. (2005). An Analysis of Algorithms for In Vivo

Fiber Tractography Using DW-MRI Data. The Computer

Science Department. The University of Auckland.

[17] “The Industry's Foundation for High Performance

Graphics’. Retrieved September 10, 2005, from

http://www.opengl.org/

[18] “OpenGL Tutorial”. Retrieved September 10, 2005, from

http://www.eecs.tulane.edu/www/Terry/OpenGL/Introdu

ction.html

[19] “Tcl/Tk.free.fr”. Retrieved September 11, 2005, from

http://tcltk.free.fr/man/TkCmd/text.php3

[20] “Tcl Developer Exchange”. Retrieved September 11,

2005, from http://www.tcl.tk/software/tcltk/

[21] “SWIG” Retrieved September 11, 2005, from

http://www.swig.org/

Appendix

Cubic Bezier Curve in Matrix form [14]:







































−−
−

−
=

4

3

2

1

32

1331

0363

0033

0001

)1()(

P

P

P

P

ttttp

Cubic Hermite Curve in Matrix form [14]:







































−
−−−

=

4

1

4

1

32

1122

1233

0100

0001

)1()(

V

V

P

P

ttttp

Cubic B-Spline Curve in Matrix form [14]:







































−−
−

−
=

4

3

2

1

32

1331

0363

0303

0141

6

1
)1()(

P

P

P

P

ttttp

Cubic Catmull-Rom Spline Curve in Matrix form [14]:







































−
−−

=

4

3

2

1

32

1331

1452

0101

0020

2

1
)1()(

P

P

P

P

ttttp

