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Abstract 

This report outlines a toolkit that has been developed for 

simulating DTI data as well as allowing the user to 

compare various nerve fiber tracking algorithms. 

 

Identifying and visualizing the nerve fiber tracts in the 

human brain using biomedical imaging, such as 

diffusion tensor imaging (DTI) can improve the 

diagnoses, understanding and treatment of a large 

variety of diseases. The process of extracting nerve fiber 

tracts is called fiber tractography and it has been widely 

used to diagnose various neuro-degenerative diseases. 

There are several existing DTI visualization toolkits, 

however they are not designed for testing and 

comparing different nerve fiber tracking algorithms.  

 

In has been concluded that the FiberTk toolkit is built 

which is capable of generating and visualizing user-

specified nerve fiber tracts, evaluating various nerve 

fiber tracking algorithms. It is recommended to enhance 

the toolkit with various future developments including 

generating analysis report, creating more complicated 

nerve fiber shapes, allowing user to specify the starting 

points for nerve fiber tracking algorithms and non-linear 

interpolation for changing the fiber radius. 

1. Introduction 

In modern biomedical sciences, the in vivo 

identification and analysis of anatomical structures of 

the human brain still remains a tremendously 

challenging research field. Identifying and visualising 

the nerve fiber tracts in the brain using various 

biomedical imaging technologies, such as diffusion 

tensor imaging (DTI) can improve the diagnoses, 

understanding and treatment of a large variety of 

diseases. The process of extracting nerve fiber tracts 

which consists of millions of parallel nerve fibers is 

called fiber tractography [1]. It has been widely used to 

diagnose various neuro-degenerative diseases and to 

investigate the development of white matter tracts in 

adolescents and adults [2]. 

 

The aim of this project is to develop a toolkit that 

simulates DTI data as well as allowing the user to 

compare various nerve fiber tracking algorithms. It 

would involve design and development of a graphical 

user interface for drawing the nerve fiber tracts in a 3D 

environment and testing and representing the existing 

fiber tracking algorithms in a constructive manner. In 

the end, Fiber ToolKit (FiberTK) is developed, a toolkit 

for simulating DTI data and evaluating various nerve 

fiber tracking algorithms. 

2. Project Background 

2.1. Diffusion Tensor Imaging (DTI) 

Diffusion tensor imaging (DTI), also known as 

diffusion-weighted MRI imaging (DWI) [1] or 

diffusion tensor magnetic resonance imaging (DT-

MRI) [3, 4, 5] is a new imaging technology used in 

biomedical imaging. The principle is based on 

measuring the phase differences between spinning 

water molecules due to the fact that different molecules 

diffusing in different directions experience different 

magnetic fields [4]. The output is a set of Diffusion 

Weighted Images which is used to render the 

information about how water diffuses in biological 

tissues containing a large number of fibers, such as 

brain white matter, into intricate three dimensional (3D) 

representations of tissue architecture [5]. Thus, it can be 

exploited to visualize and extract information about the 

brain white matter and nerve fibers [6] in order to 

understand its inter-structure. 

  

Figure 1: Left: white matter segmentation 

superimposed on anatomical and DTI data. Right: Major 

neural fibers bundles (corpus callosum, corona radiata) 

with an anatomical axial slice and segmentation of the 

white matter [7]. 

Figure 1 illustrates some of the three dimensional 

representation of the internal brain structures and tissue 

architectures which is generated from DTI data. All 

these images were generated from datasets acquired at 

the Center for Magnetic Resonance Research, 



University of Minnesota, Minneapolis, MN USA and at 

the CEA, SHFJ Orsay FRANCE. 

2.2. Fiber Tractography 

Another important field of study related to DTI is fiber 

tactography. Fiber tractography is the process of 

extracting nerve fibers. There are several tractography 

techniques that have been developed in the past to 

simulate the basic structure of the nerve fiber tracts in 

the brain, including streamline fiber tracking 

techniques, diffusion tensor deflection strategy, 

probabilistic Monte-Carlo method, fast marching 

tractography based on level set principles, and diffusion 

simulation-based tractography [5]. Figure 2 

demonstrates the extraction of nerve fibers from DTI 

data and figure 3 illustrates both the front view and side 

view of a three dimensional representation of fiber 

bundles which is generated from fiber tractography. 

 

 

Figure 2: Extraction of fibers in the splenium of the 

corpus callosum from DTI data [7]. 

  

Figure 3: Example of fibers bundles generated from 

fiber tractography [7]. 

Both DTI imaging and fiber tractography is important 

for not only understanding the inter-structure of a brain, 

but also applying the knowledge to diagnose various 

neuro-degenerative diseases such as multiple sclerosis.  

2.3. Previous work 

There are several existing software packages developed 

for displaying the DTI for medical applications, such as 

3DMRI [5, 8], 3D slicer [5, 9] and DTIChecker [5, 10]. 

However, most of these software applications are 

designed for generating the DT-MRI and fiber 

tractography from the existing data. In other words, 

they are not designed for comparing different nerve 

fiber tracking algorithms. Furthermore, the user can 

only manipulate the visualization of the data that is pre-

loaded from the database; the software does not provide 

any functionality for the user to manipulate the data 

directly or to compare the fiber tractography from 

different nerve fiber tracking algorithms. Due to the 

limitations of existing software toolkits, a new toolkit is 

required for simulating DTI data as well as analyzing 

and evaluating various nerve fiber tracking algorithms.  

3. Project Design 

3.1. Specification and Structural Design 

According to the specification, the software needs to 

have the functionality of defining, saving and loading a 

diffusion tensor field. The diffusion tensor field is 

defined with user specified parameters such as the size 

of the diffusion tensor field and distance between each 

tensor point. Furthermore, the toolkit is also required to 

have the functionality of defining, saving and loading 

simulated fiber tracts. Simulated fiber tracts are 

representations of millions of parallel brain nerve fibers 

in the diffusion tensor field. After a simulated fiber 

tract has been defined, the toolkit should also provide 

the functionality for the user to manipulate the fiber 

tract easily; such as to change the position or the shape 

of a fiber tract, and to duplicate and delete a fiber tract. 

After defining both diffusion tensor field and some 

fiber tracts, the user can then run various nerve fiber 

tracking algorithms and do some comparison and 

analysis between various nerve fiber tracking 

algorithms. 

 

With a good understanding of the user’s requirements, a 

structural layout of the FiberTK has been designed 

based on the specification which is shown in figure 4. 

 

Figure 4: Structural Design of FiberTK. 



The basic structure of FiberTK can be divided into two 

layers. On the top layer, there is the Graphical User 

interface. It allows the user to interact with individual 

internal work spaces and displays the graphical outputs 

on the screen. The bottom layer consists of a number of 

work spaces. Each work space contains a tensor field 

and a set of simulated fiber tracts. The tensor field is a 

set of simulated DTI data which is generated from user 

defined fiber tracts. The User can then run various nerve 

fiber tracking algorithms based on the tensor field and 

generates another set of fiber tracts for comparing the 

algorithms. All these data will be sent to the rendering 

manager and displayed through the graphical user 

interface.  

 

In addition, in order to increase the usability and to 

display the current state of the software, a console is 

added to keep a record of user’s actions and the current 

progress information. Error messages will also be 

displayed through the console window. 

3.2. User Interface Design  

The Layout of the Graphical User Interface is requested 

as the standard window user interface which consists of 

elements such as menus, toolbars, tool menus, and work 

spaces. 

3.2.1. Work space 

Due to the fact that the toolkit is implemented in a 3D 

environment with three dimensional co-ordinate 

systems, and that the screen of a computer is only two 

dimensional, a way of defining the third dimensional 

position needs to be considered. After investigating and 

examining some existing 3D CAD programs such as 

PTC ProDESKTOP 2000i2 [11] and Discreet 3D Studio 

Max4 [12], it has been concluded that two possible 

solutions can be implemented. Either use a single 

viewport, which has only one display window, or use 

multiple viewports, consisting of several but usually 

four display windows. With the single viewport 

solution, the user needs to define a working plane in the 

3D environment first, and then construct the 3D object 

based on the working plane. On the other hand, the 

graphical user interface can be separated into four 

quadrants, with one quadrant displaying a 3D model in 

perspective mode and the other three displaying 

orthographic projected views, including the top, the 

front and the side views respectively.  

 

Considering both advantages and limitations for each 

solution and user’s expectations of the software, it has 

been decided to use a single viewport for the graphical 

user interface by default at the beginning of the project, 

and the software also has the functionality of changing 

the single viewport to multiple viewports. However, 

after gaining some experience in programming, it is 

discovered that the multiple viewport system is much 

easier to implement and the user will have better control 

over the 3D model as each orthographic projected view 

only consists of two dimensional co-ordinates. In 

addition, it is more efficient to construct a 3D model as 

the user can specify the co-ordinates directly into three 

different viewports. Therefore, the work space is 

implemented with multiple viewports that allow the user 

to define and manipulate fiber tracts in all three 

orthographic projected views but not the perspective 

view. 

3.2.2.  Console Window 

The console window is embedded in the graphical user 

interface and it is used as a message window. It gives 

extra information on the current progress of the 

software with some additional tips to help the user to 

achieve some specific tasks. All the user’s actions will 

be recorded and the user can refer back to them later on. 

More importantly, it displays error messages in red on 

any illegal operations or invalid inputs. 

3.3. Curve Algorithms 

The shape of a fiber tract can be defined by a curve as 

its basic structure. There are many curve algorithms for 

interpolating a curve, including Hermite Curves (refer to 

appendix for formula), Bezier Curves (refer to appendix 

for formula), Uniform B-Spline Curves, Catmull-Rom 

Spline Curve, Non-uniform B-splines, Non-uniform 

Rational B-spline [NURBS] and so on [13]. 

Considering the complexity and property of each 

algorithm as shown in the table 1, it is decided to 

implement FiberTK with both Uniform B-Spline Curves 

and Catmull-Rom Spline Curve. 

 

  Bezier Hermite B-Spline Catmull-

Rom 

Spline 

Continuity C1 C1 C2 C2 

Local control no no yes yes 

Curve segment lies 

within the convex 

hull 

yes yes yes no 

Interactive curve 

modeling 

Good Good Very good Good 

Interpolate a 

number of position 

Poor Poor Poor Best 

Interpolate with 

tangent control 

Often 

used 

Often 

used 

Good Good 

Table 1: The table of individual properties among 

various curve algorithms. 



3.3.1. B-spline Curve Algorithm 

The Uniform B-Spline Curve is best for use in 

interactive curve modeling [14]. It defines a curve in 

such a way that neither of the control points will lie on 

the curve. However, it is easy to implement and have C2 

continuity [13], which means that not only the end point 

of each curve segment must match, but the tangent, 

“speed” and “acceleration” around the curve with 

respect to t must also match. Furthermore, it is more 

flexible and has local control, which means changing 

one of the control points will not affect the entire curve. 

Figure 5 illustrate an example of a cubic B-spline curve 

which is implemented in the FiberTK. 

 

Figure 5: An example of a cubic B-Spline curve which 

is generated by four control points. 

Another very important feature is that each curve 

segment of the B-Spline curve lies within the convex 

hull of its associated control points. The convex hull can 

be defined as a set of points which is the smallest set of 

points, such that any line connected by any pair of the 

points lie entirely within the set. Figure 6 illustrate this 

by drawing the convex hull around four control points. 

This allows the user to predict the position of the curve 

more easily. 

 

Figure 6: An example of a convex hull around four 

control points. 

Due to the fact that the software is developed for 3D 

environment, the algorithm implemented in FiberTK is 

a cubic B-spline curve algorithm with a function degree 

of three, which means that there are four terms in the 

polynomial function with a dominant term of t3 and 

needs four control points to define each curve segment. 

Every point on the curve can be calculated using the 

formula in the equation below: 
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This formula can also be written in the matrix form, as 

shown in the equation below:   
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3.3.2. Catmull-Rom Spline Curve Algorithm 

On the other hand, the Catmull-Rom spline curve is 

different compared to the B-spline curve. It does not 

have the property such that any of the curve segments lies 

within the convex hull. However, it generates a smooth 

curve that passes through a set of control points and it is 

best at interpolating a number of positions [14]. Like the 

B-Spline, it also has local control and has the continuity 

of C2 [13]. Figure 7 illustrates an example of a cubic 

Catnull_Rom spline curve which is implemented in the 

FiberTK. 

 

Figure 7: An example of a cubic Catmull-Rom Spline 

curve which is generated by four control points. 



More importantly, the tangent of any point is equal to 

the previous point minus the next point divided by two, 

which can be written as the following equation.  

2/)( 11 −+ −= iii PPV                                          (3) 

As with the B-Spline, the Catmull-Rom Spline curve 

algorithm implemented in FiberTK is also a cubic 

function with degree of three, and also needs four 

control points to define each curve segment. Every point 

on the curve can be calculated using the formula in the 

equation below: 
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This formula can also be written in the matrix form as 

shown in the equation below:   







































−
−−

=

4

3

2

1

32

1331

1452

0101

0020

2

1
)1()(

P

P

P

P

ttttp

                                                                                     (5) 

3.4. Simulated Fiber Tracts 

Once the curve is defined in 3D space, the next step is 

to generate a three dimensional representation of the 

fiber tract. In another words, to construct a cylindrical 

tubed shape to represent a fiber tract in 3D. In order to 

achieve this, the tangent, principle normal and binormal 

of the curve must be calculated in order to align each 

cross-section properly with its neighbors so that the 

structure does not twist [15] as illustrated in figure 8. 

The tangent vector, T can be calculated by 

differentiating the first derivatives of both curve 

algorithms. 

 

Figure 8: A wire framed view of a three dimensional 

representation of a fiber tract [15]. 

From equation (1): 
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From these two equations, the tangent of any point on 

the curve can be calculated. After the tangent is 

calculated, the principle normal vector, V and the 

binormal vector, U can be calculated by using the 

following equations. 

UPTU ×=                 (8) 

UTV ×=                 (9) 

Where UP is the up vector [0, 1, 0]. 

 

After the calculation of the tangent, principle normal 

and binormal of a point on the curve, these three vectors 

can then be used to align the cross-section of the fiber 

tract. This is achieved by firstly drawing a unit circle 

with the radius of one at the origin. Next, scale it to a 

specific radius, and then rotate it to align the tangents of 

the fiber tract by using the three vectors T, U and V. 

Finally, translate the circle to its proper position in 3D 

space as shown in figure 9. 

 

Figure 9: Positioning and orienting a cross-section 

[15]. 

However, there is a problem with this approach. Due the 

fact that when the angle between the tangent vector and 

the up vector is too small or close to 180 degree, the 

binormal vector calculated using the equation (8) will 

not be orthogonal to the tangent vector. Therefore the 

shape of the fiber tract will be deformed. However, this 

problem can be solved by using the previous principle 

normal vector to substitute the up vector. The new 

equation can be written as: 

For P0: 

 UPTU ii ×=                 (10) 

For Pi where i ≠ 0: 



1−×= iii VTU                 (11) 

iii UTV ×=                 (12) 

Where UP is the up vector [0, 1, 0]. 

3.5. Tensor Field 

The Tensor Field is a set of simulated DTI data. Once 

the user has defined some fiber tracts, the tensor field 

can then be generated from the tangents of the fiber 

tracts. Any tensor points that lie within the simulated 

fiber tracts will be deformed with a high diffusion 

weight along the tangents of the fiber tracts as shown in 

figure 10. 

 

Figure 10: An example of a tensor field in 3D space. 

This is achieved by firstly checking whether the tensor 

point lies in the simulated fiber tract or not. Then the 

tangent, principle normal and binormal is calculated as 

the three eigenvectors. The pseudo code in figure 11 

briefly explains how this is done. 

 
For every tensor point 

    //tensor is the data structure for storing the matrix of diffusion     

tensor 

    Reset tensor to 0  

     For every fiber tract 

         Find the closest point in distance 

         Compute the distance between the tensor point and fiber tract  

         If the distance is less than the radius 

             Compute tangent, principle normal, and binormal vectors 

             Compute tensor values 

         End if 

     End loop 

End loop 

Figure 11: Pseudo code for computing the tensor field. 

If the tensor point lies in the fiber tract, three 

eigenvectors are calculated as the tangent, principle 

normal and binormal of the corresponding point on the 

curve for orienting the tensor point. The diffusion tensor 

D is then calculated by the following formula.  

SSD Λ= −1
                                                             (13) 
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321 ,, λλλwhere  are the eigenvectors and  

            321 ,, eee  are the eigenvalures. 

Due to the fact that the diffusion tensor matrix is 

symmetrical, only six values are stored in the data 

structure for each diffusion tensor matrix. Figure 12 

demonstrates how the diffusion tensor matrix is stored. 
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Figure 12: Every diffusion tensor matrix is stored in a 

single dimensional array with a length of six. 

Furthermore, when two fiber tracts intersect with each 

other, their tensor eigenvalues and eigenvectors are 

added together which generates a disc shape as 

illustrated in figure 13. As a result, various nerve fiber 

tracking algorithms will perform differently depending 

on their individual properties. 

 

Figure 13: An example of two fiber tracts intersecting 

each other. 

After the tensor field is generated, various nerve fiber 

tracking algorithms can then be run for further analysis 

and evaluation. Three nerve fiber tracking algorithms 

were enclosed in this project, including stream line, 

tensor deflection and tensor line [16]. All these nerve 

fiber tracking algorithms were provided by Ms Jing Li 

from the graphic research group of The University of 

Auckland. 



3.6. Implementation Language 

FiberTK was implemented using various programming 

languages which support multi-platform. These include 

C/C++, OpenGL, Tcl/Tk, SWIG and TkOGL. 

3.6.1. C/C++ 

C is a general-purpose language originally developed 

for the UNIX operating system. It is both a high-level 

and low-level language with better performance and 

better control over low-level mechanisms such as direct 

access to hardware. 

3.6.2. OpenGL 

OpenGL is the premier environment for developing 

portable, interactive 2D and 3D graphical applications 

[17, 18]. The advantage of using OpenGL is that it is a 

multi-platform, high performance 3D graphics API [17]. 

 

3.6.3. Tcl/Tk and TkOGL 

Tcl is the abbreviation for Tool Command Language 

and Tk is the graphical user interface toolkit of Tcl 

[19]. Tcl/Tk is used because it has a simple and 

programmable syntax and can be used either as a 

standalone application or embedded in application 

programs [20]. Furthermore, Tcl is open source and it 

can create powerful GUIs incredibly quickly. 

 

TkOGL is a package extension of Tcl/Tk that enables a 

user to utilize OpenGL. It wraps the GL and GLU 

commands through SWIG, and it compiles the wrapper 

code and generates the Tcl extension packages. 

3.6.4. SWIG 

SWIG stands for Simplified Wrapper and Interface 

Generator, a software development tool that integrates 

C/C++ with a variety of high-level programming 

languages and various common scripting languages 

such as Perl, Python, Tcl/Tk and Ruby [21]. 

 

3.6.5. Software Architecture 

The fundamental software architecture of FiberTK is 

illustrated in figure 14, as all the underlying principles 

including various curve algorithms, nerve fiber tracking 

algorithms and OpenGL functions are implemented in 

C/C++. It is then compiled into Dynamic Link Library 

(.dll) file in Windows or Shared Object (.so) file in 

Linux using SWIG which wraps all the functions in 

C/C++ and makes it callable by the graphical user 

interface. The graphical user interface is constructed 

using Tcl/Tk and TKOGL. At runtime, the Tcl/Tk code 

would load the library file and the output is displayed 

through the graphical user interface. 

 

Figure 14: Software Architecture of FiberTk. 

4. Project Implementation 

4.1. Graphic User Interface 

Figure 15 is a screenshot of the graphical user interface. 

It consists of five parts: the menu bar, tool bar, toolbox, 

work spaces and console window. 

4.1.1. Menu 

The menu bar contains a list of drop-down menus 

including file, edit, view, tool, window and help. Each 

menu also contains a list of sub-menus and 

functionalities for the user to manipulate fiber tracts 

and evaluating nerve fiber tracking algorithms. 

4.1.2. Toolbox 

The toolbox contains a list of buttons for various 

functions and it is placed on the left side of the user 

interface. Buttons in the toolbox can be divided into 

several categories. The first category is the selecting 

tool buttons such as select fiber, select control point 

and select radius control point. The next category is the 

modifying tool buttons. This includes delete fiber, 

insert control point and delete control point. The third 

category is the drawing tool buttons which only consist 

of two buttons, B-Spline curve algorithm and Catmull-

Rom Spline curve algorithm. All these buttons are for 

defining and manipulating fiber tracts. 

 

The last category is the nerve fiber tracking algorithms 

tool buttons. This consists of tensor field, stream line, 

tensor deflection and tensor line. All these buttons are 

used for running various nerve fiber tracking 

algorithms. 



 

Figure 15: The Graphical User Interface of FiberTK

4.1.3. Toolbar 

The toolbar consists of some frequently used buttons that 

provides some of the basic functions such as new, load, save 

and so on. A separator is used to group icons with similar 

functions such as cut, copy and paste. Apart form these 

buttons, it also contains a large amount of buttons for 

manipulating views such as changing the viewing mode of the 

fiber tract from skeleton view to wire framed view, or to full 

rendered view; setting the viewport back to original position 

with alignment of a specific axis; rotating the 3D model in the 

viewport; changing from single viewport to multiple 

viewports; and zooming in and out of various viewports 

including both perspective and orthographical views.    

4.2. Drawing a Fiber 

The user can define a fiber tract by selecting one of the 

drawing fiber tract tool and start defining the position of 

the control point in any of the three orthographical 

viewports. The perspective viewport is only for 

viewing. The user can also swap to single perspective 

viewport for a close inspection of the 3D model. 

4.3. Manipulating a Fiber 

After a fiber tract is defined, the user can then 

manipulate it using various tools. The user can change 

the position of a specific control point by first selecting 

the control point using the select control point tool. 

Once a control point is selected, it will be rendered in 

red to indicate that it has been selected. The user can 

then drag the control point to a new position. The user 

can also select and drag the entire fiber tract to move it 

around in the work space by using the select fiber tool. 

The color of the fiber will also change to purple to 

indicate that it has been selected. The user can also 

modify the radius of the fiber tract by selecting the 

select radius control point tool. This can be achieved by 

selecting and dragging the radius control point which is 

sitting on top of each control point, except the first one 

and the last one. The radius of each segment of the fiber 

tract is defined by the distance between the radius 

control point and the control point. By modifying the 

position of the radius control point, the radius of the 

fiber tract changes accordingly. 

 

Furthermore, the user can also delete and insert a 

control point by using the delete control point tool and 



insert control point tool respectively. When the user 

tries to insert a control point, depending on the current 

number on control points on the fiber tract, the position 

of the newly inserted control point will vary.  When 

there is only one control point, the position of the new 

control point will be the same as the existing control 

point. On the other hand, when there are multiple 

control points, the new control point will be inserted 

after the selected control point and the position is 

calculated with the following equation. 

2/)(
1++= selectedselectednew PPP                               

(14) 

However, there is a special case when the last control 

point is selected, then the equation becomes: 

2/)(
1−+= selectedselectednew PPP                             (15) 

Lastly, the user can also delete the entire fiber by using 

the delete fiber tool. 

4.4. Generating Tensor Field 

Once the user has defined some fiber tracts, a tensor 

field can then be generated by using the create tensor 

field tool. This may take a few seconds for the 

algorithms to compute and the progress information will 

be displayed through the console window. The 

difference between this button and other buttons on the 

toolbar is that it acts like a switch. The second time the 

user clicks this button, the tensor field will be removed 

from the work space. The user can turn the button on 

and off accordingly. 

4.5. Running Tracking Algorithms 

After the tensor field is generated, the user can then run 

various nerve fiber tracking algorithms. There are three 

buttons on the toolbar for running the algorithms 

including stream line, tensor deflection and tensor line. 

All these buttons work the same way as the create 

tensor field tool button, as the user can turn them on 

and off depending on what is required. 

5. Conclusions 

In conclusion, a toolkit FiberTk is built which is 

capable of generating and visualizing user-specified 

nerve fiber tracts and evaluating various nerve fiber 

tracking algorithms. It can be used in biomedical 

research and analysis to improve diagnostics of neuro-

degenerative diseases such as Multiple Sclerosis and 

Schizophrenia 

6.   Future work 

The future enhancement of this project is further 

implementation on variable radius. Current 

interpolation of the radius is linear interpolation, which 

needs further enhancement. It is suggested that the 

Catmull-Rom Spline should be used in order to increase 

the curvature around the surface of the fiber tract.   

 

Apparently, there is one shape for representing the 

nerve fiber tract and it is very limited. However, more 

complicated fiber shapes exists in real world 

applications such as generating a three dimensional 

representation of the internal structure of the brain. It is 

encouraged to increase the capability of creating 

different shaped fiber tracts. 

 

Another important future enhancement can be to 

automatically generate an analysis report for evaluating 

various nerve fiber tracking algorithms. This can 

include the calculation of the mean standard error and 

percentage of deflected fibers. 

 

Furthermore, there is a limitation on the current 

software in which the starting point for the tracking 

algorithms is randomly selected. A further 

improvement would be to allow the user to define the 

starting point for tracking algorithms 
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Appendix  

Cubic Bezier Curve in Matrix form [14]: 
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Cubic Hermite Curve in Matrix form [14]: 
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Cubic B-Spline Curve in Matrix form [14]: 
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Cubic Catmull-Rom Spline Curve in Matrix form [14]: 
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