
A TESTING FRAMEWORK FOR FIBER TRACTOGRAPHY

Langping (Kevin) Wei

Department of Electrical and Computer Engineering

University of Auckland, Auckland, New Zealand

Abstract

The in vivo visualization of the complex human brain is

always a tremendous challenge for biomedical imaging

tools. Diffusion Tensor Imaging (DTI) is a new imaging

technique based on monitoring water molecule

diffusions in 3D space. Fiber tractography is the process

of extracting nerve fiber tracts. In combination with

DTI, fiber tractography can be used for medical

research and the diagnosis of various diseases.

A number of algorithms have been proposed for fiber

tracking. However, few software tools have been

developed for testing these algorithms. This project

aimed to develop a comprehensive testing framework

for the various fiber tracking algorithms.

Based on research and user testing, FiberTK is a toolkit

developed for creating and visualizing nerve fiber tracts.

Various fiber tracking algorithms can be applied in the

program and results are to be compared and analyzed

visually.

It is concluded that the project has been carried out in an

appropriate manner and the resulting software has met

its original requirement. However, future developments

such as Automatic Analysis Report are possible and

encouraged for the project.

1. Introduction

Diffusion Tensor Imaging (DTI) is a new imaging

technology based on measuring the intrinsic properties

of water molecule diffusing in 3D space [1]. An

important field of study related to DTI is fiber

tractography, which is defined as the process of

extracting fibers from soft fibrous tissues such as

nerves, muscles and tendons [2]. In combination with

DTI, fiber tractography is commonly used in medical

diagnostics and research [3].

There have been many methodologies suggested for

tracking nerve fiber tracts in the brain. However, few

software tools have been developed for comparing these

methods [1]. Based on the properties of nerve fiber

tracts, this project aimed to develop a toolkit for the

comparison of various fiber tracking algorithms.

The reason for developing such a testing framework

was that the ability to evaluate and test various existing

fiber tracking algorithms is useful in medical research,

especially when one wants to apply one or more of these

algorithms to a particular problem [3]. Knowing how

well a particular algorithm performs under a particular

circumstance is helpful in determining its suitability

under that particular situation.

Developed in C/C++ in conjunction with Tcl/Tk,

FiberTK is a toolkit developed in this project that allows

users to create simulated DTI data and run various fiber

tracking algorithms. Results are to be visually compared

and analyzed.

FiberTK was being developed as part of the Year 4

Software Engineering Project at the University of

Auckland (UoA).

2. Project Background

2.1. Diffusion Tensor Imaging (DTI)

Biomedical imaging is an essential tool for medical

research and analysis. The complexity of the human

brain presents significant challenges in in vivo

visualization of the brain structure using such tools [3].

Magnetic Resonance Diffusion Tensor Imaging (MR-

DTI) is a new imaging technique and it is based on

measuring the extent of water molecules diffusing in

brain fibers [1]. Images in DTI are created by

monitoring the phase differences among water

molecules during diffusion. These phase differences

occur due to the different magnetic fields experienced

by different water molecules when diffusing in different

directions [2].

DTI can be used to differentiate various types of

structural tissues in the brain, one of which is the nerve

fiber tracts [1]. Consisting of millions of parallel-

orientated nerve fibers, nerve fiber tracts can be easily

identified based on the fact that water diffusion in nerve

fibers is single-directional [1]. DTI is capable of

providing directional information for fiber tracking.

Figure 1 below illustrates fiber tracts in DTI using the

4th order Runge-Kutta method [2].

Figure 1: Fiber Tracts Generated Using

the 4th Order Runge-Kutta Method.

Reproduced From [2]

2.2. Fiber Tractography

Fiber Tractography is an important field of study related

to DTI. It is the process of extracting nerve fibers. There

have been a number of tractography techniques

developed in the past that simulate the basic structure of

nerve fiber tracts in the brain. These include streamline

fiber tracking technique, diffusion tensor deflection

strategy, probabilistic Monte-Carlo method, fast

marching tractography based on level set principles, and

diffusion simulation-based tractography [4]. All of these

techniques vary in terms of performances due to the

nature of the techniques themselves. Figure 2 below

illustrates the extraction of nerve fibers from a DTI data

set.

Figure 2: Extraction of fibers in the splenium of the

corpus callosum from DTI data [17].

Together with DTI, fiber tractography is extremely

useful in biomedical research and the diagnosis of

various neurodegenerative diseases such as multiple

sclerosis and schizophrenia [3].

2.3. Previous work

There have been a number of exiting software packages

for Fiber Tractography. However most of these

packages have a strong emphasis on visualizations

because they were built to fit a different purpose (i.e.

they are unsuitable for the purpose of testing different

fiber tracking algorithms).

One of the representative software packages in this field

is the 3DMRI [5], which is essentially a C++ built

toolkit for visualizing fiber tracts in an isosurface of

human brain [5]. Images are generated from the brain

MRI scans. Figure 3 below shows a screenshot of the

3DMRI software package.

Figure 3: Screenshot of 3DMRI Fiber

Visualization Toolkit. Reproduced from [4]

Other similar applications include 3D Slicer [6],

DTIChecker [7] and DdDTI [8]. However, due to the

nature of these software packages they have not

incorporated the ability of testing any of the fiber

tracking algorithms.

3. Project Design

3.1. Specification and Structural Design

The project aimed to develop a testing framework for

evaluating various fiber tracking algorithms. This

testing framework was developed in the form of a

Graphical User Interface (GUI). Users are able to create

simulated fiber objects which are represented by tubes

in 3D space. Users can also manipulate the artificial

fibers in a similar fashion to manipulating a word

document (i.e. they could cut, copy, paste, save and load

fibers). Once a user is satisfied with the fibers, various

fiber tracking algorithms can be applied. Furthermore,

results can be displayed, compared and analyzed

visually.

According to these user requirements, the structural

design of FiberTK is shown in Figure 3.1 below.

Figure 4: Structural Design of FiberTK.

The structure of FiberTK consists of two distinct but

highly relative layers. The Graphical User Interface (UI)

layer interacts with the users by observing user actions

such as button press and mouse movements. It is also

responsible for output display of the program.

The layer underneath consists of a number of objects.

Simulated fiber tracts and tensor fields are to be defined

by users. Various fiber tracking algorithms can then be

applied to create fiber tracts. User-created (simulated)

fiber tracts, tensor fields and fiber tracts are all managed

by the Rendering Manager, which is responsible for

rendering outputs to the UI.

3.2. User Interface Design

Based on research done earlier in the project, the user

interface of FiberTK is designed and developed. To

some extent, this interface is essentially a simplified 3D

drawing environment/platform where users can create

/modify fiber tracts as well running various tracking

algorithms. Therefore, similar software packages were

studied. These included Adobe PhotoShop [9],

AutoDesk 3D Max [10] and ProDesktop [11].

A number of design decisions were made according to

similar 3D drawing software packages.

3.2.1. Overall Design

Like many software packages, FiberTK has a menu bar,

two dockable toolbars and the main working space.

Each drawing window is implemented as an internal

window inside the main working space and user-defined

fiber tracts can be copied and pasted across different

drawing windows.

Each internal drawing window can be created,

maximized, minimized and closed.

The shape of a fiber is defined by a curve in 3D space.

And a curve is defined by a set of control points. By

allowing users to define a set of control points in 3D

space, a fiber tract can be precisely defined.

3.2.2. Internal Drawing Window

A number of design decisions were also made with

regard to the design of the internal drawing windows.

Due to the fact that fiber tracts are to be drawn on a 3D

space, an intuitive way of allowing users to specify

control points in 3D space played an important role in

the entire design of the program.

Control points are to be defined and drawn on

viewports. There are two fundamental types of

viewports available for 3D scene rendering, namely the

single viewport and the multiple viewport. Single

viewport is the viewing of designed object from the

perspective view while multiple viewport splits the

screen into four different windows, each displaying a

different view (i.e. front, side, top and perspective

view). Figure 5 below demonstrates the difference

between single and multiple viewports.

Figure 5: Single Viewport (Left) vs. Multiple

Viewport (Right). Adapted from [12]

Single viewport has the advantage of ease of use while

multiple viewport is relatively more difficult to

understand. Multiple viewport, on the other hand, is

much more powerful in terms of accuracy because

experienced users can refer to different views at the

same time. Further more, multiple viewport gives users

better control over the entire 3D model by allowing

them to manipulate the model in all directions with

precision. A series of user testing were carried out and it

was found that multiple viewport was a more intuitive

approach. It was therefore decided that the multiple

viewport approach was more appropriate.

While multiple viewport is the default structure, users

can also switch to single viewport for viewing by

clicking on the “Change Viewport” button on the

toolbar.

3.2.3. Console Window

A console window is also implemented in the program

for displaying messages to users. Messages to be

displayed include confirming user actions (e.g. when a

new file has been created), tips to assist users, and error

messages (displayed in red) when a user has made a

mistake. The console window helps communicating

with users better.

3.3. Curve Algorithms

There are a number of curve drawing algorithms

available for rendering a curve from points. A set of

control points define a curve, a curve (in 3D space) and

a radius define a (uniform) tube. Deciding what curve

algorithms to use for drawing curves plays another

important part on the application. Four different types of

curve algorithms were studied and evaluated. Table 1

below illustrates the properties of different curve

drawing algorithms.

 Bezier Hermite B-Spline Catmull-

Rom

Spline

Continuity C1 C1 C2 C2

Local control no no yes yes

Curve segment lies

within the convex

hull

yes yes yes no

Interactive curve

modeling

Good Good Very good Good

Interpolate a

number of position

Poor Poor Poor Best

Interpolate with

tangent control

Often

used

Often

used

Good Good

Table 1: Table for different curve drawing

algorithms

It was decided that both Uniform B-Spline Curves

algorithm and Catmull-Rom Spline Curve algorithm are

to be implemented due to their high continuity and their

abilities of local control. More explanation will be

presented below.

3.3.1. Uniform B-spline Curve Algorithm

The Uniform B-Spline Curve is best for interactive

curve modeling [13]. A curve implemented using

Uniform B-Spline is defined in such a way that neither

of the control point will lie on the curve. B-Spline

Curve gives good local control, which means that

changing one of the control points on the curve will not

have effects the entire curve. Figure 6 illustrates an

example of a cubic B-spline curve implemented in

FiberTK.

Figure 6: An example of a cubic B-Spline curve which

is generated by four control points.

The B-spline curve algorithm implemented in FiberTK

has a function degree of three, which means that four

control points are needed in order to define one curve

segment. In terms of polynomial function of the curve,

four terms with a dominant term of t3 are present in the

function. Each point on the curve can be calculated

using the formula below:

∑ −+=)()(4 itBPtP i

otherwise

t

t

t

t

t

tv

tv

t

tB

43

32

21

10

0

)4(

)2(

)2(

6

1
)(

3

3

4

≤≤
≤≤
≤≤
≤≤

−
−
−

= (1)

)463()(23 +−= sssvwhere

The formula can also be written in the form of matrix:

−−
−

−
=

4

3

2

1

32

1331

0363

0303

0141

6

1
)1()(

P

P

P

P

ttttp

 (2)

3.3.2. Catmull-Rom Spline Curve Algorithm

The Catmull-Rom Spline curve algorithm defines a

curve by interpolating the curve through a set of control

points. Similar to the B-Spline curves, it gives good

local control. Figure 7 below shows an example of a

cubic B-spline curve implemented in FiberTK.

Figure 7: An example of a cubic Catmull-Rom Spline

curve which is generated by four control points.

The Catmull-Rom Spline curve algorithm implemented

in FiberTK also has a function degree of three. Each

point on the curve can be calculated using the formula

below:

)4()
2

1

2

1
()

2

1
2

2

3
(

)1
2

5

2

3
()

2

1

2

1
()(

4

23

3

23

2

23

1

23

4

PttPttt

PttPttttC

−+++−+

+−+−++−=

The formula can also be written in the form of matrix:

−
−−

=

4

3

2

1

32

1331

1452

0101

0020

2

1
)1()(

P

P

P

P

ttttp

 (5)

3.4. Simulated Fiber Tracts

The simulated fiber tract can be generated from the

user-defined curve to give users an in vivo visualization

of the fiber. A simulated fiber tract is represented by a

cylindrical tube shape constructed from a series of

cross-section circles. Figure 8 below illustrates an

example of a simulated fiber tract.

Figure 8: A wire framed view of a three dimensional

representation of a fiber tract.

In order to achieve a uniform tube shape, the alignment

of each cross-section plane plays a significant role. The

tangent, the principle normal and the binormal of the

curve must firstly be calculated in order for each cross-

section plane to align with its neighbours properly.

The tangent vector T can be obtained by differentiating

the first derivatives of both of the curve algorithms.

From equation (1) one can see that:

')()'(4∑ −+= itBPtP i

otherwise

t

t

t

t

t

tv

tv

t

tB

43

32

21

10

0

)4(3

)2('

)2('

3

)'(
2

2

4

≤≤
≤≤
≤≤
≤≤

−−
−

−−
= (6)

)129()(' 2 sssvwhere −=

And from equation (4):

)7()
2

3
()

2

1
4

2

9
(

)5
2

9
()

2

1
2

2

3
()'(

4

2

3

2

2

2

1

2

4

PttPtt

PttPtttC

−+++−+

−+−++−=

The tangent of any point on the curve can therefore be

calculated using the equations above. The principle

normal vector (V) and the binormal vector (U) can also

be evaluated easily when “T” is known:

UPTU ×= (8)

UTV ×= (9)

Where UP refers to the Up Vector [0, 1, 0].

These three vectors can then be used to rotate the cross-

section plane to form a uniform tube. Firstly a unit

circle is created and scaled with a specified radius. The

circle is then rotated using the T, U and V vectors.

Finally the circle is translated to be positioned in the

curve. Figure 9 below illustrates this process:

Figure 9: Positioning and orienting a cross-section

[14].

However, in practice it was found that when the angle

between the tangent vector (T) and the up vector (U)

gets too small or gets close to 180 degree, the binormal

vector calculated using the equation (8) will not be

orthogonal to the tangent vector any more. This meant

that the rotation of the circle plane would not be

accurate which in turn affects the uniformity of the

fiber. A solution to this would be to substitute the up

vector (U) with the previous principle normal vector

(Vi-1). The new equation is presented below:

For P0:

 UPTU ii ×= (10)

For Pi where i ≠ 0:

1−×= iii VTU (11)

iii UTV ×= (12)

Where UP refers to the Up Vector [0, 1, 0].

3.5. Tensor Field

The tensor field can be generated from the tangents of

the fiber tracts created by users. Any tensor points that

lie within the simulated fiber tracts will be deformed

with a high diffusion factor along the direction of the

tangents. Figure 10 below demonstrates an example

from the actual FiberTK program.

Figure 10: An example of a tensor field in 3D space.

The pseudo code in figure 11 below shows how this is

achieved. Firstly, every single tensor point is checked to

see if it lies within the simulated fiber tract. If this is

true, three eigenvectors are calculated from the tangent

(T), the principle normal (V) and the binormal (U) of

the corresponding point. These eigenvectors are then

applied to the point for re-scaling and orienting.

Figure 11: Pseudo code for computing tensor field

The diffusion tensor D can be calculated as shown

below.

SSD Λ= −1
 (13)

=Λ

=

3

2

1

333

222

111

00

00

00

e

e

e

Swhere

zyx

zyx

zyx

λλλ
λλλ
λλλ

When there is an intersection between two or more fiber

tracts, their tensor eigenvalues and eigenvectors are

added together to form a disc shape as illustrated in

figure 12 below. Different tracking algorithms usually

perform differently in this particular situation.

Figure 12: An example of two fiber tracts intersecting

each other.

3.6. Fiber Tracking Algorithms

Once the tensor field is computed, various nerve fiber

tracking algorithms can be applied to the fiber tracts.

Three tracking algorithms were implemented in this

project, namely the stream line, tensor deflection and

tensor line algorithms [15]. Figure 13 below shows the

different results from different tracking algorithms.

Figure 13: Various Fiber Tracking Algorithms (From

Left to Right: Stream Line, Tensor Line and Tensor

Deflection)

For every tensor point

 //tensor is the data structure for storing the matrix of diffusion

tensor

 Reset tensor to 0

 For every fiber tract

 Find the closed point in distance

 Compute the distance between the tensor point and fiber

tract

 If the distance is less than the radius

 Compute tangent, principle normal, and binormal vectors

 Compute tensor values

 End if

 End loop

End loop

3.7. Implementation Language

FiberTK is implemented in a number of programming

languages and APIs. The project aimed to develop a

toolkit that runs on both Windows and Linux. As a

result, the choices for implementation languages are

important. After a significant amount of research and

practices, five programming languages and packages

were used in implementation.

3.7.1. C/C++ and OpenGL

C/C++ is always the first choice for graphic applications

due to its speed, full functionality and greater support

for underlying hardware. The use of OpenGL is also

specified in the project requirement since fiber tracking

algorithms provided were also written in OpenGL. Both

C/C++ and OpenGL are open source and both support

multi-platform.

3.7.2. Tcl/Tk and TkOGL

Tool Command Language (TCL) and Toolkit (TK),

commonly known as Tcl/Tk, is a powerful, platform-

independent scripting language for building user

interfaces [19]. Its ease of use and comprehension of

support make it ideal for implementing the UI in this

project.

TkOGL, which stands for OpenGL for Tk, is a software

library written to support OpenGL in Tcl/Tk [20]. It is

widely used in conjunction with Tcl/Tk for displaying

OpenGL contents on the screen.

3.7.3. SWIG

The Simple Wrapper Interface Generator (SWIG) is an

essential tool for communicating between the Tcl/Tk

code and the underlying C/C++ code. To a wider extent,

it integrates C/C++ with a variety of high-level

programming languages and various common scripting

languages such as Perl, Python, Tcl/Tk and Ruby by

generating an interface file for these languages [21].

3.7.4. Software Architecture

The software architecture for FiberTK is shown in

Figure 14 in the next page.

Data structure, various curve and tracking algorithms as

well as the basic underlying structure for the program

are implemented in C/C++ using Microsoft Visual

Studio .Net framework. The source code is then

compiled into a Dynamic Link Library (.dll) file in

Windows or a Shared Object (.so) file in Linux using

SWIG. SWIG is capable of wrapping all function calls

in C/C++ as well as making it callable by other

applications.

At the user interface level, Tcl/Tk is used for building

the UI. At runtime, the library file is loaded into the

program and user inputs become parameters to function

calls into the library file. Any OpenGL output would be

displayed the TkOGL widget.

Figure 14: Software Architecture of FiberTk.

4. Project Implementation

4.1. Graphic User Interface Overview

Figure 15 in the next page shows a screenshot of the

graphical user interface for FiberTK. There are five

main components in the UI: the menu bar, the tool bar,

the tool box, the console and the main working window.

4.1.1. Menu

The menu bar is consisted of a list of drop-down menus

including File, Edit, View, Tool, Window and Help.

Each menu also contains a list of sub-menus for various

functions relative to the software.

4.1.2. Toolbar

The dockable toolbar positioned horizontally is used for

frequently-used functions. Similar functions are

grouped together and different function groups are

separated by separators.

There are seven main function groups in the toolbar:

• New, Open and Save functions

• Cut, Copy and Paste functions

• Different view mode functions (Skeleton View,

Wireframe View and Rendered View)

• Different viewing angle functions (Viewing

from X, Y and Z axis)

• Changing Viewport function (Switch between

single viewport and multiple viewports)

• Zoom in, Zoom Out and Rotation Mode

functions

• Defining control point position function

Figure 15: The Graphical User Interface of FiberTK

4.1.3. Toolbox

The dockable toolbar positioned vertically is responsible

for drawing and manipulating fiber tracts. There are

four main function categories in the toolbox.

• Selecting Functions: Select Entire Fiber, Select

Control Point and Select Radius

• Insert and Delete Functions: Insert Control

Point, Delete Control Point and Delete Entire

Fiber

• Drawing Functions: Draw using B-Spline

Algorithm and Draw using Catmull-Rom

Spline Algorithm

• Tensor field functions: Generate Tensor field,

Apply the three algorithms

4.2. Drawing a Fiber

Creating fiber tracts is made easy in this program by

allowing users to define a series of control points in any

of the working planes except for the perspective one. A

curve segment will be generated automatically for every

four defined control points. Users can also switch to

different viewing modes or angles once a curve is

defined.

The perspective viewport is for viewing only. Users are

not allowed to define control points in this view mode

simply because positions in perspective viewing are

difficult to determine.

4.3. Manipulating a Fiber

Once a curve/fiber tract is created, it can be manipulated

in different ways. Here’s a list of functions associated

with curves.

• Cut, Copy and Paste a curve/fiber

• Modify the position of the control point of the

curve

• Modify the position of the entire curve

• Modify the radius of the fiber

• Delete a control point in the curve

• Delete the entire curve

• Insert a control point

4.4. Generating Tensor Field

Once the user is satisfied with the fiber created, the

tensor field can be generated using the Generate Tensor

Field function in the toolbox. All tensor points are

displayed inside the tensor field as shown in Figure 10

above. Any tensor point that lies within the simulated

fiber tract will be deformed with a high diffusion factor

along the direction of the tangents.

Users can rotate, zoom in, and zoom out and the tensor

field for viewing.

4.5. Running Tracking Algorithms

Once the tensor field is computed, users can apply

various tracking algorithms to the fiber tracts. This is

done by the last three buttons in the toolbox. Three

tracking algorithms were implemented; the stream line,

tensor deflection and tensor line algorithms.

These buttons were implemented as toggle buttons,

which means that first clicking displays the

corresponding result and the next clicking turns the

display off. This gives users better control over the

results they wish to view (i.e. a user might want to view

result from the tensor line algorithm only and one could

do this by switching all other views off)

Results from various tracking algorithms are to be

compared and analyzed visually only at this stage.

5. Conclusions

• The project aimed to develop a comprehensive

testing framework for testing different fiber tracking

algorithms.

• Written in C/C++ and TCL/TK, FiberTK is toolkit

developed for the project that can be used for

generating and visualizing nerve fiber tracts.

• Various fiber tracking algorithms can be applied in

the application. Results are to be compared and

analyzed visually.

• Various design approaches were used to increase the

usability of the software. Design decisions were

made accordingly.

6. Future work

There are four possible future developments for this

project.

• Further development in variable radius. At present,

variable radius is implemented as linear interpolating

in this project. A non-linear interpolation would give

the curve a much smoother shape.

• More complex fiber shapes. At the moment, only a

tube shape is implemented to represent real fiber

tracts. In practice this is unrealistic because real fiber

tracts usually consist of different shapes and their

internal structure is far more complex than a simple

tube. A more sophisticated structure to represent

fiber tracts is strongly encouraged as a future work

for this project.

• Analysis report. This project allows users to

compare results from various tracking algorithms

visually only, which is obviously insufficient and

ineffective. Analysis reports could therefore be

implemented. This could include a report that

calculates the Standard Mean Error (SME) of the

computed fiber tract compared to the actual fiber

tract previously created by the user. In addition, the

percentage of computed fiber tracts that are outside

the simulated fiber tract can also be counted and act

as a benchmark for the performance of a particular

tracking algorithm.

• User defined starting points. At present, the starting

point for the tracking algorithms are hard-coded into

the underlying C++ code. Allowing users to specify

starting points would be helpful to the users.

Acknowledgements

The student would like to thank the project supervisor,

Dr Burkhard Wuensche for providing the valuable

advices, support and guidelines to make this project

successful.

Second Examiner, Mr. Chris Smaill for providing

helpful feedback and advices on the project

implementation as well as on the project reports.

Ms Jing Li for providing the necessary nerve fiber

tracking algorithms and other relative information that

is much helpful to the project.

Project partner Li Min (Kevin) Xu for his dedication,

enthusiasm and contribution to the project.

And other software Engineering students including

David Huai and Yin Zili for doing usability testing on

the prototype of the graphical user interface.

7. References

[1] Burkhard, C. W. and Richard, L. (2004).The 3D

Visualization of Brain Anatomy from Diffusion-

Weighted Magnetic Resonance Imaging Data. Division

for biomedical imaging and visualization, Department of

computer science. University of Auckland.

[2] Acar, B. and Bammer, R. MR-DTI FIBER

TRACTOGRAPHY and Beyond. (2003). Retrieved May 7,

2005:

http://www.vavlab.ee.boun.edu.tr/ProjectsNEW/lin

ks_DTI.html
[3] Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R.,

Benner, Thomas P., Sorensen, A. G., and Fahlbusch, R.

(2005). Preoperative and Intraoperative Diffusion Tensor

Imaging-based Fiber Tracking in Glioma Surgery.

Neurosurgery. January, 56(1):130-138.

[4] Jun, Z., Hao, J., Ning, K. and Ning, C. (2005). Fiber

Tractography in Diffusion Tensor Magnetic Resonance

Imaging: A Survey and Beyond. Laboratory for high

performance scientific computing and computer

simulation, Department of computer science, University

of Kentucky, Lexington, KY 40506-0046, USA

[5] Hua, K. 3DMRI (2003). Retrieved May 7, 2005:

http://cmrm.med.jhmi.edu/DTIuser/DTIuser.asp
[6] 3D Slicer. (2004). Retrieved May 7, 2005:

http://www.slicer.org/
[7] DTIChecker (2004). Retrieved May 7, 2005:

http://www.ia.unc.edu/dev/download/fibertracking/i

ndex.htm

[8] DdDTI. (2004). Retrieved May 7, 2005:

http://neuroimage.yonsei.ac.kr/dodti/
[9] Adobe PhotoShop (2005). Retrieved May 7, 2005:

http://www.adobe.com/products/photoshop/main.ht

ml
[10] AutoDesk 3D Max (2005). Retrieved May 7, 2005:

http://www4.discreet.com/3dsmax/
[11] ProDesktop (2005). Retrieved May 7, 2005:

http://www.prodesktop.net/
[12] Perspective View (2003). Retrieved May 7, 2005:

http://www.vmbollig.de/msts/tut_en/construction_1

/box_in_mitte.jpg
[13] Hill, F.S. (2001). Computer Graphics Using OpenGL.

Second edition. Prentice Hall, United States of America.

[14] Bloomenthal, J. Calculation of Reference Frame along a

Space Curve. Graphics Gems, Vol1.

[15] Li, J. (2005). An Analysis of Algorithms for In Vivo

Fiber Tractography Using DW-MRI Data. The Computer

Science Department. The University of Auckland.

[16] Beaulieu, C. (2002). The basis of anisotropic water

diffusion in the nervous system – a technical review.

NMR Biomed. 15:435-455.

[17] Center for Magnetic Resonance Research, University of

Minnesota, Minneapolis, MN USA and at the CEA, SHFJ

Orsay FRANCE.

[18] Burkhard, C. W. and Richard, L. (2004). Curves and

Surfaces. Course notes for paper 715.415. University of

Auckland.

[19] Welch, B. B. Practical Programming in TCL and TK. 3rd

Edition. Prentice Hall PTR. 2000.

[20] TKOGL – A TK OpenGL widget. Retrieved May 7,

2005: http://tcltk.free.fr/tkogl/
[21] “SWIG” Retrieved September 11, 2005, from

http://www.swig.org/

