
EQUATION EDITOR FOR MULTIDIMENSIONAL SCIENTIFIC DATA

Andrew Llewelyn

Department of Software Engineering
University of Auckland, Auckland, New Zealand

Abstract

The creation of visualisations from scientific data
often requires that the data be transformed to display the
information required. No tools currently exist that
allow manipulation of the equation in both typeset and
tree view. Many of the current applications and toolkits
for scientific visualisation are not available on more
than one platform, thus a requirement of the application
produced for this project is that it is portable to all major
platforms. The design for the application was split into
several modules to ensure that the code stayed
maintainable as the project developed. One of the major
goals for the application is extensibility. Due to the
limited time available for the implementation of the
project, it is not practical to develop an application with
all the functionality required for manipulating arbitrary
scientific data built into it. The application developed is
very extensible, allowing the future addition of new data
types, operators and functions. Implementation of the
project proceeded in two stages. After user testing on
the first version of the application, it was decided to
restructure the architecture and implement a second
version. This version was found to be more usable.
The final version of the application splits the internal
representation of the equations into three modules, one
for each of the typeset view, tree view and evaluator.
The application created meets all the goals of the
project.

1. Introduction

When working with scientific data for the purpose
of generating visualisations, it is often necessary to
develop transformations to alter the data to suit the
needs of the representation. The transformations are
applied as equations which act on the fields being used
to create the visualisation. The task for this project is to
develop an application that will allow these
transformation equations to be developed quickly and
efficiently, and then allow them to be applied to data
sets.

1.1. Need for the application

There is currently no single application that provides
all of the functionality desired.

1.2. Existing applications with similar functionality

1.2.1. Microsoft Equation Editor [2]

Microsoft Equation Editor (actually a cut down
version of the application ‘MathType’ made by Design
Science, Inc.) comes with Microsoft Office. It provides
typesetting functionality only, allowing users to create
representations of equations within documents for
printing. The interface provided for constructing the
equation is similar to that desired for the typeset view
for the application created for this project. This
application is available for Microsoft Windows only.

1.2.2. MATLAB [3]

MATLAB is a very powerful matrix based
programmable mathematics tool. It allows the creation
of advanced transformations using a custom scripting
language. MATLAB does not provide typesetting
support. It is, however, capable of creating
visualisations based on input data and equations. The
programming interface can be cumbersome to use, and
has a fairly steep learning curve for new users.
MATLAB is available on all major platforms.

1.2.3. Mathcad [4]

Mathcad provides the ability to create and evaluate
equations in typeset form. It is a very powerful
application which provides most of the features required
in the application produced for this project. It does not
provide a tree view for manipulating the equations
however. Mathcad is available only for Microsoft
Windows.

1.3. Goals

The goal of this project is to create an equation
editor application with the following characteristics:
• Provide a typeset view of equations
• Provide a tree view of equations
• Allow editing of equations in both views
• Evaluate equations
• Provide an API for extending the application to
support new data types, functions and operators

2. Design

The overall design for the application was split into
three sections as follows:

2.1. User interface

The design of the user interface is perhaps the most
important aspect as far as the user is concerned [1]. As
this is the main view they get of the application, most of
the impressions they have of the system are based on the
user interface. The user interface for the application has
to function in ways similar to existing programs to
allow new users to learn how to use it rapidly. The
interface also has to behave consistently when the user
performs an action, and ideally the behaviour exhibited
should be what the user would expect to result from
their action.

The overall design of the user interface follows the
general pattern used by applications such as Microsoft
Visio, Eclipse and AutoCAD. Figure 2.1.1 illustrates
the layout of the application. The left hand side of the
interface is devoted to a sidebar from which equation
elements can be dragged. The right hand side is split
into two sections containing a typeset view and a tree
view of the equations being manipulated. Across the
bottom is a text box into which equations can be typed,
and then dragged into either the typeset or tree views.
The drag and drop aspects of the interface allow new
users to get up to speed quickly, and the text interface
allows experienced users to get more performance out
of the application.

Figure 2.1.1: Layout of the user interface

2.2. Serialisation format

The format used to serialize the equations for
storage on disk has to meet several requirements. It has
to be:
• Easily understood by humans to allow it to be used
for tasks not anticipated by the designers

• Compatible with a wide range of other applications

• Simple to parse into an internal representation so
that implementing it does not take a disproportionate
amount of the project’s time
The format chosen is the same as is used to enter

equations into Microsoft Excel and most programming
languages such as C/C++, C#, Java, Visual Basic, etc…
This format is easily understood by humans, and does
not contain extra redundant formatting information.
Equation 2.2.2 illustrates the serialised version of
equation 2.2.1.

)cos(64
)25sin(
x

x

+
+

 (2.2.1)

 sqrt (sin (5 * x + 2)) / (4 + 6 * cos (x)) (2.2.2)

As an added advantage of using this format, the
same parser used for reading saved equations can be
used to extract equations from the text box in the user
interface. This reduces the amount of code that needs to
be written to get the functionality of the equation editor
implemented, allowing more work to be done in other
areas of the application.

2.3. Extensibility

An important requirement for the application is
extensibility. To this end, the design of the program
must be modular, with clear areas of responsibility
between each module. This makes it clear what each
modules function is, and ensures the program is more
maintainable. The program needs to be written with as
few things as possible implemented as special cases, so
that the functionality can be extended in a generic
manner. An overall view of the modules planned for
the application is given in Figure 2.3.1.

Figure 2.3.1: Overall design of the modules comprising
the application

3. Implementation

The implementation of the design has fairly broad
requirements to meet in most areas. Both
implementations described in this document make use

User Interface

Operating System
Windowing
Interface

Operating System

Equation Elements

Serialization &
Parsing

Si
de
ba
r

Text window

Typeset view

Tree view

of a structure used by most compilers/interpreters to
represent the equations. This structure is the AST
(Abstract Syntax Tree). An AST structures the parsed
data into a tree of nodes containing all useful
information. They are generally dependent on their
children for such things as evaluation, size for
rendering, etc… This implies a depth first ordering for
traversing the tree. The structure of the tree makes the
order of operations for an equation implicit (no need to
know if multiply is evaluated before or after addition
after the tree has been constructed). The order in which
children of a node are evaluated is determined by the
node itself, and is generally left-to-right.

3.1. Languages used

The main factor considered when deciding on what
languages to use for the implementation of the project
was portability. To this end, C++ was used to
implement the application.

The parsers were constructed using Flex/Bison
because they work well with C++ and provide a very
powerful and flexible interface for writing LALR(1)
parsers. Generation of an AST from a Bison parser is a
relatively simple task; in a properly constructed
grammar the nodes are parsed in depth first order
allowing children to be passed up to higher levels to be
used in the construction of parent nodes.

The graphical user interface library is implemented
on top of the OpenGL graphics library. The decision to
implement a custom graphical user interface library for
this project was made because it ensured that the
application was more easily portable without having to
install large additional libraries such as Tcl/Tk. It also
allows complete flexibility in deciding how the user
interface can be interacted with, and ensures that it is
consistent across all platforms.

3.2. User interface library

To ensure the application’s portability and to
provide maximum flexibility in the implementation of
the editor views and visualisation output, a custom user
interface library was written on top of OpenGL/GLUT.
The library uses a hierarchical class structure to
represent the various controls and windows used by the
application. An abbreviated view of this structure is
shown in Figure 3.2.1.

Rendering is performed through a Canvas object
which abstracts away the underlying graphics library,
potentially allowing the interface to be ported to another
library. Each Canvas object contains the bounds within
which it can draw, and maintains a scissor rectangle
around this region to ensure the display cannot be
corrupted by an incorrectly implemented control. Fonts
are implemented by Font objects, which can be rendered
on a Canvas. This allowed wgl to be used to implement
the font rendering on Win32 platforms, while still

allowing the transparent use of GLUT fonts on other
platforms. A similar system can be implemented to take
advantage of glx for X-Windows platforms.

Keyboard and mouse input is handled through the
RootWindow object. The RootWindow is responsible
for tracking which control currently has the keyboard
focus, which control is currently under the mouse (for
implementing roll over effects), and also handles drag
and drop between controls.

Figure 3.2.1: Abbreviated diagram of the basic class
hierarchy for the user interface library

3.3. User testing

As each major part of the application was
completed, an informal user test was performed. The
target audience was a small group of students, some
with a lot of experience with other existing applications,
and others with very little. During the testing, the
students attempted to construct several simple
equations. Their comments on the usability of the
interface were recorded and used to improve the next
iteration of development.

3.4. Initial approach

The initial approach taken on implementing the
design for this project had one parser and AST structure
to handle all manipulations of the elements forming an
equation. Each element of the equation was responsible
for:
• Rendering itself in both the typeset and tree views
• Serialization to a plain text format
• Type checking and operator overload resolution

This system was originally chosen because it
allowed the application to be built incrementally. This
made it possible to begin development of the application
and examination of the problems encountered to be
undertaken without requiring the entire architecture to
be designed before any coding was done. Unfortunately
the architecture that resulted from this method of
development suffered from several fundamental
shortcomings as outlined in the following sections.

3.4.1. Tree structure too restrictive for typeset view

User testing highlighted several areas in which the
tree structure placed too many restrictions on the

CWindow

CControl

CPanel CButton

CRootWin-
dow

CVerticalS-
crollPanel

CToggleBu
-tton

manipulation of the typeset view. The users tested
frequently wanted to split up children of adjacent
operator nodes using parentheses. For example, in the
equation 3.4.1 it would be intuitive to be able to drop a
set of parentheses on either ‘+’ operator and have it
surround the adjacent literals. Because of the
underlying tree structure there is a set of implicit
parentheses as shown in 3.4.2. This prevents the user
from adding visible parentheses around the sub
expression ‘6 + 7’.

 765 ++ (3.4.1)

 ()()765 ++ (3.4.2)

This is clearly undesirable behaviour, but it is at best
very difficult to solve cleanly without changing the
underlying tree structure to one incompatible with the
tree view. The work-around for this problem in the
initial version of the application was to drag the entire
sub expression into the text window at the bottom, edit
the serialized form manually, and drag it back into the
equation.

3.4.2. Element nodes too complex

The element nodes had to be complex because they
contained the functionality of what is really three
separate areas of responsibility, namely typeset
representation, tree representation and type
resolution/evaluation. Changes made to attempt to
resolve issues uncovered during usability analysis were
difficult to implement as there was large amounts of
coupling between portions of the code, and so
alterations often resulted in a the propagation of a large
number of changes to supposedly unrelated code.

3.4.3. Disparities between apparent and actual order

of operations

Because the same internal tree structure was used to
represent both the typeset and tree views, many special
cases had to be developed to accommodate situations
arising from disparities between apparent and actual
order of operations. The most obvious of these are
situations that arise when the division operator is used.
When division is written in serialized form, it appears as
in 3.4.3.

8*7/6*5 (3.4.3)

The user needs to be able to represent each different
variant of this equation that results from parentheses
being placed in different locations. However, in each of
these equations the parentheses should not be displayed
as it is apparent which sub expression is evaluated first.
3.4.4-6 show several examples and their serialized
forms.

8*7/6*58
7
6

5 ⇒×× (3.4.4)

() 8*7/6*58
7
65

⇒××
 (3.4.5)

() ()8*7/6*5
87
65
⇒

×
×

 (3.4.6)

This situation can be resolved by removing
parentheses that are around the arguments to the
division operator during parsing, and always inserting
parentheses around the arguments during serialization.
This solution works satisfactorily and has the additional
benefit of also being appropriate for the tree view
representation.

3.4.4. Parenthesis stripping in tree view

Parentheses necessary for specifying order of
operations in the typeset view were also displayed in the
tree view because of the shared internal representation.
Attempts to resolve this by hiding unnecessary
parentheses were enjoyed only limited success.
Complications and special cases in the code arise as
soon as the user is allowed to manipulate the tree view.
This is because the application has to decide what to do
with the hidden parentheses in each situation. It also
has to decide when to insert new hidden parentheses to
maintain consistency with the typeset view.

3.4.5. Conclusions

The initial shared internal representation
architecture, while being invaluable in enabling
usability issues to be discovered early in the project, is
unsuitable for the final version of the application for the
following reasons:
• Work-arounds are needed for several operations that
a user is likely to want to perform frequently

• Many situations need to be special cased in the code
resulting in an interface which is not easily extensible
due to the high level of coupling between sub modules

• Too many restrictions are placed on how the user
can write equations because of the type resolution.
This would be better performed as a separate function
in conjunction with evaluation

3.5. Revised approach

In order to resolve the issues exhibited by the initial
version of the application, a new architecture was
developed to implement the functionality required. This
revised design is based on three parsers instead of the
previous one. Each parser has a separate and distinct
area of responsibility as outlined in the following
sections.

3.5.1. Tree view

This parser creates an AST containing only the
information strictly necessary for rendering a tree view.
Parentheses are stripped out as the order of operations is
apparent from the tree structure itself. During
serialization of the tree structure, the precedence of the
operators is examined to determine where parentheses
are needed to faithfully reconstruct the tree. Figure
3.5.1 shows trees with the same layout and the
parentheses required in their serialized form to
reproduce the tree after parsing.

The parentheses are needed in Figure 3.5.1 (a) to
ensure that the last ‘+’ operator is evaluated before the
middle one. While it would be mathematically correct
to leave out the parentheses in this case, a different tree
would result after parsing (the last ‘+’ operator would
become the root, and hence the last evaluated).

No parentheses are needed in Figure 3.5.1 (b)
because the tree structure follows the BEDMAS rules.

Two sets of parentheses are needed in Figure 3.5.1
(c). The first set are needed to ensure that ‘-’ operator is
evaluated first, and the second set to prevent the tree
from reordering to place the last ‘*’ operator at the root
(this is the same situation as in Figure 3.5.1 (a)).

A simple set of rules based on the precedence of
each operator and whether it is left or right associative
determines where parentheses are needed.

()8765 +++⇒

(a)

8*76/5 +⇒

(b)

() ()8*7*65 −⇒

(c)

Figure 3.5.1: Situations where parentheses are needed
to maintain tree layout during serialization.

3.5.2. Typeset view

The parser for the typeset view creates an AST
whose structure is much flatter than that of the tree
view. In order to allow more intuitive editing of the
equation, a distinction is made between a node
consisting of one term (e.g. a literal, variable or
function) and a node consisting of a series of terms (e.g.
term, ‘+’, term, ‘×’, term). Figure 3.5.2 illustrates the
difference between the AST’s for the tree and typeset
views.

The flattened AST allows the user interface to be
written to enable the user to edit the equation in the
same way one would edit a line of words formed from
letters in a word processor. Because the structure isn’t
restricted to a tree like it was in the initial version, the
user is able to drop a set of parentheses on top of the ‘+’
operator and cause the sub expression ‘6 + 7’ to be
evaluated first.

(a)

(b)

8765 ×+×

(c)

Figure 3.5.2: AST structure for the tree view (a) and
typeset view (b). The serialized form is shown in (c).

Selection is handled in a similar way to how it is
handled in Microsoft Word. If the user starts dragging
the cursor from in the middle of a terms node, it will
select adjacent terms until the end of the terms node is
reached. If the user continues to drag past this point, the
selection origin moves to the parent node and extends to
include the entire terms node. The user can thus select
any set of adjacent terms for manipulation. Figure 3.5.3
illustrates how the selection moves as the mouse is
dragged across the equation.

Terms

6 7 8 5 × + ×

×

- ×

5 6 7 8

+

/ ×

5 6 7 8

+

+ +

5 6 7 8

× ×

6 7 8

+

5

Figure 3.5.3: Selection of multiple adjacent terms
within the typeset view

3.5.3. Evaluator

This parser creates an AST which contains only the
information required to resolve the types of each node,
and to evaluate the equation against a data set. The
structure of the tree is the same as that of the tree view,
with parenthesis nodes stripped out.

3.5.4. Parser interactions

All interactions between the parsers occur through
the serialization interface. The AST’s generated for the
tree and typeset views are capable of serializing
themselves – either in their entirety or a sub tree. When
a sub tree is dragged from one view to another, it is the
serialized form of the AST that actually gets
communicated between the views.

Error checking performed by the evaluation parser is
passed to the other views by specifying where in the
serialized form the error occurs. All nodes in the views
that are parsed from a section of text containing an error
are marked as an error so that the user can make the
appropriate corrections.

3.5.5. Conclusions

The revised structure for the internal representation
of the equations allowed us to develop the user interface
to be more intuitive in the way it responds to
interactions. Word processor style interactions are now
possible within the typeset view. Unnecessary
parentheses are hidden in each of the views. No
arbitrary restrictions are placed on the users actions
within the editor by attempts to maintain type
consistency because the types are not validated until
evaluation time.

4. Results

The final application produced for this project
provides all the core functionality to allow a user to
create and evaluate simple equations. The application
provides a good base to build upon to develop a fully
fledged equation editor. During the development of the
application it was reinforced that the design of program
must be flexible at all times; results from user testing

can often result in large changes being required to the
architecture.

5. Future work

The following items are recommended as things to
be developed for the application in the future:
• Addition of new data types, operators and functions
to allow more advanced equations to be developed

• Development of a library to allow dynamic
extension using a scripting language

• Addition of visualisations, including a representation
of the visualisation at each stage of the evaluation of
the equation within the tree view

• Implementation of OLE to allow equations to be
embedded within Microsoft Office

• Implementation of a library to support output to
TeX/LaTeX for typesetting

6. Conclusions

The scope of the project was well chosen as it
allowed development of the core of the application
without having to implement a large number of
functions and operators. The application is very
extensible allowing the addition of new data types,
functions and operators in the future. The user testing
performed showed that the application behaves
intuitively to new users, and allows rapid editing for
more experienced users.

Acknowledgements

The author would like to thank the supervisor Dr.
Burkhard Wuensche for providing the support and
guidelines to make this project successful. The author
would also like to thank his partner Andrew Brown for
the work he has done on the project.

7. References

[1] Associate Professor Robert Amor, “lecture01
Introduction to HCI” [online document] 2005 [cited
2005 September 9] Available HTTP:
https://www.se.auckland.ac.nz/courses/SOFTENG4
50/lectures/lecture01%20Introduction%20to%20H
CI.pdf

[2] Design Science, Inc., “Design Science: MathType
vs Equation Editor” [online document] 2005 [cited
2005 September 9] Available HTTP:
http://www.dessci.com/en/products/mathtype/mt_vs
_ee.htm

[3] MathWorks, “The MathWorks - MATLAB® - The
Language of Technical Computing” [online
document] 2005 [cited 2005 September 9]
Available HTTP:
http://www.mathworks.com/products/matlab/

4 + sin (5 + 6) * 8
4 + sin (5 + 6) * 8
4 + sin (5 + 6) * 8
4 + sin (5 + 6) * 8

Direction of
selection

4 + sin (5 + 6) * 8 │

[4] Mathsoft, “Mathcad” [online document] 2005
[cited 2005 September 9] Available HTTP:
http://www.Mathcad.com/products/Mathcad12/

