AN EQUATION EDITOR FOR MULTIDIMENSIONAL SCIENTIFIC DATA

Andrew Brown

Department of Electrical and Computer Engineering
University of Auckland, Auckland, New Zealand

Abstract

The Equation Editor for Multidimensional Scientific
Data is a tool for the exploration of scientifictalsets
and transformations. It allows uses to create atit e

equations as well as evaluate them. There are many

other applications with some similar functionalityyt
none contain all the functionality that is requirgfdthe
Multidimensional Equation Editor.

The user interface for the Equation Editor is
designed to be easy to use and intuitive, usingples
learned by examining applications like Microsoft
Visio[1]. The Equation Editor was also designed®
very extensible. This is achieved through the Hquoat
Elements, which are a collection of operators and
functions used in the equations. Simply by addiag n
Equation Elements more operators and functions
become available to be used in the equations.

The Equation Editor was implemented using C++
and OpenGL, to make it multi platform and easy to
support visualisation.

Although the Equation Editor met most of its goals
and requirements it did not meet all of them. A key
requirement, visualisation support was left out doe
lack of time to implement this feature.

1. Introduction

The Equation Editor for Multidimensional Scientific
Data is a tool designed to make it easy to explore
multidimensional scientific data sets and the
transformations that can be performed on thems It i
similar to Microsoft Equation Editor[2] in thatétlows
you to create and edit scientific equations. Howelre
Equation Editor will also evaluate the equatiores tlker
create with it and is designed to be included asgfaa
visualisation toolkit, functionality not includea ithe
Microsoft package.

The equation editor is a tool that can be used by
anyone with a need to edit equations, but it wéllrbost
useful to those who frequently deal with
multidimensional scientific data sets. Those who
specifically deal with these data sets for the paepof
scientific visualisation will find the tool most efsll as
it will make it easy to explore the different wagé
visualizing the raw data. Visualisation is also flegd
that the tool was primarily designed for.

A multidimensional scientific data set is a
multidimensional matrix whose fields can be scalars
vectors, tensors, or any other data type. These st
are more commonly known as scalar, vector or tensor
fields.

2. Other Equation Editing Packages

There are many different equation editing packages
available that offer a lot of the functionality thtne
Multidimensional Equation Editor will provide. Sormé

the most common of these packages include; Mictosof
Equation Editor, Tex/Latex[3], Matlab[4] and
MathCADI[5]. The range of functionality these packag
implement is vast, ranging from simple typesettofg
equations to powerful equation solving and analysis
tools.

Microsoft Equation Editor is the equation typesetting
tool that comes with Microsoft Office. It allows ydo
create nicely typeset equations to be included in
documents. Its menu system is for selecting opeyéaso

a little cumbersome to use and it has no support fo
evaluation of equations.

Tex/Latex is an equation typesetting tool quite similar
to Microsoft Equation Editor, except that it is raor
powerful. Instead of using a menu system to crgate
equation the user type out a text description @& th
equation in the Tex format and the Tex/Latex engine
will output the postscript code for the properlpéget.
Like Microsoft Equation Editor, Tex/Latex has no
support for the evaluation of the equations.

Matlab is a very powerful piece of mathematical
software. Its programmatic interface is a very pduwe
way of representing equations, and it also proviaes
extensive collection of equation evaluation andiisg|
tools. However the Matlab programmatic interface ca
be very difficult to master by those with little oo
programming experience. It also has no supportHer
typesetting of equations.

MathCAD is another powerful mathematical software
package. Like Matlab it has excellent support for
evaluation of equations. It also lets you edit ¢igns in

a typeset view like Microsoft Equation Editor.

None of the above equation editing packages suggort
all the features that were desired in the Multidisienal
Equation Editor. Some were missing support for the

way to go about doing this was to leverage sonthef
interface features out of other programs. The nogr
that that most influenced the equation editor was
Microsoft Visio. The equation editor like Visio has

evaluation of equations, and none of these packagesmultiple page toolbar on the left hand side of the
supported the tree view that was wanted in the window. The toolbar contains a lists of the of the

Multidimensional Equation Editor.

3. Goalsfor the Equation Editor

The main goal for the Equation Editor was to
develop a powerful tool for creating and editing
equations. It had to support equation evaluatiod an
make it easy to explore datasets and transforngation
through an easy to use interface and use of
visualisations. The Equation Editor was envisagetiea
a tool that is desirable to include as part of a
visualisation toolkit.

It would also be desirable to make the Equation
Editor portable.

4. Design

4.1. Requirements

Functional Requirements
« Facilitate the creation of equations and transfeiona
on multidimensional scientific data.

 Ability to evaluate equations.

« Ability to work with multiple different data typedike
scalar, vector and tensor fields.

e Extensible so it is easy to add more operations and
functions to the equations.

e Include multiple different views of the equation
including a typeset view (the normal view you hatan
equation when it is printed, see Figure 2.) andea t
view.

« Allow editing of the equations in all views and kethe
views synchronised so that changes that get madeen
view are immediately reflected in the other views.

* An optional requirement was to include support for
visualisation, as both a visualisation of the resgl
transformed data that is output from the equatiass
well and extending the tree view to show a visadilis
of the data at each node in the tree.

Non-functional Requirements
« Intuitive easy to use user interface

« Easily portable to other platforms

4.2. User Interface Considerations

In designing the user interface one of the primary
concerns was creating an interface that is inwiind
easy to use. To do this it was decided that thabtst

equation operators that can be used in the eqgation
The operators are sorted into pages that categtirése
sorts of data the operators operate on (i.e. ataiprs
that operate on scalars are on one page of thbaqol
while all operators that operate on vectors are on
another).

It was also decided to make the interface primarily
drag and drop. This is because most people ardidami
with the drag and drop interface as Windows makes
much use of it. Drag and drop is also used a Idtisio.
With much of the Equation Editor’s interface being
similar to Visio the Equation editor should seem
familiar to those who have used Visio, and for ¢hos
who have not the Equation Editor should be veryeas
to pick up and start using like Visio is.

Toolbal
Paged Typeset View Tree View
Toolbox

Textbo»

Figure 1 - User interface layout diagram

The main part of the window is divided into two
different equation views with a text box below them
Figure 1 shows this layout. The left view is usedthe
typeset view and the right view for the tree viévine
typeset view displays a list of equations laid bke
how would normally write an equation. On the rigfit
the typeset view is the tree view that displays the
equation in a tree layout. The tree layout showes th
exact order of the operations the data will undevben

the equation gets evaluated. Operations occuriisy f
are further down the tree and the last operatiat the
root of the tree. In the textbox below the othep tw
views, the user can create an equation by typitgheu
equation in a format that is similar to that of kisoft
Excel[6]. The user can also create part of an énguat
and drag it from the text box to the required pliaxcthe
equation they are working on. Figure 2 shows the
differences between the typeset view, the tree dpd/
the text version of the equation.

| sqrt(

| [_sing_|
L x [x |
Tree View Layout
Jsin(x) +cos() , i
y

Typeset View Layout
sqrt(sin(x) + cos(x))ly * z
Text Layout

| cos(

Figure 2 - The differences between the layouts

Some informal user testing was done on the interédc
the equation editor. The feed back received froat th
was very positive. However it did highlight somawils
with the way in which the typeset view worked. het
evaluation version when dragging operators or éojust
around on the typeset view ant then dropping itaon
division operator, the equation would rearrangelfits
Users found this very off-putting as they had to
familiarise them selves with the equations new Uayo
before continuing to edit the equation. To solves th
issue we had to redesign the data structures Hukieh
up the different views, so that the equations cdudd
edited as expected.

4.3. System Architecture

The Equation Editor went through two major chariges
architecture. The first version of the architectwas
fairly simple. It split the project into four parthe
windowing system, the equation editor and the parse
and the equation evaluator. The windowing system is
where all the user interface functionality was te b
implemented. The equation editor part was the thart
handled everything to do with editing equations,
including the drag and drop interface, the rendgoh
the equations in all views and the type checkinghef
equations to make sure the equations were coffaet.
parser is the part of the programme that handles th
conversion form string form to the tree data stitet
that the equation editor part uses. The final pathe
programme is the equation evaluator which uses the
parser to read in the text version of the equatems
then evaluated them. It kept as separate frometsieof
the project as possible so that it could be busltaa
command line tool and used for batch processinpef
equations. It was also desirable to keep it sepdoam
the rest of the project to make it possible to tigvé¢he
programme to use a third party tool for the evadumaodf

the equations.

However about halfway through the project it was
found that this architecture was insufficient foe tto
meet the requirements for the Equation Editor. s t
architecture originally had both the typeset argke tr
view's to use the same backing data structure. élher
were restrictions on how the user could edit daigure
3 shows an example of how editing was restrictdterA
some informal user testing highlighted this deficigin
how the data can be edited the decision was made to
change the architecture.

5+

Can put brackets around 6+I, 6 7
cannot put brackets around 5 I—I
as they are not children of the

same node.

6+7 |

Figure 3 - Equation editing restrictions

The new architecture kept the same windowing system
as the original, large modifications were madeéhrest

of the programme. To fix the problem with editiriget
equations in the typeset view a new data struciae
needed to back the view. The problem with the pabi
tree was it was a very deep tree, with every omerat
increasing the depth of the tree. As the editotricgsd

you to only editing data at one node in the tresyas
very difficult to do things like inserting brackeits the
correct location in the tree. The editor was thenegplit

into two, one part for each of the typeset and tiews.

The typeset view was given a new data structur, th
was designed to be as flat as possible, only biagch
where necessary mostly at brackets, exponents had w
the division operation was encountered. Splittihg t
editor into two added another complexity to thejgecb
Both views now needed to be able to communicate wit
each other to inform the other view if changes haen
made to the equation. It was decided the easiegtava
do this was to create a new equation parser for the
typeset view and use a serialisation interfacepdate

the other view. It was also decided to remove ¥pe t
checking information form the editor and move itoin
the evaluator as that also allowed more flexibilithow

the equations are created. This created an equation
compilation stage that equations have to go through
before the equations can be evaluated to checkitagt
are correct. Figure 4 shows a diagram of the new
architecture.

| Tree View | | Typeset Viey || Evaluato |

v

| Eaquation Elemen |

'

| Editor |

v

| Windowing Syster |
Figure 4 - Equation Editor Architecture

The main features of the architecture are described
below:

Windowing System, responsible for the Equation
Editor's GUI (Graphic User Interface), is platform
independent and supports visualisation.

Editor, handles the editing of the equations. Implements
features like the drag and drop interface.

Equation Elements, the operators and functions that
are used to build up larger equations. Each operato
contains all the information needed for the renugri
type checking and evaluating of the equations. The
Equation Elements are the main way to keep the
Equation Editor extensible. Just by adding more
elements, the Equation Editor can be extended to
support new functions and operation as well as aea

types.

Tree View, controls the editing of the equations in the
tree view window. Tells the windowing system how to
draw the tree using information from the elemerds a
well as the editor about where thing can be dragget!
dropped in the tree view. It contains its own pafse
serialising and de-serialising the equation. Ibé&cked
by a data tree that has the same structure asctheiew
displays. It is structured so that every node ispgrator
and the operands are that nodes children. Figat®®s
an example.

Typeset View. The typeset view is essentially the same
as the tree view. It tells the editor how to rentres
equations in the typeset view window as well as toav
equation can be edited, using information contaimed
the Equation Elements. It also implements a patser
serialise and de-serialise the equations. The bgalata
structure for the typeset view is quite differeranfi the
tree view in that the typeset view is a much flattee
that puts as many nodes as possible on the sarak lev
only branching at brackets and at other times secgs
Figure 5 contains an example.

Evaluator. The Evaluator is the part of the programme
that evaluates the equations. Like the tree view an
typeset view it also contains its own parser. Emable
the evaluator to be used as a standalone commaad i
tool that can be used for batch processing of apst
which may be necessary if the data sets are vegg.la
Its backing data structure is very similar to treetused
by the tree view, except it contains a lot of tghecking
information that it retrieves from the Equation faknts.
This type checking data allows the evaluator tockhe
the equations for errors before it begins evalgattiem.

Tree Data Structure

ILIG60]

Typeset Data Structure
5+6-(7/8)*9
Serialised Equation

Figure 5 — Data structures diagram

5. Implementation

5.1. Platform

To meet the requirement for the project to be ptatf
independent and to be able to support visualisaiton
was decided to use ANSI C++ and OpenGL\GLUT(7] as
the platform for the project. There are many other
alternatives that could have been used for thdopiat
These included .NET, Java and C++ in combination
with the windowing library TCL\TK[8]. In particular
.NET was seriously considered due to its ease®hiaza
development platform, as well as its strong binditg
OpenGL using the Tao[9] libraries. However thisiopt
was rejected as there is currently only full suppor it

in Windows. Although .NET code can be run on Linux
using the Mono[10] project, its implementation bet
.NET libraries is not yet complete. Java was nadus
even though it is the most platform independent
alternative; due to its lack for support for three
dimensional graphics making it not suitable for
visualisation. The last option of C++ and TCL\TK sva
rejected because TCL\TK (a platform independenpscr
based windowing library) required the instillatiohthe

TCL\TK libraries on machines that the code was ¢o b
used on. TCL\TK is also lacking in support for 3D
graphics.

5.2. Windowing System

The windowing system used in the Equation Edita is
custom windowing library written on top of OpenGL
and GLUT. Its design is quite similar to the desafn
the windowing system used in Java. It contains ipialt
controls including buttons, textboxes, scrollbard ¢he
paged toolbar, used as the toolbar for the operator
the equation. The windowing system does not corgain
complete set of controls as only controls that were
needed were created.

All controls in the windowing system are rendered
using OpenGL polygons. Each control contains aolist
child controls allowing complex controls to be louilp
from a series of simple ones. To control the look a
feel of the controls all of the rendering is dohetigh a
canvas object. The canvas object has a list ofgfirest
colours and functions for rendering shapes and Tehd
canvas object also looks after tasks like making su
that nothing was drawn outside the bounds of the
current control, which was very important when maki
the scrollable controls.

The windowing system also uses an event system.
This system is very similar to the one used in Jawad
is responsible for the communication of information
between the controls. The windowing system also
contains the interface for the drag and drop systeed
for editing of the equations.

The windowing system currently has no support for
visualisation. As visualisation was an optionaltdea it
was left out due to time constraints. However authé
fact that the windowing system is built using Opént
should not be difficult to add support for visuatisn.
This is probably best achieved using a visualisatim|
kit.

5.3. Editor

The editor is the main part of the Equation Editor.
combines the various other parts of the EquatioitoEd
and joins them into one application. It takes tbetmls
provided by the windowing system and combines them
to create the Equation Editor's user interface (see
Appendix A for a screen shot of the user interface)

5.4. Equation Elements

The Equation Elements represent the numbers, Variab
operators and functions that can be used in the
equations. They contain all the information neetgd
the Tree View and Typeset View for the layout and
rendering of the equations. The Equation Elemelsts a
contain all the type information needed by the Hstdr

for checking the equations for errors, as well adec

needed for evaluation of the equations. This infdiom
includes the number of operands the Equation Elemen
has. Scalars and variables have no operands, operat
like addition and subtraction normally have twodan
function like sine and cosine can have any numifer o
operands.

The Equation Elements also contain information &bou
how the operands are laid out. The can be nexath e
other like in multiplication, or one above the atlike

in division, or offset for exponents. Currently theare
elements for most scalar operations as well aswa fe
vector operations like dot a cross products.

55. TreeView

The Tree View is the part of the Equation Editoatth
renders the equations in a tree layout. It extehéds
functionality of the of the Windowing System by
creating a new control, the Tree View Control, that
displays the Tree View and allows users to edit the
equations in that view. It has it own parser for
converting equations to and from a serialised fiah.
The parsed serialised text form of the equationsisd

as the method for communication between this vibey,
Typeset View and the Equation Evaluator.

5.6. Typeset View

The Typeset View is much the same as the Tree View
except it displays the equations differently, akofer
some slightly different methods for editing the atipns

and is backed by a much flatter data structure thizat

is used by the Tree View, see Figure [ref].

5.7. Equation Evaluator

The Equation Evaluator takes the equations buithé

editor and evaluates them. The Evaluator is alsd by

the Equation Editor to type check the equations and

make sure they are mathematically correct. Itnslar

to the Tree and Typeset Views as it implementsragpa

to convert the equations for the serialised foroviated

by the Views and build a tree that can be used to

evaluate the equation and type check the equations.
Due to time constraints only a simple evaluator was

created that works on scalar values only, as afbo

concept. The evaluator would be best implemented

using a separate mathematical package. This would

allow a lot of operators and functions to be usethe

equation without write code to evaluate the operati

Matlab was the package that was looked at for ose i

the Equations Editor, but was not used due to tsck

time.

5.8. Parsers

There are three parsers used in the Equation Editor
These are used by both the Tree and Typeset View's
and well as the Equation Evaluator. The parser® wer

created using Bison[11], and Flex[11], two very
powerful tools that are used for creating parsBison
and Flex were chosen as the tool for crating theqra

as they are the two best known tools for the angati
parsers. Other tools that were looked at were Vddc[
and Lex[11] but these were not used as Bison aexl Fl
are updated versions of these tools. Flex is a fimol
creating a lexical analyser, a tool that takeslea dnd
searches it for known tokens. Bison is a tool knasra
‘compiler compiler’, it creates a tool called a w&gatical
analyser that takes the list of tokens that thécx
analyser provides and turns them into an abstyatas
tree, based on the specified grammar. The abstract
syntax tree is used to create the data structbeddaick
the Tree View, the Typeset View and the Equation
Evaluator.

Each of the three parsers that are used in the
Equation Editor are different. The parser usedhia t
Tree View is the simplest. It turns the serialised
equation into the tree form displayed in the Treew/
The parser used in Typeset view is different toadhe
used in the Tree View as it is designed to prodaice
much flatter tree. The parser used by the Equation
Editor is the most complex. It is very similar toet
parser used by the Tree View except it perform® typ
checking on the equations as well, using infornmtio
from the Equation Elements.

6. Results

e The Equation Editor allows simple equations made of
scalar and vector fields to be manipulated.

e The small group of users who tested the application
found its interface to be quite intuitive and etsyse.

« The Equation Editor provides both the Tree and $gpe
Views of the equation and allows the equation to be
edited in these views. It also has a textbox wiibee
serialised form of the equation can be edited.

* The Equation Editor does not currently contain rgda
number of operators. However the operators caryeasi
be added to by adding new Equation Elements.

e« The Equation Editor supports evaluation of the
equations. This is currently limited to simple seal
equations, but could easily be extended throughugiee
of a mathematic package like Matlab.

e The Equation Editor currently does not support
visualisation. Support for visualisation should i
difficult to add by taking advantage of a visudiisa
library.

7. FutureWork

There are many opportunities for Future Work on the
Equation Editor. Some of these opportunities ingolv
completion of features that were neglected dueati |

of time as well as some new features that will miklee
Equation Editor a more powerful tool.

Visualisation. Support for visualisation would allow
users of the Equation Editor to see the resultshef
transformation equations created in the editor.
Visualisation could also be used to extend the Tree
View, by putting a small visualisation at each nade
the tree. These small visualisations would show tiewv
data has been transformed to that point in the tree

Equation Evaluation. The Equation Evaluator can be
extended to take advantage of mathematical software
packages like Matlab.

OLE Plug-in for Microsoft Office. To make it easier
to use the equations created in the editor in decisn
an OLE plug-in could be created. An OLE plug-in
would allow equations it equations to easily besrted
into Office documents, making this Equation Editor
alternative to Microsoft Equation Editor. Another
alternative to this would be to create a Tex/Latatput
for the program.

Scripted Equation Elements. By including a scripting
language in the Equation Editor, Equation Elements
could be dynamically added to the editor. Curretdly
add new Equation Elements the program has to be
recompiled.

8. Conclusions

The project met most of its goals and functional
requirements. It is a useful and equation editiogj, t
although is functionality is limited due to featsrkeft
out because of time constraints. It supports egnati
evaluation, and will be useful for exploring sciéat
datasets and transformations once more Equation
Elements are created and the evaluation functigyriali
extended.

Due to lack of time support for visualisation could
not be implemented and this restricts the Equation
Editors usefulness as part of a visualisation tibolk

Acknowledgements

| would like to acknowledge my supervisor Dr
Burkhard Wuensche for his input and ideas thatételp
making this project successful. | would also lile t
acknowledge my project partner Andrew Llewelyn for
his contribution to the project and for all his helind
assistance on parts of the project | found difficul

9. References

[1] “Microsoft Visio 2003”, [Online document] [cited
2005 September 2], Available HTTP:

http://office.microsoft.com/en-
us/FX010857981033.aspx

[2] “Microsoft Equation Editor”, [Online document]
[cited 2005 May 5], Available HTTP:
http://office.microsoft.com/en-
us/assistance/HA011327531033.aspx

[3] "LaTeX”, [Online document] [cited 2005 May 5],
Available HTTP: http://www.latex-project.org/.

[4] “MATLAB”, [Online document] [cited 2005
September 5], Available HTTP:
http://www.mathworks.com/products/matlab/

[5] “MathCAD”, [Online document] [cited 2005 May
5], Available HTTP: http://www.mathcad.com/

[6] “Microsoft Excel”, [Online document] [cited 2005
September 5], Available HTTP:
http://office.microsoft.com/en-
us/FX010858001033.aspx

[7] “GLUT — The OpenGL Utility Toolkit”, [Online
document] [cited 2005 September 5], Available
HTTP:
http://www.opengl.org/resources/libraries/glut.html

[8] “TchTk”, [Online document] [cited 2005 June 12],
Available HTTP: http://www.tcl.tk/software/tcltk/

[9] “Tao”, [Online document] [cited 2005 September
8], Available HTTP: http://www.mono-
project.com/Tao

[10]“Mono”, [Online document] [cited 2005 September
8], Available HTTP: http://www.mono-project.com

[11]“The LEX & YACC Page”, [Online document]
[cited 2005 September 8], Available HTTP:
http://dinosaur.compilertools.net/

Appendix A

Screenshot of the Multidimensional Equation Editor

Equation Editor

Load | Save ‘

‘ Scalar 2 e .
sm(D) sin
:os(D)
JE cos(5 + 6 % u)

me(D‘ D)
o-+o sin(#) sin(8)

v [Fetl mod an x) e 2))) o

