
AN EQUATION EDITOR FOR MULTIDIMENSIONAL SCIENTIFIC DATA

Andrew Brown

Department of Electrical and Computer Engineering
University of Auckland, Auckland, New Zealand

Abstract

The Equation Editor for Multidimensional Scientific
Data is a tool for the exploration of scientific datasets
and transformations. It allows uses to create and edit
equations as well as evaluate them. There are many
other applications with some similar functionality, but
none contain all the functionality that is required of the
Multidimensional Equation Editor.

The user interface for the Equation Editor is
designed to be easy to use and intuitive, using lessons
learned by examining applications like Microsoft
Visio[1]. The Equation Editor was also designed to be
very extensible. This is achieved through the Equation
Elements, which are a collection of operators and
functions used in the equations. Simply by adding new
Equation Elements more operators and functions
become available to be used in the equations.

The Equation Editor was implemented using C++
and OpenGL, to make it multi platform and easy to
support visualisation.

Although the Equation Editor met most of its goals
and requirements it did not meet all of them. A key
requirement, visualisation support was left out due to
lack of time to implement this feature.

1. Introduction

The Equation Editor for Multidimensional Scientific
Data is a tool designed to make it easy to explore
multidimensional scientific data sets and the
transformations that can be performed on them. It is
similar to Microsoft Equation Editor[2] in that it allows
you to create and edit scientific equations. However the
Equation Editor will also evaluate the equations the user
create with it and is designed to be included as part of a
visualisation toolkit, functionality not included in the
Microsoft package.

The equation editor is a tool that can be used by
anyone with a need to edit equations, but it will be most
useful to those who frequently deal with
multidimensional scientific data sets. Those who
specifically deal with these data sets for the purpose of
scientific visualisation will find the tool most useful as
it will make it easy to explore the different ways of
visualizing the raw data. Visualisation is also the field
that the tool was primarily designed for.

A multidimensional scientific data set is a
multidimensional matrix whose fields can be scalars,
vectors, tensors, or any other data type. These data sets
are more commonly known as scalar, vector or tensor
fields.

2. Other Equation Editing Packages

There are many different equation editing packages
available that offer a lot of the functionality that the
Multidimensional Equation Editor will provide. Some of
the most common of these packages include; Microsoft
Equation Editor, Tex/Latex[3], Matlab[4] and
MathCAD[5]. The range of functionality these packages
implement is vast, ranging from simple typesetting of
equations to powerful equation solving and analysis
tools.

Microsoft Equation Editor is the equation typesetting
tool that comes with Microsoft Office. It allows you to
create nicely typeset equations to be included in
documents. Its menu system is for selecting operators is
a little cumbersome to use and it has no support for
evaluation of equations.

Tex/Latex is an equation typesetting tool quite similar
to Microsoft Equation Editor, except that it is more
powerful. Instead of using a menu system to create your
equation the user type out a text description of the
equation in the Tex format and the Tex/Latex engine
will output the postscript code for the properly typeset.
Like Microsoft Equation Editor, Tex/Latex has no
support for the evaluation of the equations.

Matlab is a very powerful piece of mathematical
software. Its programmatic interface is a very powerful
way of representing equations, and it also provides an
extensive collection of equation evaluation and solving
tools. However the Matlab programmatic interface can
be very difficult to master by those with little or no
programming experience. It also has no support for the
typesetting of equations.

MathCAD is another powerful mathematical software
package. Like Matlab it has excellent support for
evaluation of equations. It also lets you edit equations in
a typeset view like Microsoft Equation Editor.

None of the above equation editing packages supported
all the features that were desired in the Multidimensional
Equation Editor. Some were missing support for the
evaluation of equations, and none of these packages
supported the tree view that was wanted in the
Multidimensional Equation Editor.

3. Goals for the Equation Editor

The main goal for the Equation Editor was to
develop a powerful tool for creating and editing
equations. It had to support equation evaluation and
make it easy to explore datasets and transformations
through an easy to use interface and use of
visualisations. The Equation Editor was envisaged as be
a tool that is desirable to include as part of a
visualisation toolkit.

It would also be desirable to make the Equation
Editor portable.

4. Design

4.1. Requirements

Functional Requirements
• Facilitate the creation of equations and transformations

on multidimensional scientific data.

• Ability to evaluate equations.

• Ability to work with multiple different data types, like
scalar, vector and tensor fields.

• Extensible so it is easy to add more operations and
functions to the equations.

• Include multiple different views of the equation
including a typeset view (the normal view you have of an
equation when it is printed, see Figure 2.) and a tree
view.

• Allow editing of the equations in all views and keep the
views synchronised so that changes that get made in one
view are immediately reflected in the other views.

• An optional requirement was to include support for
visualisation, as both a visualisation of the resulting
transformed data that is output from the equations as
well and extending the tree view to show a visualisation
of the data at each node in the tree.

Non-functional Requirements

• Intuitive easy to use user interface

• Easily portable to other platforms

4.2. User Interface Considerations

In designing the user interface one of the primary
concerns was creating an interface that is intuitive and
easy to use. To do this it was decided that that the best

way to go about doing this was to leverage some of the
interface features out of other programs. The program
that that most influenced the equation editor was
Microsoft Visio. The equation editor like Visio has a
multiple page toolbar on the left hand side of the
window. The toolbar contains a lists of the of the
equation operators that can be used in the equations.
The operators are sorted into pages that categorise the
sorts of data the operators operate on (i.e. all operators
that operate on scalars are on one page of the toolbar,
while all operators that operate on vectors are on
another).

It was also decided to make the interface primarily
drag and drop. This is because most people are familiar
with the drag and drop interface as Windows makes
much use of it. Drag and drop is also used a lot in Visio.
With much of the Equation Editor’s interface being
similar to Visio the Equation editor should seem
familiar to those who have used Visio, and for those
who have not the Equation Editor should be very easy
to pick up and start using like Visio is.

Figure 1 - User interface layout diagram

The main part of the window is divided into two
different equation views with a text box below them.
Figure 1 shows this layout. The left view is used for the
typeset view and the right view for the tree view. The
typeset view displays a list of equations laid out like
how would normally write an equation. On the right of
the typeset view is the tree view that displays the
equation in a tree layout. The tree layout shows the
exact order of the operations the data will undergo when
the equation gets evaluated. Operations occurring first
are further down the tree and the last operation is at the
root of the tree. In the textbox below the other two
views, the user can create an equation by typing out the
equation in a format that is similar to that of Microsoft
Excel[6]. The user can also create part of an equation
and drag it from the text box to the required place in the
equation they are working on. Figure 2 shows the
differences between the typeset view, the tree view and
the text version of the equation.

Toolbar

Paged
Toolbox

Typeset View Tree View

Textbox

Tree View Layout

z
y

xx
*

)cos()sin(+

Typeset View Layout
sqrt(sin(x) + cos(x))/y * z

Text Layout

Figure 2 - The differences between the layouts

Some informal user testing was done on the interface of
the equation editor. The feed back received from that
was very positive. However it did highlight some flaws
with the way in which the typeset view worked. In the
evaluation version when dragging operators or equations
around on the typeset view ant then dropping it on a
division operator, the equation would rearrange itself.
Users found this very off-putting as they had to
familiarise them selves with the equations new layout
before continuing to edit the equation. To solve this
issue we had to redesign the data structures that backed
up the different views, so that the equations could be
edited as expected.

4.3. System Architecture

The Equation Editor went through two major changes in
architecture. The first version of the architecture was
fairly simple. It split the project into four parts the
windowing system, the equation editor and the parser
and the equation evaluator. The windowing system is
where all the user interface functionality was to be
implemented. The equation editor part was the part that
handled everything to do with editing equations,
including the drag and drop interface, the rendering of
the equations in all views and the type checking of the
equations to make sure the equations were correct. The
parser is the part of the programme that handles the
conversion form string form to the tree data structure
that the equation editor part uses. The final part of the
programme is the equation evaluator which uses the
parser to read in the text version of the equations and
then evaluated them. It kept as separate from the rest of
the project as possible so that it could be built as a
command line tool and used for batch processing of the
equations. It was also desirable to keep it separate form
the rest of the project to make it possible to develop the
programme to use a third party tool for the evaluation of
the equations.

However about halfway through the project it was
found that this architecture was insufficient for the to
meet the requirements for the Equation Editor. As the
architecture originally had both the typeset and tree
view’s to use the same backing data structure. There
were restrictions on how the user could edit data. Figure
3 shows an example of how editing was restricted. After
some informal user testing highlighted this deficiency in
how the data can be edited the decision was made to
change the architecture.

Figure 3 - Equation editing restrictions

The new architecture kept the same windowing system
as the original, large modifications were made to the rest
of the programme. To fix the problem with editing the
equations in the typeset view a new data structure was
needed to back the view. The problem with the original
tree was it was a very deep tree, with every operation
increasing the depth of the tree. As the editor restricted
you to only editing data at one node in the tree, it was
very difficult to do things like inserting brackets in the
correct location in the tree. The editor was therefore split
into two, one part for each of the typeset and tree views.
The typeset view was given a new data structure, that
was designed to be as flat as possible, only branching
where necessary mostly at brackets, exponents and when
the division operation was encountered. Splitting the
editor into two added another complexity to the project.
Both views now needed to be able to communicate with
each other to inform the other view if changes had been
made to the equation. It was decided the easiest way to
do this was to create a new equation parser for the
typeset view and use a serialisation interface to update
the other view. It was also decided to remove the type
checking information form the editor and move it into
the evaluator as that also allowed more flexibility in how
the equations are created. This created an equation
compilation stage that equations have to go through
before the equations can be evaluated to check that they
are correct. Figure 4 shows a diagram of the new
architecture.

*

/

sqrt()

cos() sin()

x x

z

y

+

5 +

6 7

5 + 6 + 7

Can put brackets around 6+7,
cannot put brackets around 5+6
as they are not children of the
same node.

Figure 4 - Equation Editor Architecture

The main features of the architecture are described
below:

Windowing System, responsible for the Equation
Editor’s GUI (Graphic User Interface), is platform
independent and supports visualisation.

Editor, handles the editing of the equations. Implements
features like the drag and drop interface.

Equation Elements, the operators and functions that
are used to build up larger equations. Each operator
contains all the information needed for the rendering,
type checking and evaluating of the equations. The
Equation Elements are the main way to keep the
Equation Editor extensible. Just by adding more
elements, the Equation Editor can be extended to
support new functions and operation as well as new data
types.

Tree View, controls the editing of the equations in the
tree view window. Tells the windowing system how to
draw the tree using information from the elements as
well as the editor about where thing can be dragged and
dropped in the tree view. It contains its own parser for
serialising and de-serialising the equation. It is backed
by a data tree that has the same structure as the tree view
displays. It is structured so that every node is an operator
and the operands are that nodes children. Figure 5 shows
an example.

Typeset View. The typeset view is essentially the same
as the tree view. It tells the editor how to render the
equations in the typeset view window as well as how the
equation can be edited, using information contained in
the Equation Elements. It also implements a parser to
serialise and de-serialise the equations. The backing data
structure for the typeset view is quite different from the
tree view in that the typeset view is a much flatter tree
that puts as many nodes as possible on the same level
only branching at brackets and at other times necessary.
Figure 5 contains an example.

Evaluator. The Evaluator is the part of the programme
that evaluates the equations. Like the tree view and
typeset view it also contains its own parser. This enable
the evaluator to be used as a standalone command line
tool that can be used for batch processing of equations,
which may be necessary if the data sets are very large.
Its backing data structure is very similar to the tree used
by the tree view, except it contains a lot of type checking
information that it retrieves from the Equation Elements.
This type checking data allows the evaluator to check
the equations for errors before it begins evaluating them.

 Tree Data Structure

 Typeset Data Structure

5 + 6 – (7 / 8) * 9
 Serialised Equation

Figure 5 – Data structures diagram

5. Implementation

5.1. Platform

To meet the requirement for the project to be platform
independent and to be able to support visualisation, it
was decided to use ANSI C++ and OpenGL\GLUT[7] as
the platform for the project. There are many other
alternatives that could have been used for the platform.
These included .NET, Java and C++ in combination
with the windowing library TCL\TK[8]. In particular
.NET was seriously considered due to its ease of use as a
development platform, as well as its strong bindings to
OpenGL using the Tao[9] libraries. However this option
was rejected as there is currently only full support for it
in Windows. Although .NET code can be run on Linux
using the Mono[10] project, its implementation of the
.NET libraries is not yet complete. Java was not used,
even though it is the most platform independent
alternative; due to its lack for support for three
dimensional graphics making it not suitable for
visualisation. The last option of C++ and TCL\TK was
rejected because TCL\TK (a platform independent script
based windowing library) required the instillation of the

Equation Elements

Editor

Windowing System

Tree View Typeset View Evaluator

+

5 -

6 *

9 /

8 7

Root Node

5 + 6 - () * 9

/ 7 8

TCL\TK libraries on machines that the code was to be
used on. TCL\TK is also lacking in support for 3D
graphics.

5.2. Windowing System

The windowing system used in the Equation Editor is a
custom windowing library written on top of OpenGL
and GLUT. Its design is quite similar to the design of
the windowing system used in Java. It contains multiple
controls including buttons, textboxes, scrollbars and the
paged toolbar, used as the toolbar for the operators in
the equation. The windowing system does not contain a
complete set of controls as only controls that were
needed were created.

All controls in the windowing system are rendered
using OpenGL polygons. Each control contains a list of
child controls allowing complex controls to be build up
from a series of simple ones. To control the look and
feel of the controls all of the rendering is done through a
canvas object. The canvas object has a list of predefined
colours and functions for rendering shapes and text. The
canvas object also looks after tasks like making sure
that nothing was drawn outside the bounds of the
current control, which was very important when making
the scrollable controls.

The windowing system also uses an event system.
This system is very similar to the one used in Java and
is responsible for the communication of information
between the controls. The windowing system also
contains the interface for the drag and drop system used
for editing of the equations.

The windowing system currently has no support for
visualisation. As visualisation was an optional feature it
was left out due to time constraints. However due to the
fact that the windowing system is built using OpenGL it
should not be difficult to add support for visualisation.
This is probably best achieved using a visualisation tool
kit.

5.3. Editor

The editor is the main part of the Equation Editor. It
combines the various other parts of the Equation Editor
and joins them into one application. It takes the controls
provided by the windowing system and combines them
to create the Equation Editor’s user interface (see
Appendix A for a screen shot of the user interface).

5.4. Equation Elements

The Equation Elements represent the numbers, variable,
operators and functions that can be used in the
equations. They contain all the information needed by
the Tree View and Typeset View for the layout and
rendering of the equations. The Equation Elements also
contain all the type information needed by the Evaluator
for checking the equations for errors, as well as code

needed for evaluation of the equations. This information
includes the number of operands the Equation Element
has. Scalars and variables have no operands, operators
like addition and subtraction normally have two, and
function like sine and cosine can have any number of
operands.
The Equation Elements also contain information about
how the operands are laid out. The can be next to each
other like in multiplication, or one above the other like
in division, or offset for exponents. Currently there are
elements for most scalar operations as well as a few
vector operations like dot a cross products.

5.5. Tree View

The Tree View is the part of the Equation Editor that
renders the equations in a tree layout. It extends the
functionality of the of the Windowing System by
creating a new control, the Tree View Control, that
displays the Tree View and allows users to edit the
equations in that view. It has it own parser for
converting equations to and from a serialised text form.
The parsed serialised text form of the equation is used
as the method for communication between this view, the
Typeset View and the Equation Evaluator.

5.6. Typeset View

The Typeset View is much the same as the Tree View
except it displays the equations differently, allows for
some slightly different methods for editing the equations
and is backed by a much flatter data structure than what
is used by the Tree View, see Figure [ref].

5.7. Equation Evaluator

The Equation Evaluator takes the equations built in the
editor and evaluates them. The Evaluator is also used by
the Equation Editor to type check the equations and
make sure they are mathematically correct. It is similar
to the Tree and Typeset Views as it implements a parser
to convert the equations for the serialised form provided
by the Views and build a tree that can be used to
evaluate the equation and type check the equations.

Due to time constraints only a simple evaluator was
created that works on scalar values only, as a proof of
concept. The evaluator would be best implemented
using a separate mathematical package. This would
allow a lot of operators and functions to be used in the
equation without write code to evaluate the operation.
Matlab was the package that was looked at for use in
the Equations Editor, but was not used due to lack of
time.

5.8. Parsers

There are three parsers used in the Equation Editor.
These are used by both the Tree and Typeset View’s
and well as the Equation Evaluator. The parsers were

created using Bison[11], and Flex[11], two very
powerful tools that are used for creating parsers. Bison
and Flex were chosen as the tool for crating the parsers
as they are the two best known tools for the creating
parsers. Other tools that were looked at were Yacc[11]
and Lex[11] but these were not used as Bison and Flex
are updated versions of these tools. Flex is a tool for
creating a lexical analyser, a tool that takes a file and
searches it for known tokens. Bison is a tool known as a
‘compiler compiler’, it creates a tool called a syntactical
analyser that takes the list of tokens that the lexical
analyser provides and turns them into an abstract syntax
tree, based on the specified grammar. The abstract
syntax tree is used to create the data structures that back
the Tree View, the Typeset View and the Equation
Evaluator.

Each of the three parsers that are used in the
Equation Editor are different. The parser used in the
Tree View is the simplest. It turns the serialised
equation into the tree form displayed in the Tree View.
The parser used in Typeset view is different to the one
used in the Tree View as it is designed to produce a
much flatter tree. The parser used by the Equation
Editor is the most complex. It is very similar to the
parser used by the Tree View except it performs type
checking on the equations as well, using information
from the Equation Elements.

6. Results

• The Equation Editor allows simple equations made of
scalar and vector fields to be manipulated.

• The small group of users who tested the application
found its interface to be quite intuitive and easy to use.

• The Equation Editor provides both the Tree and Typeset
Views of the equation and allows the equation to be
edited in these views. It also has a textbox where the
serialised form of the equation can be edited.

• The Equation Editor does not currently contain a large
number of operators. However the operators can easily
be added to by adding new Equation Elements.

• The Equation Editor supports evaluation of the
equations. This is currently limited to simple scalar
equations, but could easily be extended through the use
of a mathematic package like Matlab.

• The Equation Editor currently does not support
visualisation. Support for visualisation should not be
difficult to add by taking advantage of a visualisation
library.

7. Future Work

There are many opportunities for Future Work on the
Equation Editor. Some of these opportunities involve
completion of features that were neglected due to lack

of time as well as some new features that will make the
Equation Editor a more powerful tool.

Visualisation. Support for visualisation would allow
users of the Equation Editor to see the results of the
transformation equations created in the editor.
Visualisation could also be used to extend the Tree
View, by putting a small visualisation at each node in
the tree. These small visualisations would show how the
data has been transformed to that point in the tree.

Equation Evaluation. The Equation Evaluator can be
extended to take advantage of mathematical software
packages like Matlab.

OLE Plug-in for Microsoft Office. To make it easier
to use the equations created in the editor in documents,
an OLE plug-in could be created. An OLE plug-in
would allow equations it equations to easily be inserted
into Office documents, making this Equation Editor an
alternative to Microsoft Equation Editor. Another
alternative to this would be to create a Tex/Latex output
for the program.

Scripted Equation Elements. By including a scripting
language in the Equation Editor, Equation Elements
could be dynamically added to the editor. Currently to
add new Equation Elements the program has to be
recompiled.

8. Conclusions

The project met most of its goals and functional
requirements. It is a useful and equation editing tool,
although is functionality is limited due to features left
out because of time constraints. It supports equation
evaluation, and will be useful for exploring scientific
datasets and transformations once more Equation
Elements are created and the evaluation functionality is
extended.

Due to lack of time support for visualisation could
not be implemented and this restricts the Equation
Editors usefulness as part of a visualisation toolkit.

Acknowledgements

I would like to acknowledge my supervisor Dr
Burkhard Wuensche for his input and ideas that helped
making this project successful. I would also like to
acknowledge my project partner Andrew Llewelyn for
his contribution to the project and for all his help and
assistance on parts of the project I found difficult.

9. References

[1] “Microsoft Visio 2003”, [Online document] [cited

2005 September 2], Available HTTP:

http://office.microsoft.com/en-
us/FX010857981033.aspx

[2] “Microsoft Equation Editor”, [Online document]
[cited 2005 May 5], Available HTTP:
http://office.microsoft.com/en-
us/assistance/HA011327531033.aspx

[3] ”LaTeX”, [Online document] [cited 2005 May 5],
Available HTTP: http://www.latex-project.org/.

[4] “MATLAB”, [Online document] [cited 2005
September 5], Available HTTP:
http://www.mathworks.com/products/matlab/

[5] “MathCAD”, [Online document] [cited 2005 May
5], Available HTTP: http://www.mathcad.com/

[6] “Microsoft Excel”, [Online document] [cited 2005
September 5], Available HTTP:
http://office.microsoft.com/en-
us/FX010858001033.aspx

[7] “GLUT – The OpenGL Utility Toolkit”, [Online
document] [cited 2005 September 5], Available
HTTP:
http://www.opengl.org/resources/libraries/glut.html

[8] “Tcl\Tk”, [Online document] [cited 2005 June 12],
Available HTTP: http://www.tcl.tk/software/tcltk/

[9] “Tao”, [Online document] [cited 2005 September
8], Available HTTP: http://www.mono-
project.com/Tao

[10] “Mono”, [Online document] [cited 2005 September
8], Available HTTP: http://www.mono-project.com

[11] “The LEX & YACC Page”, [Online document]
[cited 2005 September 8], Available HTTP:
http://dinosaur.compilertools.net/

Appendix A

Screenshot of the Multidimensional Equation Editor

