
 1

Semi-Automatic High-Quality Reconstruction of the
Heart Pathology from MRI Data by Soft Objects

Bo Li

Supervisors:

Burkhard Wuensche and Alistair A. Young

August 2004

 2

Table of Content

1 Introduction: .. 3

2 Backgrounds: ... 4
Soft Object Modeling ... 5
Derive heart pathology from Soft Object Model...................................... 8
Encountered Problems ... 9

3 User Interface and the Toolkits of my program:........................ 17

4 Component Management and hierarchy: 23

5 Problems: ... 24

6 Conclusion and future improvement: .. 25

Reference: ... 25

 3

Abstract

 The most serious problem of the Heart Disease is that it will lead to Heart
Failure, which is a serious condition in which the heart is not pumping well
enough. Since the prognosis after Heart Failure is poor, people use computer
visualization techniques to diagnosis and analysis the cardiac disease to prevent
the happen of the Heart Failure. Over the last ten years, a variety of efficient and
excellent visualization techniques for the heart are introduced. However, most of
these techniques require either a relevant amount of user work or a default
topology of a healthy heart. None of them is efficient enough for the diagnosis of
congenital heart disease caused by the abnormalities of the heart pathology. Dr
Alistair, Dr Burkhard and I try to develop a new heart-modeling technique which
can be used to efficiently model the abnormal heart pathology from noisy MRI
data. In this project, I improved the program from my previous projects [8, 9]
so that right now my program works well for the noise heart MRI dataset and
can be used to fast approximate the heart pathology. The feedback from the
medical academic, Dr Alistair Young in the department of Anatomy with
Radiology, about my program is displayed and relevant changes according to the
feedback of my program will also be introduced in this paper.

Keywords: Heart Failure, Congenital Heart Disease, Soft Object Modeling,
Active Contour Model (B-Spline Snake), Radial Basic Functions (RBFs), Iso-
surface, Marching Cube, Surface reconstruction, Skeleton.

1 Introduction:

Nowadays heart disease remains the number one killer of the world.
Because of the cause of the heart disease, our heart try to work header and
header, which only makes the problem worse and worse. And finally lead to
Heart Failure. Heart Failure (or Congestive Heart Failure) is defined as a serious
condition in which the heart is not pumping well enough. Once the Heart Failure
happens, it’s very difficult to resume to the healthy status. How to effectively
diagnose and treat heart disease becomes a popular problem in the medical
area. Accurately constructing and modeling the pathology of the heart is
recognized as an effective way to help the medical experts improve their
diagnosis and treatments.

Over the last ten years, a variety of visualization techniques which either

manually or semi-automatically visualize the ventricles of the heart are
introduced [10, 11]. However, most of these techniques are based either on a
relevant amount of user work or on a default topology of a healthy heart. For
example, construct the shape of the heart by tracking the contour of the interest
area in each MRI data slices by hand, and then integrate these sample data to
derive a 3D topology of the heart. This process will take reasonably a mount of
work for user to develop a heart model and it’s never considered practical at all.
This approach can be dramatically accelerated by make use of a sample healthy
heart model, and then apply and adjust this healthy model to fit into the real

 4

heart data. Since only a much fewer modifications are needed in this accelerated
approach, it’s widely used by medical experts.

However, none of above approaches is efficient enough for the diagnosis

of congenital heart disease caused by the abnormalities of the heart pathology.
The congenital heart diseases are recognized as having abnormal topology
compared with healthy heart. For example, an abnormal connection of one or
more arteries leaving the heart, an abnormal connection between two heart
chambers, and one of the 4 heart valves may be deformed or absent and so on.
Since the pathology of the abnormal heart is far away from the pathology of the
normal healthy heart, previous accelerated approach is never effective in this
situation.

 Dr Alistair and Dr Burkhard come out an idea of fast and semi-
automatically reconstructing heart pathology with Soft Object Modeling
technique. This approach is very efficient and also very tolerate of the
abnormalities of the heart. In this paper, I will introduce my implementation of
this new approach of modeling heart pathology. With the help of my program,
medical experts could easily and fast approximate a 3D structure of the
abnormal heart pathology. So that Medical experts could either quickly diagnosis
the congenital heart disease or apply this approximated model to develop a
precise model with previous accelerated approach. The performance of my
program have been tested by medical academic, Dr Alistair Young in the
department of Anatomy with Radiology, a series of relevant changes according to
the feedback have been made to my program, so that not only it’s efficient to be
used for heart modeling, it also very friendly and convenient for medical experts.

The rest of this paper is arranged as following:

- Background. Introduce in detail about how this new approached
can be used to model heart pathology and how I implement it in
previous projects [8, 9] and this projects. (Section two)

- Feedback and relevant changes in the user interface. Introduce the
feedback about my program from medical academic and the
modifications of my program according to the feed back. (Section
three)

- Hierarchy of the program. Introduce the hierarchy and
management of all the components mentioned in previous sections
(Section four)

- Problems. Introduce the problem left (Section five)
- Conclusion. Conclude this paper by mentioning hardware

environment and future improvement. (Section Six)

2 Backgrounds:

In this section, I am going to first introduce the Soft Object Modeling

Techniques introduced by Wyvill in 1986 [1]. Then I briefly explain the main idea
introduced in the project to efficiently model the pathology of the heart. Finally, I
will mention the problems encountered while I was implementing the new
approach and how I solve these problems.

 5

Soft Object Modeling

Soft Object Models introduced by Wyvill in 1986 [1], also known as blobby

objects, are a type of implicit modeling technique, are defined as Iso-
surface vxf =)(of a density field. The density field is created by a field function

),(RrD which is defined as the sum of distance functions to simple geometric
primitive. By simply summing the density value from each field function on a
given point, we can get very smooth union of the models to which previous field
functions belong. Rather than summing, there are also some other blending
operators which could be used to achieve different results, e.g. differencing, to
derive the intersection area of models. The field function used in my program is
defined as:

246

9
22

9
17

9
41),(⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

R
r

R
r

R
rRrD

Since Soft Object Models have the characteristics of easily defined, easily

controlled by mouse, and smoothly blending together. My program provides
users a 3D environment so that they can easily define and use Soft Object
Models to produce new model, which can be used to approximate the 3D area of
interest on MRI data slices. With the help of these Soft Object Models provided in
my program, rather then tracing the contours on each slice manually, users can
easily combine several Soft Objects to achieve the purpose of roughly
approximation. There are basically three types of Soft Objects provided in my
program:

- Soft Ball: The skeleton of a Soft ball is a single 3D point in space. I

used the Euclidean distance function: 2
0

2
0)()(yyxxdis −+−= to

find out the distance of any point in space to its skeleton. Users can
adjust the size of the soft ball by changing the range of the density
fields affected by this single point.

- Soft Cone: The skeleton of a Soft Cone is a 3D line segment. We

used a simple method (as shown in Fig.2) in our program to find
out the distance for a point to the line segment. Users can adjust
the affected range at each end of the line segment separately to
achieve different shape of Soft Cone: tube or a cone.

- Soft Curve: The skeleton of the Soft Curve is a Catmull-Rom Spline

Curve [4]. The major characteristic of Catmull-Rom Spline curve is
that it produces a smooth curve passing through all the given
controlled points on the curve. This gains advantage of letting
users more accurately represent the curve compared with other
curves (B-Spline curve, Bezier Curve, etc). Since it’s very difficult
and time –consuming to work out the distance between a 3D point
and a 3D curve segment, I used a fast method to approximate this
distance. As shown in the curve in Fig.1, we can see that for every
two control points of the Catmull-Rom Spline, the curve (black

 6

curve) between them is very close to the straight line (pink line)
connecting the control points of Catmull-Rom Spline. So I use these
straight line segments to determine the distance between a point
and Catmull-Rom Spline.

Fig 1: the Catmull-Rom Curve used for Soft Curve. The Pink
lines are the lines which used to approximate the curve for
while calculating the distance between a point to the curve.

The distance function between a 3D point and a 3D line segment
used in my program is defined as shown in Fig.2:

Fig 2: working out the distance between a 3D point and a 3D
line segment.

In Fig.2, there are 3 3D points, p0, p1, and p2, locating in the
different positions corresponding to the line segment, l. We work
out the distance between point and line segment by finding the
corresponding projected points of 3D points on the line segment,
q0, q1, and q2. So that the distance can be derived by formula
below:

⎪
⎩

⎪
⎨

⎧

>
<

<>
=

'|'|
||

'||

OqifpO
OqifpO

OqAndOqifpq
dis

The examples of above Soft Object models: Soft ball, Soft Curve, and Soft

Cone are illustrated in the Fig.3 in next page. A rough approximation of the
heart pathology model made by generic soft objects is also shown in Fig. 3.

 7

 As screen shots in Fig.3, we can clearly observe that there are basically
two modes of Soft Objects existing in my program: Polygon Mode (View Mode) &
Wire frame Mode (Modify Mode). View mode allows user have an entire view of
the Soft Object Model made by them in polygon meshes, and Modify Mode
enable users to drag or select the skeleton (in Red line) of the Soft Object.

 For the model of heart pathology shown in the bottom, the contour of that
model is created by combination of seven Soft Cones and four small Soft Balls.
Since this model roughly goes through the heart area in the MRI data, it can be
apply to further processes to derive more accurate heart pathology.

 From the heart pathology model shown in Fig. 3, we can also seen that
there is a concave shape on the bottom right, this concave shape is created by
taking the difference between the entire density fields and the density field of a
Soft Ball. Other than summing and differencing (Boolean operation) the density
fields, there are also some other blending functions I have used in order to

Figure 3: Three types of Soft Objects in Polygon and Wire-frame
Mode, together with a rough approximation of heart pathology

 8

Figure 4: the processes of construct Heart Pathology with Soft Object Models

model a complex heart shape (I will mentioned the one of these blending
functions in the following).

Derive heart pathology from Soft Object Model
 Until now, I assume users have already used Soft Object Modeling
Technique [1] mentioned before and derive a rough model of the heart (as the
last example shown in Fig. 3). In the rest of this part, I will introduce how the
new approach in my project use this rough model to produce the pathology of
the heart. Theoretically, this approach is very similar to the traditional ways
mentioned in the Introduction section, except other than using a sample healthy
heart model as the basic model. I used the rough model created by Soft Object
Models [1]. The reason is that rough model is much more accurate than healthy
heart in the case of abnormal congenital heart disease. The graphical processes
of my approach and some results are illustrated in Fig. 4 in the following:

 9

In my program, after get the rough model of the heart (shown in (a) in
Fig. 4), user can start the processes of deriving accurate heart model by clicking
the “GetSnake” button. This “GetSnake” button will:

- Firstly, start a simplified Marching Cube Technique [12], 2D Marching

Square, to detect the intersection between the rough Soft Object Model and
MRI data slice (the yellow points shown in (b) of Fig. 4). In my program,
another step to sort the intersection points is also necessary in this process,
so that it can use the sorted sample points to form a closed B-Spline curve.

- Secondly, apply the sorted intersection points to the B-Spline function to

form a closed B-Spline curve. Since the closed B-Spline curves only
approximate the edges on every MRI slice, my program then use the
famous Active Contour Modeling (B-Spline Snake) technique from Kass in
1988 [2] to automatically adjust the closed B-Spline curves and make them
accurately fit into the edges. The basic idea of the Active Contour Model [2]
is that it provides an energy-minimizing function for every closed B-Spline
curve according to the image slice relevant to the curve. This energy-
minimizing function will iteratively adjust the B-spine curves until reach the
situation of minimum energy, where every B-Spline curve accurately
matches the edges on its relevant image. The corresponding result of this
process is illustrated in (c) of the Fig. 4.

- Finally, after we got all the accurate B-Spline curves for all MRI slices. The

Radial Basic Functions (RBFs) [3] is introduced to utilize the sample points
on previous adjusted curves and integrate them to derive a smooth and
energy-minimized 3D iso-surface. Since the basic characteristics of the
RBFs, this iso-surface goes through all the deformed B-Spline curves, and
holes from the noise of the source on this reconstructed 3D model are
smoothly filled and surfaces are smoothly extrapolated (as shown in (d) of
Fig. 4).

Encountered Problems
There are mainly two technical problems I have encountered when I was

implementing above modeling method.

Technical problem 1:

The first problem comes from the characterization of the Soft Object
Modeling technique. As I introduced before, one advantage of the Soft Object
Modeling technique is that I can use some blending operations to combine two
density field to achieve some complex Soft Object models, for example, using
the Boolean operation: summing and differencing, to easily calculate the union
and intersection of the density fields from every Soft Object in the environment,
so that these Objects finally smoothly combine together to approximate the
shape expected. These kinds of blending operation provide a much better result
compared with other modeling technique, e.g. implicit function, in which it’s very
hard to derive the implicit function for the complex surface.

 10

Although constructing complex Soft Object Models with blending operations
is more efficient and effective than other approaches, blending operations are
sometimes still not convenient enough to simulate some very complex objects,
namely heart Pathology. The raise of this problem is that, when many previous
Soft Object Models have already been used to join together to develop a complex
model, it’s very difficult to add another Soft Object Model to the previous density
field and achieve the expected result. The more the Soft Objects used before,
the harder to derive expected shape in the future.

Since the previous density field is created from applying a serious of

summing and differencing blending operations, the density value in the final
density field are not equally distributed. With this unequally distributed density
field, it’s very hard for user to estimate the distribution of the density values
according to its surface and decide how to add another soft object to achieve the
expected result. One simple example of this technical problem is that when user
is using a differencing operator to try to create a hole on the previous model (As
shown in Fig. 5 in the following).

Figure 5: an Example of the problem from Soft Object Modeling

 As shown in the Fig. 5, a very simple combination of Soft Object Models is
presented ((a) in view mode and (b) in wire frame mode). According to the (b)
in Fig. 5, we can discover that this model initially is made up of summing four
Soft Cones with similar radius at each ends. Image (c) in the Fig. 5 shows a
slice of the density field created by these four Soft Cones along Y direction, the
direction of the green axis in the image, and the density slice is taken from a
horizontal plane which cut through the middle of the model. From the density
slice in (c), we can obviously find out that that density fields probably has two
line-skeletons, and they are not quite parallel to each other. Right now, if user
want to create a hole which passes through above model along the x-axis (the
blue axis) corresponding to the Picture (c) in Fig. 5, simply differencing a new
Soft Cone with the original density field will not be effective. The result from this
differencing process can be seen in Fig. 6 in the following.

 11

Figure 7: Expected
Density Field.

Figure 6: differencing a Soft Cone with previous density field.

As we can see in Fig. 6, creating a hole inside the
model mentioned before gets very difficult, the final
density field on the same slice shown in (c) just
concaved a little bit in the area where we added a
Soft Cone, but we were expecting to see some
density field which looks like the one shown in Fig. 7.
The reason for this un expected result that, since we
have summed the density field before we added a
new soft cone, the maximum field value in the old
density field is much bigger than the maximum field
value of the Soft Cone’s density field, so when we
take the difference between these two fields, the
result after differencing are still too big to provide a
hole shaped iso-value surface (as shown in Fig. 7).

 Although it’s very difficult to get ride of this problem mathematically,
there are basically two ways we can consider to minimize the effect of the
problem:

- Normalize the density field each time we add a new object. With
this approach, we can control the maximum field value in the
density field and probably we can get more expected result.

- Allow users to freely specify the range of each soft object they

added. Users can specified of the range of the soft object by simply
scaling the field range. With this approach, users can easily get the
complex shape they expected, but similar problem may still
happens when the number of Soft objects getting larger.

In my program, I mainly used the second approach to deal with this

problem. A slider is provided in the user interface, and user can decide how they
scale the density field by dragging the slider. I also provide a new blending
operation with which user can hardly combine two groups of Soft Object Models.

 12

Formula 1: Wyvill’s Field Function:

 D(r) = a (1 – 4r6 /9R6 – 17r4 /9R4 – 22r2 /9R2)
Note: a scales this function, each control primitive has no influence after a distance R.

Figure 8: Adjusting the curvature at the intersection between 2 Objects

 In Wyvill’s [1] formula (as shown in Formula 1), the range of the field
values assigned to the density field is one of the factors which control the
combination of Soft Object Models, as parameter a shown in Formula 1. Scaling
the parameter a of each Object can directly affect the shape of the final model
made out of them.

As explained in formula 1 above, parameter a control the range of the
field made by Soft Object. For example, if a = 10, then the density field values
are ranged between 0 and 10, the closer to the skeleton of the Soft Object, and
closer to 10, otherwise, the closer to field value 0. We can also notice that, the
bigger the value of a, the faster the field value distributed when getting away
from the skeleton. With this property of the Soft Object model, when we are
combining two Soft Object Models, we can control the curvature at the
intersection by adjusting the value of parameter a of each model. Normally, the
larger the differences between the values of a from two density fields, the harder
these Soft Objects join together. If field-ranges of both Objects are the same,
these two Objects are very smoothly joined together. This is clearly illustrated in
Fig. 8 in the following.

 As shown in Fig. 8, we were combining two Soft Cones both of which has
same radius at each end. In the left 2 pictures, the field-ranges and radiuses of
both Soft Cones are the same. Since these two objects are too smoothly joined
together, it very difficult to observe their skeletons according to the surface
shown in the first left picture. For the two images on the right, I had adjusted
one of the Soft Cone (the one which is along y axis) to make its field-range three
times larger than before. Since the difference between two density fields is
increased, it’s much easier for people to determine its skeletons. Note: I have to
decrease the radius of the soft cone which we scaled before. The reason is that,

 13

Figure 9: Two Kinds of Soft Object Groups

after I scaled the density values to three times as large as before, the affect
range is about three times larger, and we need to use radius property to
minimize the range to the size we are interested in.

Although scaling the field values improves user’s control over combining
Soft Objects quite a lot, there are still some situations when it does not works
(for example a lot of soft objects is joining together), and these situations
happen while modeling heart pathology. When modeling the heart pathology, a
reasonable amount of soft objects are needed, the density field out of these soft
objects are large and various, it’s vary difficult to get the shape we expect even
we scale the field range. For example, it’s very difficult to construct the left
ventricle inside the existing heart model.

In order to build some holes which look like inter-ventricular and atrio-

ventricular parts of the heart pathology inside the heart model, not only I need
to consider how to solve the technical problem mentioned above, I also need to
find a way to allow users to easily build this model without disturbed by the
existing models. I approximate this goal by using the idea of Soft Object Groups.
The definition of Soft Object Group in my report is that the Soft Object models
will affect each other only if they are in the same group when users are building
the models. A filter is used at last to combine groups of Soft Object to derive the
final model.

In my program for

modeling the heart pathology, I
mainly define two groups of Soft
Objects: one for approximating
the outside boundary of the
heart, including muscles and
some aortas (red model in (a) of
Fig.9), and the other for
approximating the inter-
ventricular and atrio-ventricular
parts of the heart pathology
(blue model in (a) of Fig.9).

The filtering process for combining these two Soft Object Groups above is

defined as: using the constant iso-surface of the blue model as the boundary, for
every point inside the blue model, we replace field values at the corresponding
positions in the red model by (-f blue * f blue). With this approach, for the density
field of the red model, the positions which are not inside the boundary have
positive field values, and the positions which are inside the boundary have very
big negative field values. If we render this density field, the new red model will
look like the original red model having a hole inside which is corresponding to
the contour of blue model. Since the field values at the intersection area inside
the final density field vary dramatically from great positive values to great
negative values, an iso-surface could be constructed.

With the ideas of scaling field range and Soft Object Group, users can
easily build the complex objects they want, and a approximated model of the
heart pathology can be constructed easily.

 14

Figure 10: Sample Points from Active
Contour Model, and the Soft Objects which
derive it

Technical problem 2:

The second problem I meet when making this software comes from the

process which reconstructs the 3D model described by the sample points from
Active Contour Model [2]. Since the sample points are only a small part on the
final surface, we need to interpolate these sample points to get a smooth and
continuous surface. The Radial Basic Functions technique [3] is used to do this
interpolation. A brief description about how Radial Basic Functions works is that,
Radial Basic Functions uses the sample points (the points on the surface, and
some points inside or outside surface) and sample values (0 for the points on the
surface, positive values for the points inside the surface, and negative values for
the points outside the surface) to derive the parameters for the final surface’s
implicit function. In our case, we can derive the sample points on the surface
(zero-valued points) by using Active Contour Model [2] easily. We need to decide
the sample points for inside and outside the final surface and their values.

 Selecting the positions of the sample points for inside or outside the
surface is not hard. I can either randomly select them from the environment or
using some other approaches to regularly determine them. The hardest part is
about how to decide the sample value accurately for the corresponding sample
point. Although I can work out what the sign of the values (positive or negative)
for the selected points by checking if they are inside or outside, I still need to
determine what exact value I need to assign to them. These values have to be
relative to each others, for example, the sample value of the point inside the
final model need to greater than that of another point which is a little outside. If
the sample values are not regularly assigned, a very different and messy result
will be derived.

 In my program, I used the final density field created in Problem 1 as a
library to approximate the sample values for the selected points. Although this
density field has an area where the field
values are not continuous, it’s still good
enough to help us decide the sample
values. Another notice I have to point out
is that when I was selecting the positions
of the inside or outside points, I need to
make it a little away from the boundary
points. The reason is that the correct
model is a little different from the model
described in the density field. The one in
density field exactly comes from the Soft
Object Models, but the one we finally
derived is adjusted according to the Soft
Object Model by Active Contour Modeling
Technique [2]. If we assign the sample
value to a point which is close to the
boundary point, that point might be
inside the model in density field but out
side the zero-valued boundary points,
this will provide a very messy result. For

 15

Figure 11: Sample Points for reconstructing the heart

example, as shown in Fig. 10, the yellow points are the sample points from
Active Contour Modeling technique [2], they will be treated as zero-valued point,
but these yellow points are a little inside the Soft Object Model (in red). If I try
to work out the sample value for the pink point shown in Fig. 10, since the pink
point is still inside the Soft Object Model, it will be treated as a inside point, but
it is actually an outside point (outside the zero-valued points). So we have to
select the points which are far from the boundary as inside or outside points. The
process we used to select the positions for inside or outside sample points are:

- For each closed B-Spline on the data slices, find the centre point (P
centre) of the B-Spline by taking the average of every points on the
B-Spline. Since the concave B-Spline is very rare in our case, this
centre points are always in the middle of the B-Spline.

- For the red Soft Object Group, since zero-valued points are the

points on the B-Spline, for each zero-valued point (P sample). We
work out the direction from the zero-valued point to the centre
point (dir). Then the points inside and outside are:

dirbPP

diraPP

sampleoutside

sampleinside

*

*

+=

−=

Where variable a and b are two constants to try to move the points

insideP and outsideP away from the zero-valued points, the problem

mentioned in last paragraph is dramatically avoid.

- For the Blue Soft Object Group, we only used the centre points as
the inside sample points, and there is no outside sample points for
them.

The left picture in Fig. 11 gives an example for the inside, outside and
zero-valued sample points from our heart model: the yellow points represent

 16

 formal RBFs Approximating RBFs

Figure 12: Comparing the result from two kinds of RBFs

zero-valued points (boundary points), blue points represent outside sample
points, red points represent inside sample points. We can also see from the left
image of Fig. 11 that there is another closed area of yellow points inside the
outside boundary of the heart model. This area is made by negative Soft Object
Group introduced before.

After pushing all the inside and outside sample points from both Soft

Object group and their zero-valued sample points to the Radial Basic function
[3], we can easily work out an iso-surface which passes though all the zero-
valued points. This iso-surface for above sample points is shown in the right
picture of Fig. 11.

Other problems:

 There are some other problems I have solved when developing the
software. For example, since the MRI data has some noise in it, the sample
points derived from it sometimes are not very related to each other, this
unrelated sample points will produce a very unsmooth 3D surface when I
reconstruct the model with Radial Basic Functions [3]. This is also because the
Radial basic functions [3] are too strict to avoid the incorrect information from
the noise.

 I have overcome this problem by adding a constant into the equation of
Radial basic Functions, which control the smoothness of the model developed by
it. The new equation for Radial Basic Functions we used is given in Formula 2:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
00

0015707.0 f
cP

PKA
T

λ
 [Formula 2]

Where K is an n × n matrix with all values 1, n is the number of the sample
points.

Fig. 12 gives an example of comparing the result from the formal Radial

Basic Functions and our Radial Basic Functions in Formula 2.

 17

Figure 13: the entire User Interface

3 User Interface and the Toolkits of my program:

 Since the users of my program are the medical experts with less computer
background, they are not necessary to understand how the techniques which I
used to model the heart pathology works, a very simple user interface which let
medical experts easily understand and operate my program are necessary. Some
small toolkits, which allow users efficiently control this program, are also
created. Since the entire software is made in C++ and OpenGL only, my
program also has the advantage of platform independent. In the following
paragraphs, I am going to introduce the user interface and some small toolkits of
my software with the screen shots. I am also going to mention some feedback
from medical expert after he tested my program, and the relevant changes I
have made in my program. There are basically three parts I am going to cover,
they are:

- The user interface our software
- The small toolkits for MRI data management
- The small toolkits for Modeling

User Interface

Since I was required to develop the entire user interface without using
any user interface developing tools, for example MFC, my program gain the
advantages of portability, efficiency, and extensibility. All the components of the
user interface are developed from scratch. They are very compatible with each
others. I can also extend these components for further use. The entire user
interface can be seen from Fig. 13:

As shown in the Fig. 13 on

the right, a 3D cube is mainly used
to represent the user’s working
environment of my program. Since I
used Marching Cube algorithm to
reconstruct the Soft Objects, this 3D
cube also used to represent the
space of the Marching Cube
algorithm available in my program.

A multi-level popup menu

from OpenGL’s GLUT library is used
to allow users to efficiently control
all the functionalities of my software.
This Pop-up menu can be easily
activated by clicking the Middle
button of the mouse. In my
program, I define that users use left
button of the mouse to rotate the
cube, and use the right button of the
mouse to drag and add the Soft
Object’s skeleton.

 18

Two simple graphical sliders are used to allow users easily control the

radius and the scaling parameter a of the selected soft object (I will give more
detail of this in the following paragraph).

There are also three constant buttons: Point, Cone, and Curve, shown on

the left side of my program, the functionalities of these buttons are allowing
users easily create and modify Soft Ball, Soft Cone, and Soft Curve in my
program.

- Point: when user click this button, Point button will be down and

my program will automatically switch into modify mode (the wire
frame mode). User can keep on adding new Soft balls into the
environment by clicking the right button of the mouse. When users
finish adding Soft balls, they can stop this functionality by clicking
the Point button again (button will return back to up, and program
switch back to polygon mode).

- Cone: The Control of the Cone button is almost the same as the

Point button introduced above. Except that every two times users
clicking the right button of the mouse, a new Soft Cone will be
added to the environment.

- Curve: The Control of the Curve button is almost the same as the

Point and Cone buttons introduced above. However, users can only
add one Soft Curve into the environment every time they enable
and disable the Curve button. The reason for this control is that,
there are unknown numbers of the control points on the Soft curve
object. Each time user click the right button of the mouse, my
program will consider users add a new control points to the new
Soft curve object. A new Soft Object can only be added to the
program if user disable the Curve button and enable it again. Also,
a new control point will only be added to either ends of the Soft
Curve. My program will find out the distances between new point
and previous ends of the soft curve. The new control point will be
added to the end with minimum distance. As shown in Fig. 14,
original curve is in (a), a new control point will be added to the left
end of the curve in (b) and to the right end in (c).

 19

Figure 15: Static Clipping Plane &
Normal Clipping Plane

Figure 14: Adding a new point to left and right sides of Soft Curves.
 In the feedback from Dr Alistair Young (medical expert who test my
program), he suggested that since users will create the model according to the
displaying MRI slices, it’s better to add 3D new point on to the existing slice
inside the cube. In my program, it allows user to decide whether to display one
slice of MRI at a time and user can select which one to display or display all MRI
data slices at the same time. If one slice is displayed each time, the new 3D
control points of the soft objects will be added onto this slice. Otherwise, the new
control point will initially be added to the centre of the volume.

Toolkits for MRI data Management

Clipping tools

 Since my program allows users make
3D models in 2D environment (computer
screen), how can I create tools which allow
users easily and efficiently analysis and
manage 3D MRI data slices is the problem I
met when designing the interface. I have
noticed that MRI slices are so annoying that
when I display them in 3D, the front slice
always cover the slices behind it. In order to
deal with this problem, several kinds of
clipping plane are adopted in my program.
Users can easily use these clipping plane
tools to clip the MRI data slices and get the
information they want. There are two types
of clipping plane provided to the users in my
program.

 The first clipping plane is called static
clipping plane. According to the name of
this clipping plane, this clipping plane will
always facing a constant direction – user’s
position. After user active this clipping plan
by “Other Functions->Enable/Disable static
Clipping plane” option of the pop-up menu,
no matter how the user rotate the working
cube of our software, this clipping plane
always face the user’s view and it cuts the
objects inside the cube which are in front of
it (as shown in the first image of Fig. 14, the
static clipping plane is described by green
dashed lines). Users can move forward and
backward this static clipping plane by using
the up-arrow and down-arrow buttons on the
keyboard.

 20

 Since the static clipping plane always facing to the user, it’s quite
annoying if user want to create a model when the clipping plane is facing to
another direction. Users sometimes even feel more comfortable if they have the
ability to define the direction and position of the clipping plane. Our software
provide this ability to users through second clipping plane, called Normal
Clipping Plane, which can be activated by “Other Functions->Enable/Disable
Normal Clipping plane” option of the pop-up menu. This clipping plane is defined
by three small balls, which can be moved only along the edges of the cube, the
clipping plane is formed by this three balls, some green balls will be added when
clipping plane intersect more than three edges. Users can change the position of
the clipping plane by dragging these balls (except green balls) with the right
button of the mouse.

 From Dr Alistair, he has suggested that I should display the MRI slices in
the preference way of medical expert, which are that:

- Human’s body is normally horizontal to the view position.
- Human’s feet are close to the view camera compared with the head.
- Human’s face and Chest are facing upward.

According to the above suggestion, I have modified my program and add

some more functionality into my program to make it convenient to be used:

- MRI Data Slices menu: there are five sets of heart MRI data slices

from the source. Although we have clipping tools to clip these
slices, if we display all of them at the same time, the working cube
will look very messy. User can use MRI Data Slices menu in the
pop-up menu to select which set of MRI data they want to display.
Also, each slice of the MRI data is displayed following the rules
mentioned above.

Note: the Active Contour Model Technique will be implemented
according to the current displaying set of MRI data.

- Show/Hide MRI slices submenu: users can use Show/Hide
MRI slices submenu under Other Functions menu to display or
hide the MRI data slices.

- ‘S’ button: users can use the ‘S’ button on the keyboard to ask my

program to display one data slice at a time of the current selected
set. Users can loop forward or backward to other slices of the same
data set by using ‘4’ and ‘6’ button on the keyboard.

- Space button: When users are displaying one data slice at a time,

sometimes they might prefer a situation where the data slice is
paralleling to the screen and facing the users. They can achieve
this by clicking the space button, and the current slice will be
automatically adjusted to face the users.

 21

<Number of Soft Object Group>
// Group one
<Number of Soft Objects> <Soft Object Group type>
//Soft Object 1 in Group One
<Object’s type> <Object’s Mode: positive, negative> <Object’s curvature>
<Positions>
<Radiuses>
//Soft Object 2 in Group One
…
//Group two
…

Figure 16: the format of input.data file

Toolkits for Managing Soft Object Modeling

 Some others options provided in our Software to manage Soft Object
modeling process are listed in the following:

- InputParser class: this class is added in my program to increase
the flexibility. With InputParser and its corresponding saving tool,
users can save the existing soft objects into a file called
input.data. And input.data can also be loaded by my program in
the future through the InputParser. Users can also manually
create some soft objects through specifying the properties of Soft
Objects in input.data file. The Format of the InputParser is
descried in Fig. 16.

- Add New Object menu: under this menu of our pop-up menu,

user can:
o Switch between two kinds of Soft Object Groups by selecting

Switch Object Group submenu
o Determine the mode of the current group. Whether current is a

negative soft object group (blue object), or a positive soft
object group (red objects).

- Change Mode menu: users can decide the displaying mode of the

current selected Soft Object through this menu.
o The Modify mode displays the Soft Objects in wire-frame

mode, so that users can drag and select the skeleton of Soft
Object in order to modify them.

o The View mode displays Soft Objects in polygon meshes. Users
can not modify the Soft Objects in this mode, but View mode
provides a nice 3D surface of the models, so that users can
have an entire look at the models they created.

 22

Figure 17: defining a
working cube

- Adjust Object menu: there are four functionalities provided under

Adjust Object menu:
o Delete Object submenu: after user selected the existing object

which they want to delete, they can easily remove this object
by clicking this submenu.

o Opposite Object submenu: users can switch the selected Soft
Object between positive and negative with this option. Positive
Soft Object provide a positive density field and negative Soft
object provide a negative density field.

o Run B-Spline Snake submenu: after user has created a rough
model of the heart Pathology, they use this menu to start the
Active Contour Modeling (B-Spline Snake) technique [2].

o Re-Construct the Shape submenu: Users use Radial Basic
Functions [3] technique to reconstruct the heart pathology with
sample points by selecting this menu.

- Other Functions menu: except the slices management functions

mentioned before, there are three other functions provided under
this menu.
o Show/Hide Model submenu: with this option, users can hide

the soft Object Models inside the cube. If the model shown in
the cube is the final model from Radial Basic Functions, users
can use this option to switch the final model between
representation of polygon meshes and the representation of
sample points (yellow for boundary points, red for inside points,
and blue for outside sample points).

o Save Object submenu: As the file mentioned in the
InputParser before, this option allow users to save the Soft
Objects made by them in a format which can be read by the
parser. So that users are allow to save the models created by
them for future use. The name of the file is input4.data.

o Select Working Cube submenu:
sometimes the model users try to
construct may just take a small
part of the cube. It not necessary
to calculate the density field for
entire cube. This submenu allow
user to limit their working space by
inputting the start position and the
size of the working space in
console windows (As shown in Fig.
17, the small cube is the space
where Marching Cube algorithm
will be apply to). The advantages
of this are: not only we can save
the running time to calculate the
field value of some useless position, we can also increase the
resolution of the Marching Cube Algorithm, so that we can get a
much better result.

 23

- Slider: two slider Objects are added in the bottom of our software.

One is used for adjusting the radius of the selected Soft Object, the
other is used for adjusting the curvature of the selected Object
(scale the field values of the selected soft object by adjusting the
parameter a in Formula 1).

4 Component Management and hierarchy:

 As mentioned in previous sections, there are several techniques I have
used to achieve the purpose of modeling heart pathology. In order to simplify
the process which users used to do the modeling, I also added a few toolkits into
my program. All these things together with resources from the heart MRI data
make the components arrangement and hierarchy of my program very
complicated. I have to design a well-organized structure to make these
components relatively works together. The content of my structure is explained
in the following paragraphs.

 Firstly I create a class called Model, which is in the top level of the
hierarchy. Each instance of Model class represents a group of Soft Objects.
Since there are two Soft Object Groups in our software, there are two Model
instances created when our program starts. And user can change the properties
of the group through user interface (as introduced before), for example, users
can determine the mode of the selected soft object group. Model instance also
contain a SnakeCollection instance, and use this SnakeCollection instance to
manage all sets of MRI data from the resource and do the adjusting process.

 As we mentioned, the SnakeCollection class contain all the information
from the heart MRI dataset. The functionalities of the SnakeCollection class
are:

- Store the image information for all sets of MRI data slices.
- Store the position of every MRI data slice.
- Store the index of the current displaying MRI slice.

After the rough model of the Soft objects combination has been created,

SnakeCollection class can be used to detect the intersection between MRI data
slices and Soft Object Models and to start Active Contour Modeling Technique [2]
to do the edge capturing process. The SnakeCollection class achieves above
purpose with the help of another class called BsplineSnake. A BsplineSnake
instance defined in my program is used to represent a MRI slice. This
BsplineSnake instance will implement Active Contour Modeling Technique [3] to
minimize the energy on the B-Spline curves on the corresponding data slice. The
entire hierarchy of our program can be illustrated in Fig. 18.

 24

Figure 19: A MRI slice and an adjusted B-
Spline curve

Figure 18: The Structure of our software

5 Problems:

 Users probably sometimes will
find is quite difficult to place the
selected soft object into correct position
when they are using my program to
model the inter-ventricular and atrio-
ventricular part of the heart pathology.
The reason is that the heart MRI slices
provided in our Program are too noisy
to allow B-Spline Snake to detect the
contour of the ventricular part of the
heart. It’s even difficult for users to
detect this part by eyes. After users
made a rough model for the ventricular
part with negative Soft Object Group
(blue), although the B-Spline Snake
technique will provide some energy-
minimized B-Spline for each slice, these
B-Spline might not be continuous, and
this will lead to a very poor result of the
ventricular model. An example for the
ventricular part of the heart and an
adjusted B-Spline are shown on Fig. 19.

 25

6 Conclusion and future improvement:

 My program has been tested by creating the outside shape and an inside
hole which similar to the right ventricle of the heart. The computation times for
adjusting the closed B-Spline in red Soft Object Group is 29.5 seconds, the
computation times for adjusting the closed B-Spline in blue Soft Object Group is
25.4 seconds, and the computation times for reconstruct the final model with
Radial Basic functions is 31.2 seconds. This process is based on long edge data
set of the heart MRI data. The hardware environment for this experiment is 2.8
GHz PC processor with 1G memory.

 As introduced in this paper, Soft objects are ideally suited to approximate
smooth organ shapes such as the heart. For example soft cones and soft curve
are very suitable to model blood vessels such as the ventricles and the arteries
and veins. Density field scaling can be used to model the important topological
features of the heart. However, one problem I haven’t solved yet satisfactorily is
how to combine soft object models for the inter-ventricular and atrio-ventricular
part of the heart. Also it is not clear how to best handle very thin anatomical
structures such as the walls of the blood vessels. Modeling them with a single
soft object is easy but is inconsistent with the rest of the model. A possible
solution is to display the entire MRI data set using direct volume rendering and
to adjust the opacity transfer function such that only selected features of interest
are displayed during modelling. I could also consider using free form deformation
technique to allow user to deform the soft objects to achieve particular topology
of the heart instead of density field scaling.

Reference:

[1] G. Wyvill, C. McPhetters, B. Wyvill, Data Structure for Soft Objects, The Visual

Computer, Vol. 2, pp. 227-234, 1986.

[2] M. Kass, A. Witkin, D. Terzopoulos, Snake: Active Contour Models, International

Journal of Computer Vision 1 (4) (1988) 321 – 331.

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C.

McCallum, Reconstruction and Representation of 3D Objects with Redial Basis
Functions. Applied Research Associates NZ Ltd, University of Canterbury

[4] Introduction to Catmull-Rom Spline Curve,

http://www.mvps.org/directx/articles/catmull/

[5] Burkhard Wunsche and Ewan Tempero, A Comparison and Evaluation of

Interpolation Methods for Visualizing Discrete 2D Survey Data. Department of
Computer Science, University of Auckland

 26

[6] William H.Press, Saul A. Teukolsky, William T. Vetterling, Brian P.Flannery, LU
Decomposition and Its Application, Chapter 2.3, Numerical Recipes in C.

[7] Liyan Zhang, Active Contour Model, Snake, Department of Computer Science,

University of Nevada, Reno

[8] Bo Li and Burkhard Wunsche, Modeling heart pathology with Soft Objects,

COMPSCI 380 Project Report, Department of Computer Science, University of
Auckland, New Zealand, November 2003.

[9] Bo Li and Burkhard Wunsche, A fast semi-automatic method for reconstructing
heart pathology with implicit surfaces, FoS Summer Scholarship Project Report.
Department of Computer Science, University of Auckland, New Zealand, January
2004.

[10] A. A. Young, Model Tags: Direct 3D tracking of heart wall motion from tagged

magnetic resonance images, Medical Image Analysis, 3 (4), (1999), 361-372.

[11] D. Wei, Whole-heart modeling: progress, principles and applications, Progress in

Biophysics and Molecular Biology, 67 (1), (1997) 17-66.

[12] Lorensen, W. E. and Cline, H. E., Marching Cubes: A High Resolution 3D

Surface Construction Algorithm, Computer Graphics, Volume 21, Number 4, July
1987, pp. 163-169.

