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Abstract                                                                                                 
 
 The most serious problem of the Heart Disease is that it will lead to Heart 
Failure, which is a serious condition in which the heart is not pumping well 
enough. Since the prognosis after Heart Failure is poor, people use computer 
visualization techniques to diagnosis and analysis the cardiac disease to prevent 
the happen of the Heart Failure. Over the last ten years, a variety of efficient and 
excellent visualization techniques for the heart are introduced. However, most of 
these techniques require either a relevant amount of user work or a default 
topology of a healthy heart. None of them is efficient enough for the diagnosis of 
congenital heart disease caused by the abnormalities of the heart pathology. Dr 
Alistair, Dr Burkhard and I try to develop a new heart-modeling technique which 
can be used to efficiently model the abnormal heart pathology from noisy MRI 
data. In this project, I improved the program from my previous projects [8, 9] 
so that right now my program works well for the noise heart MRI dataset and 
can be used to fast approximate the heart pathology. The feedback from the 
medical academic, Dr Alistair Young in the department of Anatomy with 
Radiology, about my program is displayed and relevant changes according to the 
feedback of my program will also be introduced in this paper.   

Keywords: Heart Failure, Congenital Heart Disease, Soft Object Modeling, 
Active Contour Model (B-Spline Snake), Radial Basic Functions (RBFs), Iso-
surface, Marching Cube, Surface reconstruction, Skeleton. 

 

1 Introduction: 
 

Nowadays heart disease remains the number one killer of the world. 
Because of the cause of the heart disease, our heart try to work header and 
header, which only makes the problem worse and worse. And finally lead to 
Heart Failure. Heart Failure (or Congestive Heart Failure) is defined as a serious 
condition in which the heart is not pumping well enough. Once the Heart Failure 
happens, it’s very difficult to resume to the healthy status. How to effectively 
diagnose and treat heart disease becomes a popular problem in the medical 
area. Accurately constructing and modeling the pathology of the heart is 
recognized as an effective way to help the medical experts improve their 
diagnosis and treatments.  

 
Over the last ten years, a variety of visualization techniques which either 

manually or semi-automatically visualize the ventricles of the heart are 
introduced [10, 11]. However, most of these techniques are based either on a 
relevant amount of user work or on a default topology of a healthy heart. For 
example, construct the shape of the heart by tracking the contour of the interest 
area in each MRI data slices by hand, and then integrate these sample data to 
derive a 3D topology of the heart. This process will take reasonably a mount of 
work for user to develop a heart model and it’s never considered practical at all. 
This approach can be dramatically accelerated by make use of a sample healthy 
heart model, and then apply and adjust this healthy model to fit into the real 
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heart data. Since only a much fewer modifications are needed in this accelerated 
approach, it’s widely used by medical experts.  

 
However, none of above approaches is efficient enough for the diagnosis 

of congenital heart disease caused by the abnormalities of the heart pathology. 
The congenital heart diseases are recognized as having abnormal topology 
compared with healthy heart. For example, an abnormal connection of one or 
more arteries leaving the heart, an abnormal connection between two heart 
chambers, and one of the 4 heart valves may be deformed or absent and so on. 
Since the pathology of the abnormal heart is far away from the pathology of the 
normal healthy heart, previous accelerated approach is never effective in this 
situation.      
 
 Dr Alistair and Dr Burkhard come out an idea of fast and semi-
automatically reconstructing heart pathology with Soft Object Modeling 
technique. This approach is very efficient and also very tolerate of the 
abnormalities of the heart. In this paper, I will introduce my implementation of 
this new approach of modeling heart pathology. With the help of my program, 
medical experts could easily and fast approximate a 3D structure of the 
abnormal heart pathology. So that Medical experts could either quickly diagnosis 
the congenital heart disease or apply this approximated model to develop a 
precise model with previous accelerated approach. The performance of my 
program have been tested by medical academic, Dr Alistair Young in the 
department of Anatomy with Radiology, a series of relevant changes according to 
the feedback have been made to my program, so that not only it’s efficient to be 
used for heart modeling, it also very friendly and convenient for medical experts. 
  
The rest of this paper is arranged as following:  

- Background. Introduce in detail about how this new approached 
can be used to model heart pathology and how I implement it in 
previous projects [8, 9] and this projects. (Section two) 

- Feedback and relevant changes in the user interface. Introduce the 
feedback about my program from medical academic and the 
modifications of my program according to the feed back. ( Section 
three) 

- Hierarchy of the program. Introduce the hierarchy and 
management of all the components mentioned in previous sections 
(Section four) 

- Problems. Introduce the problem left (Section five) 
- Conclusion. Conclude this paper by mentioning hardware 

environment and future improvement. (Section Six) 
 

2 Backgrounds: 
 
In this section, I am going to first introduce the Soft Object Modeling 

Techniques introduced by Wyvill in 1986 [1]. Then I briefly explain the main idea 
introduced in the project to efficiently model the pathology of the heart. Finally, I 
will mention the problems encountered while I was implementing the new 
approach and how I solve these problems. 
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Soft Object Modeling  

 
Soft Object Models introduced by Wyvill in 1986 [1], also known as blobby 

objects, are a type of implicit modeling technique, are defined as Iso-
surface vxf =)(  of a density field. The density field is created by a field function 

),( RrD which is defined as the sum of distance functions to simple geometric 
primitive. By simply summing the density value from each field function on a 
given point, we can get very smooth union of the models to which previous field 
functions belong. Rather than summing, there are also some other blending 
operators which could be used to achieve different results, e.g. differencing, to 
derive the intersection area of models. The field function used in my program is 
defined as: 
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Since Soft Object Models have the characteristics of easily defined, easily 

controlled by mouse, and smoothly blending together. My program provides 
users a 3D environment so that they can easily define and use Soft Object 
Models to produce new model, which can be used to approximate the 3D area of 
interest on MRI data slices. With the help of these Soft Object Models provided in 
my program, rather then tracing the contours on each slice manually, users can 
easily combine several Soft Objects to achieve the purpose of roughly 
approximation. There are basically three types of Soft Objects provided in my 
program: 

 
- Soft Ball: The skeleton of a Soft ball is a single 3D point in space. I 

used the Euclidean distance function: 2
0

2
0 )()( yyxxdis −+−=  to 

find out the distance of any point in space to its skeleton. Users can 
adjust the size of the soft ball by changing the range of the density 
fields affected by this single point. 

 
- Soft Cone: The skeleton of a Soft Cone is a 3D line segment. We 

used a simple method (as shown in Fig.2) in our program to find 
out the distance for a point to the line segment. Users can adjust 
the affected range at each end of the line segment separately to 
achieve different shape of Soft Cone: tube or a cone.  

 
- Soft Curve: The skeleton of the Soft Curve is a Catmull-Rom Spline 

Curve [4]. The major characteristic of Catmull-Rom Spline curve is 
that it produces a smooth curve passing through all the given 
controlled points on the curve. This gains advantage of letting 
users more accurately represent the curve compared with other 
curves (B-Spline curve, Bezier Curve, etc).  Since it’s very difficult 
and time –consuming to work out the distance between a 3D point 
and a 3D curve segment, I used a fast method to approximate this 
distance. As shown in the curve in Fig.1, we can see that for every 
two control points of the Catmull-Rom Spline, the curve (black 
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curve) between them is very close to the straight line (pink line) 
connecting the control points of Catmull-Rom Spline. So I use these 
straight line segments to determine the distance between a point 
and Catmull-Rom Spline. 

 
   
  
 
 
 

Fig 1: the Catmull-Rom Curve used for Soft Curve. The Pink 
lines are the lines which used to approximate the curve for 
while calculating the distance between a point to the curve. 

 
The distance function between a 3D point and a 3D line segment 
used in my program is defined as shown in Fig.2: 
 

  
Fig 2: working out the distance between a 3D point and a 3D 
line segment. 
 
In Fig.2, there are 3 3D points, p0, p1, and p2, locating in the 
different positions corresponding to the line segment, l. We work 
out the distance between point and line segment by finding the 
corresponding projected points of 3D points on the line segment, 
q0, q1, and q2. So that the distance can be derived by formula 
below: 
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The examples of above Soft Object models: Soft ball, Soft Curve, and Soft 

Cone are illustrated in the Fig.3 in next page. A rough approximation of the 
heart pathology model made by generic soft objects is also shown in Fig. 3. 
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 As screen shots in Fig.3, we can clearly observe that there are basically 
two modes of Soft Objects existing in my program: Polygon Mode (View Mode) & 
Wire frame Mode (Modify Mode). View mode allows user have an entire view of 
the Soft Object Model made by them in polygon meshes, and Modify Mode 
enable users to drag or select the skeleton (in Red line) of the Soft Object. 
 
 For the model of heart pathology shown in the bottom, the contour of that 
model is created by combination of seven Soft Cones and four small Soft Balls. 
Since this model roughly goes through the heart area in the MRI data, it can be 
apply to further processes to derive more accurate heart pathology. 
 
 From the heart pathology model shown in Fig. 3, we can also seen that 
there is a concave shape on the bottom right, this concave shape is created by 
taking the difference between the entire density fields and the density field of a 
Soft Ball. Other than summing and differencing (Boolean operation) the density 
fields, there are also some other blending functions I have used in order to 

Figure 3: Three types of Soft Objects in Polygon and Wire-frame 
Mode, together with a rough approximation of heart pathology  
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Figure 4: the processes of construct Heart Pathology with Soft Object Models  

model a complex heart shape (I will mentioned the one of these blending 
functions in the following). 

Derive heart pathology from Soft Object Model 
 Until now, I assume users have already used Soft Object Modeling 
Technique [1] mentioned before and derive a rough model of the heart (as the 
last example shown in Fig. 3).  In the rest of this part, I will introduce how the 
new approach in my project use this rough model to produce the pathology of 
the heart. Theoretically, this approach is very similar to the traditional ways 
mentioned in the Introduction section, except other than using a sample healthy 
heart model as the basic model. I used the rough model created by Soft Object 
Models [1]. The reason is that rough model is much more accurate than healthy 
heart in the case of abnormal congenital heart disease. The graphical processes 
of my approach and some results are illustrated in Fig. 4 in the following: 
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In my program, after get the rough model of the heart (shown in (a) in 
Fig. 4), user can start the processes of deriving accurate heart model by clicking 
the “GetSnake” button. This “GetSnake” button will: 

 
- Firstly, start a simplified Marching Cube Technique [12], 2D Marching 

Square, to detect the intersection between the rough Soft Object Model and 
MRI data slice (the yellow points shown in (b) of Fig. 4). In my program, 
another step to sort the intersection points is also necessary in this process, 
so that it can use the sorted sample points to form a closed B-Spline curve. 

 
- Secondly, apply the sorted intersection points to the B-Spline function to 

form a closed B-Spline curve. Since the closed B-Spline curves only 
approximate the edges on every MRI slice, my program then use the 
famous Active Contour Modeling (B-Spline Snake) technique from Kass in 
1988 [2] to automatically adjust the closed B-Spline curves and make them 
accurately fit into the edges. The basic idea of the Active Contour Model [2] 
is that it provides an energy-minimizing function for every closed B-Spline 
curve according to the image slice relevant to the curve. This energy-
minimizing function will iteratively adjust the B-spine curves until reach the 
situation of minimum energy, where every B-Spline curve accurately 
matches the edges on its relevant image. The corresponding result of this 
process is illustrated in (c) of the Fig. 4. 

 
- Finally, after we got all the accurate B-Spline curves for all MRI slices. The 

Radial Basic Functions (RBFs) [3] is introduced to utilize the sample points 
on previous adjusted curves and integrate them to derive a smooth and 
energy-minimized 3D iso-surface. Since the basic characteristics of the 
RBFs, this iso-surface goes through all the deformed B-Spline curves, and 
holes from the noise of the source on this reconstructed 3D model are 
smoothly filled and surfaces are smoothly extrapolated (as shown in (d) of 
Fig. 4). 

Encountered Problems  
There are mainly two technical problems I have encountered when I was 

implementing above modeling method.  
          
Technical problem 1: 
 

The first problem comes from the characterization of the Soft Object 
Modeling technique. As I introduced before, one advantage of the Soft Object 
Modeling technique is that I can use some blending operations to combine two 
density field to achieve some complex Soft Object models, for example, using 
the Boolean operation: summing and differencing, to easily calculate the union 
and intersection of the density fields from every Soft Object in the environment, 
so that these Objects finally smoothly combine together to approximate the 
shape expected. These kinds of blending operation provide a much better result 
compared with other modeling technique, e.g. implicit function, in which it’s very 
hard to derive the implicit function for the complex surface. 
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Although constructing complex Soft Object Models with blending operations 
is more efficient and effective than other approaches, blending operations are 
sometimes still not convenient enough to simulate some very complex objects, 
namely heart Pathology. The raise of this problem is that, when many previous 
Soft Object Models have already been used to join together to develop a complex 
model, it’s very difficult to add another Soft Object Model to the previous density 
field and achieve the expected result. The more the Soft Objects used before, 
the harder to derive expected shape in the future. 

 
Since the previous density field is created from applying a serious of 

summing and differencing blending operations, the density value in the final 
density field are not equally distributed. With this unequally distributed density 
field, it’s very hard for user to estimate the distribution of the density values 
according to its surface and decide how to add another soft object to achieve the 
expected result. One simple example of this technical problem is that when user 
is using a differencing operator to try to create a hole on the previous model (As 
shown in Fig. 5 in the following). 

  

Figure 5: an Example of the problem from Soft Object Modeling 
 
 As shown in the Fig. 5, a very simple combination of Soft Object Models is 
presented ((a) in view mode and (b) in wire frame mode). According to the (b) 
in Fig. 5, we can discover that this model initially is made up of summing four 
Soft Cones with similar radius at each ends. Image (c) in the Fig. 5 shows a 
slice of the density field created by these four Soft Cones along Y direction, the 
direction of the green axis in the image, and the density slice is taken from a 
horizontal plane which cut through the middle of the model. From the density 
slice in (c), we can obviously find out that that density fields probably has two 
line-skeletons, and they are not quite parallel to each other. Right now, if user 
want to create a hole which passes through above model along the x-axis (the 
blue axis) corresponding to the Picture (c) in Fig. 5, simply differencing a new 
Soft Cone with the original density field will not be effective. The result from this 
differencing process can be seen in Fig. 6 in the following. 
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Figure 7: Expected 
Density Field. 

Figure 6: differencing a Soft Cone with previous density field. 
 
  
As we can see in Fig. 6, creating a hole inside the 
model mentioned before gets very difficult, the final 
density field on the same slice shown in (c) just 
concaved a little bit in the area where we added a 
Soft Cone, but we were expecting to see some 
density field which looks like the one shown in Fig. 7. 
The reason for this un expected result that, since we 
have summed the density field before we added a 
new soft cone, the maximum field value in the old 
density field is much bigger than the maximum field 
value of the Soft Cone’s density field, so when we 
take the difference between these two fields, the 
result after differencing are still too big to provide a 
hole shaped iso-value surface (as shown in Fig. 7). 
 
 Although it’s very difficult to get ride of this problem mathematically, 
there are basically two ways we can consider to minimize the effect of the 
problem: 
 

- Normalize the density field each time we add a new object. With 
this approach, we can control the maximum field value in the 
density field and probably we can get more expected result. 

 
- Allow users to freely specify the range of each soft object they 

added. Users can specified of the range of the soft object by simply 
scaling the field range. With this approach, users can easily get the 
complex shape they expected, but similar problem may still 
happens when the number of Soft objects getting larger. 

 
 
In my program, I mainly used the second approach to deal with this 

problem. A slider is provided in the user interface, and user can decide how they 
scale the density field by dragging the slider. I also provide a new blending 
operation with which user can hardly combine two groups of Soft Object Models. 
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Formula 1: Wyvill’s Field Function: 
 
 D(r) = a (1 – 4r6 /9R6  – 17r4 /9R4  – 22r2 /9R2  ) 
Note: a scales this function, each control primitive has no influence after a distance R.

Figure 8: Adjusting the curvature at the intersection between 2 Objects 

   In Wyvill’s [1] formula (as shown in Formula 1), the range of the field 
values assigned to the density field is one of the factors which control the 
combination of Soft Object Models, as parameter a shown in Formula 1. Scaling 
the parameter a of each Object can directly affect the shape of the final model 
made out of them.  
 

As explained in formula 1 above, parameter a control the range of the 
field made by Soft Object. For example, if a = 10, then the density field values 
are ranged between 0 and 10, the closer to the skeleton of the Soft Object, and 
closer to 10, otherwise, the closer to field value 0. We can also notice that, the 
bigger the value of a, the faster the field value distributed when getting away 
from the skeleton. With this property of the Soft Object model, when we are 
combining two Soft Object Models, we can control the curvature at the 
intersection by adjusting the value of parameter a of each model. Normally, the 
larger the differences between the values of a from two density fields, the harder 
these Soft Objects join together. If field-ranges of both Objects are the same, 
these two Objects are very smoothly joined together. This is clearly illustrated in 
Fig. 8 in the following. 

   

 
 As shown in Fig. 8, we were combining two Soft Cones both of which has 
same radius at each end. In the left 2 pictures, the field-ranges and radiuses of 
both Soft Cones are the same. Since these two objects are too smoothly joined 
together, it very difficult to observe their skeletons according to the surface 
shown in the first left picture. For the two images on the right, I had adjusted 
one of the Soft Cone (the one which is along y axis) to make its field-range three 
times larger than before. Since the difference between two density fields is 
increased, it’s much easier for people to determine its skeletons. Note: I have to 
decrease the radius of the soft cone which we scaled before. The reason is that, 
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Figure 9: Two Kinds of Soft Object Groups 

after I scaled the density values to three times as large as before, the affect 
range is about three times larger, and we need to use radius property to 
minimize the range to the size we are interested in. 
  

Although scaling the field values improves user’s control over combining 
Soft Objects quite a lot, there are still some situations when it does not works 
(for example a lot of soft objects is joining together), and these situations 
happen while modeling heart pathology. When modeling the heart pathology, a 
reasonable amount of soft objects are needed, the density field out of these soft 
objects are large and various, it’s vary difficult to get the shape we expect even 
we scale the field range. For example, it’s very difficult to construct the left 
ventricle inside the existing heart model. 

 
In order to build some holes which look like inter-ventricular and atrio-

ventricular parts of the heart pathology inside the heart model, not only I need 
to consider how to solve the technical problem mentioned above, I also need to 
find a way to allow users to easily build this model without disturbed by the 
existing models. I approximate this goal by using the idea of Soft Object Groups. 
The definition of Soft Object Group in my report is that the Soft Object models 
will affect each other only if they are in the same group when users are building 
the models. A filter is used at last to combine groups of Soft Object to derive the 
final model. 

 
In my program for 

modeling the heart pathology, I 
mainly define two groups of Soft 
Objects: one for approximating 
the outside boundary of the 
heart, including muscles and 
some aortas (red model in (a) of 
Fig.9), and the other for 
approximating the inter-
ventricular and atrio-ventricular 
parts of the heart pathology 
(blue model in (a) of Fig.9).  

 
The filtering process for combining these two Soft Object Groups above is 

defined as: using the constant iso-surface of the blue model as the boundary, for 
every point inside the blue model, we replace field values at the corresponding 
positions in the red model by (-f blue * f blue). With this approach, for the density 
field of the red model, the positions which are not inside the boundary have 
positive field values, and the positions which are inside the boundary have very 
big negative field values. If we render this density field, the new red model will 
look like the original red model having a hole inside which is corresponding to 
the contour of blue model. Since the field values at the intersection area inside 
the final density field vary dramatically from great positive values to great 
negative values, an iso-surface could be constructed.  

With the ideas of scaling field range and Soft Object Group, users can 
easily build the complex objects they want, and a approximated model of the 
heart pathology can be constructed easily. 
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Figure 10: Sample Points from Active 
Contour Model, and the Soft Objects which 
derive it  

Technical problem 2: 
 
The second problem I meet when making this software comes from the 

process which reconstructs the 3D model described by the sample points from 
Active Contour Model [2]. Since the sample points are only a small part on the 
final surface, we need to interpolate these sample points to get a smooth and 
continuous surface. The Radial Basic Functions technique [3] is used to do this 
interpolation. A brief description about how Radial Basic Functions works is that, 
Radial Basic Functions uses the sample points (the points on the surface, and 
some points inside or outside surface) and sample values (0 for the points on the 
surface, positive values for the points inside the surface, and negative values for 
the points outside the surface) to derive the parameters for the final surface’s 
implicit function. In our case, we can derive the sample points on the surface 
(zero-valued points) by using Active Contour Model [2] easily. We need to decide 
the sample points for inside and outside the final surface and their values.  

  
 Selecting the positions of the sample points for inside or outside the 
surface is not hard. I can either randomly select them from the environment or 
using some other approaches to regularly determine them. The hardest part is 
about how to decide the sample value accurately for the corresponding sample 
point. Although I can work out what the sign of the values (positive or negative) 
for the selected points by checking if they are inside or outside, I still need to 
determine what exact value I need to assign to them. These values have to be 
relative to each others, for example, the sample value of the point inside the 
final model need to greater than that of another point which is a little outside. If 
the sample values are not regularly assigned, a very different and messy result 
will be derived. 
 
 In my program, I used the final density field created in Problem 1 as a 
library to approximate the sample values for the selected points. Although this 
density field has an area where the field 
values are not continuous, it’s still good 
enough to help us decide the sample 
values. Another notice I have to point out 
is that when I was selecting the positions 
of the inside or outside points, I need to 
make it a little away from the boundary 
points. The reason is that the correct 
model is a little different from the model 
described in the density field. The one in 
density field exactly comes from the Soft 
Object Models, but the one we finally 
derived is adjusted according to the Soft 
Object Model by Active Contour Modeling 
Technique [2]. If we assign the sample 
value to a point which is close to the 
boundary point, that point might be 
inside the model in density field but out 
side the zero-valued boundary points, 
this will provide a very messy result. For 
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Figure 11: Sample Points for reconstructing the heart 

example, as shown in Fig. 10, the yellow points are the sample points from 
Active Contour Modeling technique [2], they will be treated as zero-valued point, 
but these yellow points are a little inside the Soft Object Model (in red). If I try 
to work out the sample value for the pink point shown in Fig. 10,  since the pink 
point is still inside the Soft Object Model, it will be treated as a inside point, but 
it is actually an outside point (outside the zero-valued points). So we have to 
select the points which are far from the boundary as inside or outside points. The 
process we used to select the positions for inside or outside sample points are: 
 

- For each closed B-Spline on the data slices, find the centre point (P 
centre) of the B-Spline by taking the average of every points on the 
B-Spline. Since the concave B-Spline is very rare in our case, this 
centre points are always in the middle of the B-Spline. 

 
- For the red Soft Object Group, since zero-valued points are the 

points on the B-Spline, for each zero-valued point (P sample). We 
work out the direction from the zero-valued point to the centre 
point (dir). Then the points inside and outside are: 

dirbPP

diraPP

sampleoutside

sampleinside

*

*

+=

−=
 

Where variable a and b are two constants to try to move the points 

insideP and outsideP  away from the zero-valued points, the problem 

mentioned in last paragraph is dramatically avoid. 
 

- For the Blue Soft Object Group, we only used the centre points as 
the inside sample points, and there is no outside sample points for 
them. 

 

The left picture in Fig. 11 gives an example for the inside, outside and 
zero-valued sample points from our heart model: the yellow points represent 
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               formal RBFs       Approximating RBFs 

Figure 12: Comparing the result from two kinds of RBFs 

zero-valued points (boundary points), blue points represent outside sample 
points, red points represent inside sample points. We can also see from the left 
image of Fig. 11 that there is another closed area of yellow points inside the 
outside boundary of the heart model. This area is made by negative Soft Object 
Group introduced before. 

 
After pushing all the inside and outside sample points from both Soft 

Object group and their zero-valued sample points to the Radial Basic function 
[3], we can easily work out an iso-surface which passes though all the zero-
valued points. This iso-surface for above sample points is shown in the right 
picture of Fig. 11. 
 
Other problems: 
  
 There are some other problems I have solved when developing the 
software. For example, since the MRI data has some noise in it, the sample 
points derived from it sometimes are not very related to each other, this 
unrelated sample points will produce a very unsmooth 3D surface when I 
reconstruct the model with Radial Basic Functions [3]. This is also because the 
Radial basic functions [3] are too strict to avoid the incorrect information from 
the noise. 
  
 I have overcome this problem by adding a constant into the equation of 
Radial basic Functions, which control the smoothness of the model developed by 
it. The new equation for Radial Basic Functions we used is given in Formula 2: 
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Where K is an n × n matrix with all values 1, n is the number of the sample 
points. 

 
Fig. 12 gives an example of comparing the result from the formal Radial 

Basic Functions and our Radial Basic Functions in Formula 2.   
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Figure 13: the entire User Interface 

3 User Interface and the Toolkits of my program: 
 
 Since the users of my program are the medical experts with less computer 
background, they are not necessary to understand how the techniques which I 
used to model the heart pathology works, a very simple user interface which let 
medical experts easily understand and operate my program are necessary. Some 
small toolkits, which allow users efficiently control this program, are also 
created. Since the entire software is made in C++ and OpenGL only, my 
program also has the advantage of platform independent. In the following 
paragraphs, I am going to introduce the user interface and some small toolkits of 
my software with the screen shots. I am also going to mention some feedback 
from medical expert after he tested my program, and the relevant changes I 
have made in my program. There are basically three parts I am going to cover, 
they are: 

- The user interface our software 
- The small toolkits for MRI data management 
- The small toolkits for Modeling 
 

User Interface  
 

Since I was required to develop the entire user interface without using 
any user interface developing tools, for example MFC, my program gain the 
advantages of portability, efficiency, and extensibility. All the components of the 
user interface are developed from scratch. They are very compatible with each 
others. I can also extend these components for further use. The entire user 
interface can be seen from Fig. 13: 

 
As shown in the Fig. 13 on 

the right, a 3D cube is mainly used 
to represent the user’s working 
environment of my program. Since I 
used Marching Cube algorithm to 
reconstruct the Soft Objects, this 3D 
cube also used to represent the 
space of the Marching Cube 
algorithm available in my program. 

 
A multi-level popup menu 

from OpenGL’s GLUT library is used 
to allow users to efficiently control 
all the functionalities of my software. 
This Pop-up menu can be easily 
activated by clicking the Middle 
button of the mouse. In my 
program, I define that users use left 
button of the mouse to rotate the 
cube, and use the right button of the 
mouse to drag and add the Soft 
Object’s skeleton. 
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Two simple graphical sliders are used to allow users easily control the 

radius and the scaling parameter a of the selected soft object (I will give more 
detail of this in the following paragraph).   

 
There are also three constant buttons: Point, Cone, and Curve, shown on 

the left side of my program, the functionalities of these buttons are allowing 
users easily create and modify Soft Ball, Soft Cone, and Soft Curve in my 
program. 

 
- Point: when user click this button, Point button will be down and 

my program will automatically switch into modify mode (the wire 
frame mode). User can keep on adding new Soft balls into the 
environment by clicking the right button of the mouse. When users 
finish adding Soft balls, they can stop this functionality by clicking 
the Point button again (button will return back to up, and program 
switch back to polygon mode). 

 
- Cone: The Control of the Cone button is almost the same as the 

Point button introduced above. Except that every two times users 
clicking the right button of the mouse, a new Soft Cone will be 
added to the environment. 

 
 
- Curve: The Control of the Curve button is almost the same as the 

Point and Cone buttons introduced above. However, users can only 
add one Soft Curve into the environment every time they enable 
and disable the Curve button. The reason for this control is that, 
there are unknown numbers of the control points on the Soft curve 
object. Each time user click the right button of the mouse, my 
program will consider users add a new control points to the new 
Soft curve object. A new Soft Object can only be added to the 
program if user disable the Curve button and enable it again. Also, 
a new control point will only be added to either ends of the Soft 
Curve. My program will find out the distances between new point 
and previous ends of the soft curve. The new control point will be 
added to the end with minimum distance. As shown in Fig. 14, 
original curve is in (a), a new control point will be added to the left 
end of the curve in (b) and to the right end in (c). 
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Figure 15: Static Clipping Plane & 
Normal Clipping Plane 

Figure 14: Adding a new point to left and right sides of Soft Curves. 
 In the feedback from Dr Alistair Young (medical expert who test my 
program), he suggested that since users will create the model according to the 
displaying MRI slices, it’s better to add 3D new point on to the existing slice 
inside the cube. In my program, it allows user to decide whether to display one 
slice of MRI at a time and user can select which one to display or display all MRI 
data slices at the same time. If one slice is displayed each time, the new 3D 
control points of the soft objects will be added onto this slice. Otherwise, the new 
control point will initially be added to the centre of the volume. 
 
Toolkits for MRI data Management 
 
Clipping tools 
 
 Since my program allows users make 
3D models in 2D environment (computer 
screen), how can I create tools which allow 
users easily and efficiently analysis and 
manage 3D MRI data slices is the problem I 
met when designing the interface. I have 
noticed that MRI slices are so annoying that 
when I display them in 3D, the front slice 
always cover the slices behind it. In order to 
deal with this problem, several kinds of 
clipping plane are adopted in my program. 
Users can easily use these clipping plane 
tools to clip the MRI data slices and get the 
information they want.  There are two types 
of clipping plane provided to the users in my 
program. 
 
 The first clipping plane is called static 
clipping plane. According to the name of 
this clipping plane, this clipping plane will 
always facing a constant direction – user’s 
position. After user active this clipping plan 
by “Other Functions->Enable/Disable static 
Clipping plane” option of the pop-up menu, 
no matter how the user rotate the working 
cube of our software, this clipping plane 
always face the user’s view and it cuts the 
objects inside the cube which are in front of 
it (as shown in the first image of Fig. 14, the 
static clipping plane is described by green 
dashed lines). Users can move forward and 
backward this static clipping plane by using 
the up-arrow and down-arrow buttons on the 
keyboard. 
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  Since the static clipping plane always facing to the user, it’s quite 
annoying if user want to create a model when the clipping plane is facing to 
another direction. Users sometimes even feel more comfortable if they have the 
ability to define the direction and position of the clipping plane. Our software 
provide this ability to users through second clipping plane, called Normal 
Clipping Plane, which can be activated by “Other Functions->Enable/Disable 
Normal Clipping plane” option of the pop-up menu. This clipping plane is defined 
by three small balls, which can be moved only along the edges of the cube, the 
clipping plane is formed by this three balls, some green balls will be added when 
clipping plane intersect more than three edges. Users can change the position of 
the clipping plane by dragging these balls (except green balls) with the right 
button of the mouse. 
 
 From Dr Alistair, he has suggested that I should display the MRI slices in 
the preference way of medical expert, which are that: 

- Human’s body is normally horizontal to the view position. 
- Human’s feet are close to the view camera compared with the head. 
- Human’s face and Chest are facing upward. 
 
According to the above suggestion, I have modified my program and add 

some more functionality into my program to make it convenient to be used: 
 
- MRI Data Slices menu: there are five sets of heart MRI data slices 

from the source. Although we have clipping tools to clip these 
slices, if we display all of them at the same time, the working cube 
will look very messy. User can use MRI Data Slices menu in the 
pop-up menu to select which set of MRI data they want to display. 
Also, each slice of the MRI data is displayed following the rules 
mentioned above. 
 
Note: the Active Contour Model Technique will be implemented 
according to the current displaying set of MRI data. 
 

- Show/Hide MRI slices submenu: users can use Show/Hide 
MRI slices submenu under Other Functions menu to display or 
hide the MRI data slices. 

 
- ‘S’ button: users can use the ‘S’ button on the keyboard to ask my 

program to display one data slice at a time of the current selected 
set. Users can loop forward or backward to other slices of the same 
data set by using ‘4’ and ‘6’ button on the keyboard. 

 
- Space button: When users are displaying one data slice at a time, 

sometimes they might prefer a situation where the data slice is 
paralleling to the screen and facing the users. They can achieve 
this by clicking the space button, and the current slice will be 
automatically adjusted to face the users. 
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<Number of Soft Object Group> 
// Group one 
<Number of Soft Objects> <Soft Object Group type> 
//Soft Object 1 in Group One 
<Object’s type> <Object’s Mode: positive, negative> <Object’s curvature> 
<Positions> 
<Radiuses> 
//Soft Object 2 in Group One 
… 
//Group two 
… 

Figure 16: the format of input.data file 

 
 
Toolkits for Managing Soft Object Modeling 
 
 Some others options provided in our Software to manage Soft Object 
modeling process are listed in the following: 
 

- InputParser class: this class is added in my program to increase 
the flexibility. With InputParser and its corresponding saving tool, 
users can save the existing soft objects into a file called 
input.data. And input.data can also be loaded by my program in 
the future through the InputParser. Users can also manually 
create some soft objects through specifying the properties of Soft 
Objects in input.data file. The Format of the InputParser is 
descried in Fig. 16. 

 

 
- Add New Object menu: under this menu of our pop-up menu, 

user can: 
o Switch between two kinds of Soft Object Groups by selecting 

Switch Object Group submenu 
o Determine the mode of the current group. Whether current is a 

negative soft object group (blue object), or a positive soft 
object group (red objects). 

 
- Change Mode menu: users can decide the displaying mode of the 

current selected Soft Object through this menu.  
o The Modify mode displays the Soft Objects in wire-frame 

mode, so that users can drag and select the skeleton of Soft 
Object in order to modify them. 

o The View mode displays Soft Objects in polygon meshes. Users 
can not modify the Soft Objects in this mode, but View mode 
provides a nice 3D surface of the models, so that users can 
have an entire look at the models they created.  
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Figure 17: defining a 
working cube 

 
- Adjust Object menu: there are four functionalities provided under 

Adjust Object menu: 
o Delete Object submenu: after user selected the existing object 

which they want to delete, they can easily remove this object 
by clicking this submenu. 

o Opposite Object submenu: users can switch the selected Soft 
Object between positive and negative with this option. Positive 
Soft Object provide a positive density field and negative Soft 
object provide a negative density field. 

o Run B-Spline Snake submenu: after user has created a rough 
model of the heart Pathology, they use this menu to start the 
Active Contour Modeling (B-Spline Snake) technique [2]. 

o Re-Construct the Shape submenu: Users use Radial Basic 
Functions [3] technique to reconstruct the heart pathology with 
sample points by selecting this menu. 

 
- Other Functions menu: except the slices management functions 

mentioned before, there are three other functions provided under 
this menu.  
o Show/Hide Model submenu: with this option, users can hide 

the soft Object Models inside the cube. If the model shown in 
the cube is the final model from Radial Basic Functions, users 
can use this option to switch the final model between 
representation of polygon meshes and the representation of 
sample points (yellow for boundary points, red for inside points, 
and blue for outside sample points). 

o Save Object submenu: As the file mentioned in the 
InputParser before, this option allow users to save the Soft 
Objects made by them in a format which can be read by the 
parser. So that users are allow to save the models created by 
them for future use. The name of the file is input4.data. 

o Select Working Cube submenu: 
sometimes the model users try to 
construct may just take a small 
part of the cube. It not necessary 
to calculate the density field for 
entire cube. This submenu allow 
user to limit their working space by 
inputting the start position and the 
size of the working space in 
console windows (As shown in Fig. 
17, the small cube is the space 
where Marching Cube algorithm 
will be apply to). The advantages 
of this are: not only we can save 
the running time to calculate the 
field value of some useless position, we can also increase the 
resolution of the Marching Cube Algorithm, so that we can get a 
much better result. 
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- Slider: two slider Objects are added in the bottom of our software. 

One is used for adjusting the radius of the selected Soft Object, the 
other is used for adjusting the curvature of the selected Object 
(scale the field values of the selected soft object by adjusting the 
parameter a in Formula 1). 

    

4 Component Management and hierarchy: 
 
 As mentioned in previous sections, there are several techniques I have 
used to achieve the purpose of modeling heart pathology. In order to simplify 
the process which users used to do the modeling, I also added a few toolkits into 
my program. All these things together with resources from the heart MRI data 
make the components arrangement and hierarchy of my program very 
complicated. I have to design a well-organized structure to make these 
components relatively works together. The content of my structure is explained 
in the following paragraphs. 
  
 Firstly I create a class called Model, which is in the top level of the 
hierarchy. Each instance of Model class represents a group of Soft Objects. 
Since there are two Soft Object Groups in our software, there are two Model 
instances created when our program starts. And user can change the properties 
of the group through user interface (as introduced before), for example, users 
can determine the mode of the selected soft object group. Model instance also 
contain a SnakeCollection instance, and use this SnakeCollection instance to 
manage all sets of MRI data from the resource and do the adjusting process. 
   
 As we mentioned, the SnakeCollection class contain all the information 
from the heart MRI dataset. The functionalities of the SnakeCollection class 
are: 

- Store the image information for all sets of MRI data slices. 
- Store the position of every MRI data slice. 
- Store the index of the current displaying MRI slice. 
 
After the rough model of the Soft objects combination has been created, 

SnakeCollection class can be used to detect the intersection between MRI data 
slices and Soft Object Models and to start Active Contour Modeling Technique [2] 
to do the edge capturing process. The SnakeCollection class achieves above 
purpose with the help of another class called BsplineSnake. A BsplineSnake 
instance defined in my program is used to represent a MRI slice. This 
BsplineSnake instance will implement Active Contour Modeling Technique [3] to 
minimize the energy on the B-Spline curves on the corresponding data slice. The 
entire hierarchy of our program can be illustrated in Fig. 18. 
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Figure 19: A MRI slice and an adjusted B-
Spline curve 

 
Figure 18: The Structure of our software 
 

5 Problems: 
  
 Users probably sometimes will 
find is quite difficult to place the 
selected soft object into correct position 
when they are using my program to 
model the inter-ventricular and atrio-
ventricular part of the heart pathology. 
The reason is that the heart MRI slices 
provided in our Program are too noisy 
to allow B-Spline Snake to detect the 
contour of the ventricular part of the 
heart. It’s even difficult for users to 
detect this part by eyes. After users 
made a rough model for the ventricular 
part with negative Soft Object Group 
(blue), although the B-Spline Snake 
technique will provide some energy-
minimized B-Spline for each slice, these 
B-Spline might not be continuous, and 
this will lead to a very poor result of the 
ventricular model. An example for the 
ventricular part of the heart and an 
adjusted B-Spline are shown on Fig. 19. 
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6 Conclusion and future improvement: 
 
 My program has been tested by creating the outside shape and an inside 
hole which similar to the right ventricle of the heart. The computation times for 
adjusting the closed B-Spline in red Soft Object Group is 29.5 seconds, the 
computation times for adjusting the closed B-Spline in blue Soft Object Group is 
25.4 seconds, and the computation times for reconstruct the final model with 
Radial Basic functions is 31.2 seconds. This process is based on long edge data 
set of the heart MRI data. The hardware environment for this experiment is 2.8 
GHz PC processor with 1G memory. 
 
 As introduced in this paper, Soft objects are ideally suited to approximate 
smooth organ shapes such as the heart. For example soft cones and soft curve 
are very suitable to model blood vessels such as the ventricles and the arteries 
and veins. Density field scaling can be used to model the important topological 
features of the heart. However, one problem I haven’t solved yet satisfactorily is 
how to combine soft object models for the inter-ventricular and atrio-ventricular 
part of the heart. Also it is not clear how to best handle very thin anatomical 
structures such as the walls of the blood vessels. Modeling them with a single 
soft object is easy but is inconsistent with the rest of the model. A possible 
solution is to display the entire MRI data set using direct volume rendering and 
to adjust the opacity transfer function such that only selected features of interest 
are displayed during modelling. I could also consider using free form deformation 
technique to allow user to deform the soft objects to achieve particular topology 
of the heart instead of density field scaling. 
 

Reference: 
 
[1]  G. Wyvill, C. McPhetters, B. Wyvill, Data Structure for Soft Objects, The Visual 

Computer, Vol. 2, pp. 227-234, 1986.  
 
[2]  M. Kass, A. Witkin, D. Terzopoulos, Snake: Active Contour Models, International 

Journal of Computer Vision 1 (4) (1988) 321 – 331. 
 
[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. 

McCallum, Reconstruction and Representation of 3D Objects with Redial Basis 
Functions. Applied Research Associates NZ Ltd, University of Canterbury 

 
[4] Introduction to Catmull-Rom Spline Curve, 

http://www.mvps.org/directx/articles/catmull/ 
 
[5] Burkhard Wunsche and Ewan Tempero, A Comparison and Evaluation of 

Interpolation Methods for Visualizing Discrete 2D Survey Data. Department of 
Computer Science, University of Auckland 

 



 26

[6]  William H.Press, Saul A. Teukolsky, William T. Vetterling, Brian P.Flannery, LU 
Decomposition and Its Application, Chapter 2.3, Numerical Recipes in C. 

 
[7] Liyan Zhang, Active Contour Model, Snake, Department of Computer Science, 

University of Nevada, Reno 
 
[8] Bo Li and Burkhard Wunsche, Modeling heart pathology with Soft Objects, 

COMPSCI 380 Project Report, Department of Computer Science, University of 
Auckland, New Zealand, November 2003. 

[9] Bo Li and Burkhard Wunsche, A fast semi-automatic method for reconstructing 
heart pathology with implicit surfaces, FoS Summer Scholarship Project Report. 
Department of Computer Science, University of Auckland, New Zealand, January 
2004. 

 
[10]  A. A. Young, Model Tags: Direct 3D tracking of heart wall motion from tagged 

magnetic resonance images, Medical Image Analysis, 3 (4), (1999), 361-372. 
 
[11] D. Wei, Whole-heart modeling: progress, principles and applications, Progress in 

Biophysics and Molecular Biology, 67 (1), (1997) 17-66. 
 
[12] Lorensen, W. E. and Cline, H. E., Marching Cubes: A High Resolution 3D 

Surface Construction Algorithm, Computer Graphics, Volume 21, Number 4, July 
1987, pp. 163-169. 

 
 
 
 


