
Department of Electrical and Electronic
Engineering

Part IV Project
2004

3D Interface for the Unmanned Aerial Vehicle

by Brendan Cervin, Chris Mills(Project Partner)
Supervisor: Burkhard Wuensche

September 13, 2004

1

UAV Project Abstract

The New Zealand Defence Force is commissioning an Unmanned Aerial
Vehicle (UAV) as part of their long term strategy. The vehicle is to support
units in the field with reconnaissance. The UAV has been developed by Phil
Strong at the Defence Technology Agency (DTA) [1].

• The first aim is to integrate the UAV flight data into a flight simulator
to create a 2D and 3D view of the flight.

• The second aim is to ensure the scenery within the flight simulator is
accurate. The use of high resolution data from JGSF in Geographical
Information System (GIS) format will be used to create detailed and
accurate scenery. The JGSF data must be converted into formats to be
used in a flight simulator. To support a 2D view, the created scenery
should also be viewable in bitmap format.

• Integrate the UAV Interface into the Virtual Maritime System Architec-
ture VMSA to simulate Virtual Battleground Scenarios

A 3D environment was created for the UAV by interfacing with the Flight-
Gear flight simulator. TerraGear was used to compile low quality scenery for
FlightGear. JGSF data will be used to create high quality scenery, however
due to time limitations this was not implemented although research supports
that scenery can be successfully created. The VMSA interface to FlightGear
was not implemented due to lack of time however there is some support for
such an interface from FlightGear.

1

Declaration of Originality
This report is my own unaided work and was not copied from

nor written in collaboration with any other person.

Signed:

2

Acknowledgments

This project has drawn on help from various people. Phil Strong has developed
the UAV and the UAV simulator which is the base of much of our work. Noah
Coad has written a wrapper class for accessing the Windows serial port libraries
using C#. Timothy J. Krell for developing a serial port package that accesses and
controls the serial port itself. Wayne Ewington from Microsoft arranged for the
free use of Microsoft Flight Simulator 2002. The developers of the FlightGear open
source project, related applications for use of FlightGear and the documentation
which is an integral part of the project. Special thanks to Burkhard Wuensche for
his guidance and advice on the project.

3

Contents

1 Introduction 6
1.1 Unmanned Aerial Vehicle (UAV) Background and Development . . . 6
1.2 Aims for the UAV project . 6
1.3 Project Scope . 7
1.4 Report Overview . 7

2 Initial Project Design 7

3 Flight Simulator Research 8
3.1 Requirements . 8
3.2 Microsoft Flight Simulator 2002 . 9
3.3 FlightGear . 10
3.4 MSFS and FlightGear comparison . 11

3.4.1 Microsoft Flight Simulator 2002 11
3.4.2 FlightGear . 11

4 UAV Interface 12
4.1 Research of UAV communication . 12
4.2 Proposed Solution . 12
4.3 UAV Interface Design . 13
4.4 Serial Port Communication Changes 14
4.5 Final Implementation . 14

4.5.1 Implementation Overview . 14
4.5.2 UAV Interface . 14
4.5.3 UAV Poller . 16
4.5.4 IPoller Interface . 16
4.5.5 FG Interface . 16

4.6 FlightGear Configuration . 17
4.7 Results . 17

5 Scenery Creation 18
5.1 Research . 18
5.2 Data Types . 18
5.3 Atlas . 19
5.4 FlightGear Scenery Designer . 19
5.5 TerraGear . 19
5.6 Terragear Compilation . 19

5.6.1 CygWin . 19
5.6.2 Windows . 20
5.6.3 Linux . 20

5.7 Joint Geospatial Support Facility Data 21
5.8 Results . 21

6 VMSA Interface 21

7 Conclusion 23

8 Glossary 24

4

A Appendices 27
A.1 UAV Interface . 27
A.2 UAV Poller . 27
A.3 FG Interface . 27

List of Figures

1 Project Description . 8
2 Comparison between standard Microsoft scenery and commercial scenery

created by VFR . 9
3 2D Instructor Mode . 10
4 Proposed Solution . 12
5 Proposed high level implementation 13
6 Proposed high level implementation 14
7 UAV Interface and Serial Configuration window 15
8 FlightGear Configuration for communication with UAV 17
9 FlightGear displaying the UAV in flight about Whenuapai Airbase . . 18
10 UML diagram of UAV Interface GUI 27
11 UML diagram of UAV Poller . 28
12 UML diagram of FG Interface . 28

5

1 Introduction

1.1 Unmanned Aerial Vehicle (UAV) Background and De-
velopment

The New Zealand Defence Force is commissioning an Unmanned Aerial Vehicle
(UAV) as part of their long term strategy. The vehicle is to support units in the
field with reconnaissance. The UAV has been developed by Phil Strong at the
Defence Technology Agency (DTA) [1]. The DTA is the research and development
arm of the New Zealand Defence Force.

The UAV is a remotely controlled aircraft with cameras and communication
equipment on board, the UAV is flown by autopilot and directed by an operator
on the ground. Currently the DTA have 2D map image software which they use to
direct the UAV in flight. The map has roads buildings and elevation contour lines.

Its aim is to be used for reconnaissance of units in the field. The UAV has
a communication system already developed to provide detailed information about
its environment such as exact position, altitude and status of equipment like servo
motors.

The DTA require a 3D Interface to the UAV to provide more accurate information
about the UAV flight path. They wish to use a flight simulator to provide a 3D
environment with which they can clearly locate land features to help operate the
UAV.

The Joint Geospatial Support Facility (JGSF, see glossary) [2] provides the New
Zealand Defence force with accurate map data. They have extensive map data in
various formats that can be used to create scenery for the flight simulator.

The DTA are also involved in development of the Virtual Maritime System Ar-
chitecture (VMSA). VMSA is a way of describing units. Units are described using
federates, a federate can be a communication federate, weapon federate, command
federate or counter-measure federate. By combining and reusing federates a unit can
be described. VMSA describes each sub-component to create the whole unit. These
units are used to for Virtual Battleground Scenarios which are battle simulations
conducted on computer networks

VMSA is used to simulate the relation between units. The DTA is creating
VMSA aircraft units for simulation. The DTA hope that the 3D interface of the
UAV can be used to show VMSA units in a battleground scenario.

1.2 Aims for the UAV project

The DTA would like a more accurate interface to view the UAV in flight. This is to
improve the operator’s ability to safely control the aircraft. In order to accomplish
this wish two aims have been devised for the project:

• The first aim is to integrate the UAV flight data into a flight simulator to
create a 2D and 3D view of the flight.

• The second aim is to ensure the scenery within the flight simulator is accurate.
The use of high resolution data from JGSF in Geographical Information Sys-
tem (GIS) format will be used to create detailed and accurate scenery. The
JGSF data must be converted into formats to be used in a flight simulator.
To support a 2D view, the created scenery should also be viewable in bitmap
format.

6

Another interest of the DTA is creating a connection between the above 3D
interface and VMSA. This resulted in the final aim of the project:

• Integrate the UAV Interface into the VMSA to simulate Virtual Battleground
Scenarios

1.3 Project Scope

Initially the scope of the project was wide and undefined. The aims of the project
did not tie down the direction of research into a small area. Any number of tools
could have been implemented to complete the aims, this resulted in a great deal
of research to find and identify useful tools. The initially undefined nature of the
implementation made research difficult many avenues were investigated which lead
nowhere. The scope was eventually tied to our chosen flight simulator but often
wandered in the hope of finding other useful tools.

1.4 Report Overview

This report will detail all research and work done during the course of this project.
The report will give details of the project in the order in which they were con-
ducted. The first aim will be covered in the beginning, describing the research and
implementation of the solution. The scenery creation will be covered next with back-
ground information about scenery tools and data types followed by tool compilation
and scenery generation. The final section will provide a description of research and
a possible implementation of the VMSA requirements. A conclusion will describe
the accomplishments and difficulties of the project. The glossary, references and
appendix will come last.

2 Initial Project Design

The project was divided into three parts to represent the aims. Figure 1 below
describes the initial project implementation. This shows the relation between each
part of the project, the key components and flow of data amongst them.

The data flow starts with the UAV which outputs packets that are defined by
Phil Strong’s Packet Specification [3, 4]. The converter in part one plays the key
role of using Phil’s packets to provide data to the flight simulator in the appropriate
format.

The second part of the project is the creation of scenery for use in the flight
simulator. JGSF have a great deal of GIS information on terrain around New
Zealand and the world. They can produce accurate shape files for use in applications;
these shape files have information on roads, terrains, buildings, elevation and much
more. A converter is needed to convert JGSF data into scenery for use by the flight
simulator.

The VMSA interface requires the sending of data about multiple units into the
flight simulator used to display the UAV. A form of multiplayer support could be
used to implement this requirement. Support for as many units as possible is wanted.
The 3D interface should allow the Virtual Battleground Scenario to be viewed from
the UAV cockpit and as many other angles as possible.

7

Figure 1: Project Description

3 Flight Simulator Research

In general flight simulators allow users to fly a plane in a 3D environment. Much of
the focus of flight simulators goes into realistic modelling of aircraft in flight. We
will be primarily interested in the scenery and communication abilities of the flight
simulators.

3.1 Requirements

• The flight simulator must show a plane being controlled by UAV in 3D envi-
ronment

• Accurate scenery is available or can be created

• The flight simulator must be able to incorporate other units into the display for
the VMSA aim, this could be provided through some multiplayer functionality

The first requirement means that the flight simulator must have the ability to
allow the aircraft to be controlled by external data. The flight simulator aircraft

8

must show as much of the UAV data as possible like location, altitude, pitch, roll,
yaw and even fuel status.

For the flight simulator to be useful the scenery data must be accurate. Either
scenery must be provided or tools for creating scenery are available.

The flight simulator should provide a form of multiplayer support that allows
for many units to be displayed, preferably not just aircraft but other ground units.
The units should be represented by appropriate 3D objects.

Initial investigation suggested that Microsoft Flight Simulator [5] and FlightGear
[6] were two possible flight simulators.

3.2 Microsoft Flight Simulator 2002

Microsoft provides extensive online documentation for their flight simulator. There
is a great deal of information about creating plug-in applications to add functionality
to MSFS. Many applications have already been developed and can be purchased
online. MSFS has a comprehensive set of aircraft and scenery objects for cities, this
can be further enhanced by commercial plug-ins with even more data.

MSFS costs $50-$100 depending on the version. It is the most popular flight
simulator in the world and enjoys support and documentation from many enthusi-
asts.

Direct X provides standard libraries to interface with MSFS, Microsoft also pro-
vides Software Development Kits (SDK’s)[7] for creating aircraft, scenery objects
and other more complicated plug-ins. Scenery within MSFS uses the data format
BGL. Microsoft provides it’s own tools for scenery generation using data from the
United States Geological Survey data. Details for scenery creation are available in
“Creating Terrain and Land Classification“ [8].

There are support tools for creating scenery available for free online. Some
tools are available at SHOF [9] that allow for importing aerial photographs and
BGL scenery analysis. Some of the commercial plug-ins available for MSFS are
very complex. One such plug-in called VFR [10] provides photographic and terrain
scenery to transform standard MSFS scenery see Figure 2. This is only available for
the UK though. There are other comparable products on the market but not for
New Zealand specifically.

Figure 2: Comparison between standard Microsoft scenery and commercial scenery
created by VFR

The DirectX DirectPlay package is used for multi-player connections to share
flight information. This interface does not allow for one player to sit in another

9

player’s cockpit. This means if an instance of MSFS hosts a connection to the UAV
interface it can not show the cockpit view of the UAV. A flight instructor mode
allows a user to see another player’s plane in a 2D interface as shown in Figure 3,
but not within a 3D interface.

Figure 3: 2D Instructor Mode

While researching the MSFS several spikes (small test programs) were created
in C++ to test some capabilities of MSFS. These discovered it wasn’t possible to
sit in the cockpit of a client’s plane (the UAV) from the host.

Microsoft has multiplayer functionality that allows a maximum of sixteen players
to fly within the same game. Graham Macferson has created an interface to MSFS
for VMSA. This interface allowed Mr Macferson to view 3D objects placed in the
scenery which represented VMSA units. The maximum number of players made
this implementation limited this interface.

3.3 FlightGear

FlightGear is an open source project with comprehensive documentation provided.
There are many open source applications related to FlightGear. FlightGear was
developed as an academic project for realistic flight simulation. It has various flight
models that can be used to describe the flight characteristics of aircraft. The terrain
in FlightGear is constructed using common formats for easy creation and modifica-
tion. TerraGear [11] is a related open source toolkit that creates FlightGear scenery
from publicly available geographical data.

The multi-player engine for FlightGear is currently in alpha development, this
is in house testing. While FlightGear doesn’t currently support many players at
once it has already implemented many forms of communication including reading
and writing information from files, over a network using sockets with either User
Datagram Packet (UDP) or Transmission Control Protocol (TCP) and even a serial
port.

Atlas [12] is a related open source project that can construct bitmap images from
FlightGear scenery files. Atlas can display bitmap images while communicating with

10

a running FlightGear program to display 2D flight path information of the aircraft
in FlightGear.

FlightGear uses tiles to represent the entire world. There is accurate modelling
of stars and planets that change depending on the axis of the world and the data and
time of day. FlightGear can connect to the internet to retrieve real-time weather
data which can effect weather effects such as visibility.

There are user forums [13] for both FlightGear and TerraGear which contain
a great deal of useful information and tips. The forums are used extensively by
developers with questions and many of the senior developers and experienced users
reply quickly with useful information. FlightGear has been the basis for many
university academic research projects and this is supported and encouraged by the
FlightGear community.

When FlightGear is configured to receive data it can display a remote control
aircraft. This means that it displays exactly what it is told to by the incoming
data, when FlightGear hosts a game it can act as a slave to the UAV data. This
ability is desirable for the project as it represents the best solution for simulating
and displaying the UAV in flight

3.4 MSFS and FlightGear comparison

3.4.1 Microsoft Flight Simulator 2002

• A lot of online documentation and SDK’s give detailed information about
creating plug-ins

• DirectPlay package provides good communication interface to MSFS

• Many plug-ins are available

• Extra aircrafts and scenery are irrelevant in the decision since the project only
flies one aircraft and will create it’s own scenery

• Only capable of 2D display of UAV in flight using the Instructor Mode

3.4.2 FlightGear

• Open source and fully documented

• Related open source applications

– Atlas map creator and 2D displayer looks useful for the second component
of the project

– TerraGear creates scenery from standard GIS data formats

– Flight Scenery Designer [14] creates scenery from photos

• Simple network communication using UDP or TCP

• Host acts as slave to incoming client flight data to display UAV in 3D envi-
ronment

FlightGear was chosen primarily because it was the only simulator that could
display the UAV in 3D flight. It also provides effective communication methods and
tools for scenery creation.

11

4 UAV Interface

4.1 Research of UAV communication

In the real implementation, communication occurs with the UAV through a trans-
mitter connected to a computer with a serial port. This was unrealistic for testing
purposes so a UAV simulator called HawkSim was created by Phil Strong for use
during the interface development. During testing HawkSim was connected to one
serial port and the UAV Interface was running on another. The two serial ports
were connected by a cable; this implementation simulates the real UAV for the UAV
Interface.

A communication protocol has been specified for the UAV by Phil Strong. This
protocol is private and details will be kept vague. The UAV sends data in packets,
there are many packets for different information like positional packets, motion
packets and environmental packets. Several spikes were written in C++ and C# to
test serial port communication.

C++ serial port communication is basic, there is limited high level data handling
and event based communication. Inexperience using C++ also created difficulties
in programming. C# serial port communication was implemented much faster. The
UAV Interface was implemented in C# due to personal preference.

4.2 Proposed Solution

Figure 4 below shows the envisaged overall solution. The UAV will communicate
wirelessly with a transmitter; the transmitter will be connected to a workstation
running the UAV Interface using a serial port. The UAV Interface will control
communication with the UAV by requesting and processing packets; once data is
accumulated it will be re-packaged data and send it to one or more computers
running FlightGear.

Figure 4: Proposed Solution

12

4.3 UAV Interface Design

Two designs for the UAV Interface were implemented. The first design was nearly
completely implemented before it was re-factored to improve modularity, installation
and good coding practices. There are a few key requirements of the UAV Interface.
Firstly it must provide serial communication with the UAV; secondly it must provide
communication with FlightGear. The other requirements are good coding practices,
a GUI to provide configuration options, current UAV data display and any relevant
debug information. The UAV Interface was divided in to four main sections to
implement the above design.

• The windows form which provides the GUI, this holds an instance of the
UAV Poller

• The UAV Poller which was central to communication between the UAV and
FlightGear

• Serial port communication

• FlightGear communication interface called FG Interface

This implementation can be represented by Figure 5

Figure 5: Proposed high level implementation

13

4.4 Serial Port Communication Changes

The main difference between the first and final design was the serial port communi-
cation. Windows provides a communication library called AxMSCommLib; this can
be used for serial communication. It is the simplest and fastest way to implement
serial communication in C#. To use this library however it must be installed and
registered on the computer, the library was bundled with commercial programs like
Visual Studio 6 or earlier.

To circumvent the registration of AxMSCommLib we used a wrapper class cre-
ated by Noah Coad [15] which encapsulated a registered version of AxMSCommLib.
This wrapper class successfully provided easy event based communication and data
handling for the UAV Interface’s serial port communication.

The draw back of this implementation was that every computer which ran the
UAV Interface had to install the AxMSCommLib file into the windows directory.
This was also not a strictly legal application of the AxMSCommLib file. To fix this
problem the serial port communication was changed and also improved to be more
modular.

A serial port package developed by Timothy J. Krell [16] was used to replace
the AxMSCommLib. The key class within the package was named SerialBase.cs
this class was altered to implement an interface class called IPoller Interface.cs.
The serial port communication is now modular. Any class that implements the
IPoller Interface can be used to communicate with the UAV.

4.5 Final Implementation

4.5.1 Implementation Overview

Below is the final design for the working UAV Interface, an UML diagram showing
the relation of classes is shown in Figure 6. Below the diagram are descriptions of
the key components and reasons for why they were implemented in this manor.

Figure 6: Proposed high level implementation

4.5.2 UAV Interface

This is a GUI class concerned only with the display of data. The UAV Poller has
been created to remove all the functional code from the display, the UAV Interface

14

holds an instance of the UAV Poller. The GUI provides configuration options for
the communication between the UAV and FlightGear, this configuration is passed
to the UAV Poller to create connections with the UAV and FlightGear. All data
which UAV Poller processes is sent to the UAV Interface through events, the use of
events is a good coding practice as it reduces dependency between the classes.

The user interface is shown below with the serial port configuration panel in
Figure 7 . The top of the serial port shows configuration options. The ‘Request
String‘ option is the string sent to the UAV requesting data, if there are any errors in
the string no data will be returned, it has a default value which requests all relevant
data the UAV has for FlightGear. Below it are the options for the connection to
the computer running FlightGear, these are the computer’s IP address and the port
number. The button ‘Serial Port Config‘ allows the user to alter all the options
associated with a serial port and save them to a ‘.cfg‘ automatically so they are
remembered next time the UAV Interface is executed. All the options are used
when the ‘Connect‘ button is pressed; altering the configuration after a connection
has been made will have no effect. Alterations will take effect only once a new
connection is made.

The middle area of the GUI shows the current values returned by the UAV. This
is useful to check that FlightGear is displaying the UAV correctly. The text box at
the bottom of the GUI shows debug information. Most importantly when data is
received from the UAV if there are any errors in transmission the data is deemed
corrupt and disregarded, the debug window provides notification of this event.

Figure 7: UAV Interface and Serial Configuration window

15

4.5.3 UAV Poller

This is the central class for communication and processing. It holds the connection
to both FlightGear and the UAV. The UAV connection is with the IPoller Interface
over a serial port. The FlightGear connection is through the FG Interface. The
UAV Poller requests and processes data from the UAV, the data is received in hex-
adecimal strings. Some conversion must be done between float formats and once
all the data is processed both the FG Interface and the UAV Interface are supplied
with the data.

Phil Strong implemented a cyclic redundancy check (CRC) number into his
packet specification to check data integrity. The UAV Poller processes each packet
checking the CRC number. This is done by the adding the exclusive or (XOR)
values of the returned data to ensure it equals the checksum value. If they are not
equal an error is detected and the data is disregarded. The UAV Poller most also
convert the float values sent by the UAV into the standard IEEE float format. The
UAV contains microchips manufactured by CCS [17], their float values vary from
the C# implementation of the IEEE float. The UAV Poller converts the returned
float values from the CCS float value to the IEEE float value.

4.5.4 IPoller Interface

This is a simple interface which Timothy J Krell’s complex serial port package
implements. The advantage of the IPoller Interface is that if the serial port commu-
nication is swapped for another medium as long as the connection implements the
IPoller Interface this solution will continue working.

4.5.5 FG Interface

The FlightGear Interface utilised the FGNetFDM class. This class was made pri-
marily for network communication between FlightGear instances. The class was
written to describe an aircraft’s Flight Dynamic Model (FDM) this is how Flight-
Gear describes the properties of an aircraft such as it’s location, speed, heading,
pitch, yaw, roll and much more data that wasn’t relevant to the UAV.

To communicate with FlightGear this class needs to be instantiated and filled
with data about the UAV. Once an instance of the class is full of UAV data it is then
sent across the network to FlightGear who uses the data to display the UAV. The
class is written in C++ and the UAV Interface has been written in C#, to allow
C# to use the FDM class it was re-written in managed C++ code. This meant
adding support to the C++ class for managed memory (garbage collection), once
C++ manages its own memory it can be run along side C# code. This is a key
ability of the .NET framework that Microsoft has created.

The FlightGear Interface is written to include the FDM and also socket commu-
nication for sending the FDM across the network. It is placed in a Dynamic Linked
Library for use by the C# UAV Interface.

FlightGear documentation discusses geodetic and geocentric coordinate systems
[18]. Geodetic specifies latitude and longitude for a perfectly round world while
geocentric recognises the ellipse shape of the world and there are slightly different
latitude and longitude values. Taking this into account it was important the correct
UAV position was given to FlightGear.

Traditionally, maps and GPS systems have provided geodetic data and this is the
case with the UAV GPS system. While FlightGear uses geocentric data internally

16

it recognises the common use of the geodetic system and the FGNetFDM supports
geodetic data. FlightGear converts the geodetic values itself for display of the UAV.

4.6 FlightGear Configuration

FlightGear needs to be configured to display a remote controlled aircraft. This
required two advanced options to be set. Firstly the Flight Model needed to be set
to ’external’, this tells FlightGear it is not to compute the movement of the plane
this will be provided by an ’external’ source.

The next option is to tell FlightGear where the external model is coming from.
This requires setting up input / output options. Figure 8 below shows the config-
uration needed. The communication is over the network socket 5500, using UDP
at a frequency of 50 Hz. This is the same frequency which the UAV Interface is
requesting and sending packets to the UAV and FlightGear.

Figure 8: FlightGear Configuration for communication with UAV

4.7 Results

This implementation was tested on two computers over a network. One computer
ran HawkSim and the UAV Interface; the second computer ran FlightGear as de-
scribed above. Data was successfully communicated from the UAV to FlightGear
which displayed the aircraft moving accurately. When the UAV altitude decreased
the pitch of the UAV reflected this, likewise the roll and yaw reflected the move-
ment of the UAV. Below are screen shots of FlightGear controlled by the UAV
Interface. Figure 9 shows the UAV above Whenuapai Airbase with Auckland in the
background.

17

Figure 9: FlightGear displaying the UAV in flight about Whenuapai Airbase

5 Scenery Creation

5.1 Research

FlightGear uses publicly available terrain data to generate scenery. For this rea-
son they support the commonly used data formats Geographic Information System
(GIS). The quality of the terrain data varies greatly around the world, in North
America data is available down to 30 metre resolution.

However data for New Zealand is not as good, the data suggested by FlightGear
has a 1 kilometre resolution. David Megginson a head developer for FlightGear said
“If you want scenery of places out in the wilderness such as New Zealand, then
you’re out of luck“ [19]. This requires the project to use data provided by the Joint
Geospatial Support Facility which is as low as 20 metre resolution.

5.2 Data Types

Terragear uses GIS data to create FlightGear scenery. There are two distinct forms
of data, raster and vector. Vector data describes points or areas, an area might be
a land mass, lake or even something intangible like a city or country boundaries. It
can also be used to describe points like roads, buildings, rivers or pipes. Terragear
supports reading vector data from the Vector Product Format (VPF, see glossay)
which is the same format as the vector data the JGSF will provide.

The other data type is raster. This is a grid like series of values such that no

18

location data is stored because the position of values within the raster file infers the
location. Data is sampled every few metres the suggested data available for New
Zealand is sampled every 1 kilometre [19]. The JGSF data is down to 20 metres.
This format is used to specify elevation data, it is important we have high resolution
data so that hills and valleys are accurately displayed in the scenery.

The raster data that our project dealt in primarily was Digital Elevation Maps
(DEM, see glossary) and Shuttle Radar Tomography Mission (SRTM, see glossary).
This was supported widely and TerraGear documentation used this data in its tu-
torial. The FlightGear Scenery Tutorial [19] was created by David Megginson. This
tutorial describes the process used to create basic scenery for FlightGear.

5.3 Atlas

Atlas is a tool that provides two functions. Firstly it can create bitmap images from
the scenery used by FlightGear. This is a function the DTA have expressed interest
in; they have other applications that would benefit from 2D maps of the terrain.
The second function of Atlas is to connect to FlightGear while it’s running and track
the movement of the FlightGear aircraft on the 2D bitmap image Atlas has created.

This application is fairly simple and will meet part of the second requirement.
It will provide the 2D interface for the UAV in flight. However it will need to be
compiled in Windows so that the DTA can use it.

5.4 FlightGear Scenery Designer

This project supplies functionality to import photos into FlightGear to act as scenery
[14]. The photos can be placed over elevation data. There are tools for adjusting
photos to fit neatly into other FlightGear scenery. The other side of the scenery
designer is creation and placement of 3D objects into FlightGear such as buildings,
towers or bridges.

5.5 TerraGear

TerraGear is an open source scenery generation toolkit developed for FlightGear. It
contains many tools that can operate on several data formats to create FlightGear
scenery. The toolkit source is available for download, it was developed on Linux.
There is support for compilation and use of Terragear on Linux but very little for
other systems.

The DTA prefers the solution to be usable on windows since that is there default
operating system. For this reason several attempts were made to compile Terragear
for use on Windows.

5.6 Terragear Compilation

5.6.1 CygWin

Due to the DTA preference for Windows we first tried to compile Terragear in
CygWin which is a Linux emulation for Windows. CygWin can compile Linux
specific code for use in Windows. CygWin was used first because the Terragear
Mailing List [13] said Terragear had been compiled successfully on it. The entire
CygWin package was installed to ensure all required components were installed.

19

However after many attempts Terragear would not compile, instead throwing errors
stating required packages weren’t installed.

This issue could not be overcome; the required packages were installed and lo-
cated in the correct place. Work compiling Terragear on CygWin was ended due to
these frustrating errors.

5.6.2 Windows

It was thought Terragear could be compiled successfully on Windows. As progress
was made compiling parts of Terragear more complicated problems arose. Code was
placed into Terragear files that would run dependant on the operating system; this
was so in future Terragear could be compiled on both Windows and Linux using the
same source. The first and most evident issue was the file system. Windows and
Linux use different file separators so wherever there was access to the file system
code was inserted so if the current operating system was Windows the backslashes
would be replaced with forward slashes.

The next issue that was discovered was within a program called DemChop. This
program divided all the elevation data into small files that could be processed more
easily. It read and wrote data to files in a very precise format. Strings were read
in from the file using ’substring’ which returns the exact location with a specified
string by indexing into the string. DemChop expected the data to be in a precise
location. However the Windows compiler was slightly different to the Linux GCC
compiler.

When Windows writes a double value to a file it uses three digits to specify the
exponent, under Linux only two digits are used. So when DemChop came to read
the double value back using the substring command it did not correctly find the
data. This bug was found and corrected so that data was correctly read in. The
occurrence of this bug made aware the possibility of other insidious differences in
the compiled Terragear toolkit that may lead to a failure.

There were a number of native Linux commands used by Terragear; these con-
sisted of fork, mkdir, and also socket communication. As a result solutions were
made wherever these native commands were used. The mkdir command was used
by Terragear with an optional command ’-p’ which told Linux to recursively create
folders. The ’-p’ command would not work under Windows and had to be changed.

The fork command is used by the fgfs-tools-server to create multithreading be-
haviour. This was replaced under Windows using the Thread class. Socket commu-
nication also needed to be altered to work under Windows as well.

TerraGear was successfully compiled using Windows .NET Compiler Version 7.
Scenery was created without error by the TerraGear toolkit. The scenery however
would not display under FlightGear. No relevant debug information was found which
could be used to debug the scenery. With the due date of the project approaching
the focus became producing working scenery rather than a Windows compilation.
So Windows was abandoned and compilation on Linux begun.

5.6.3 Linux

Work compiling TerraGear was initially done on RedHat Enterprise Edition. The
same errors encountered during the CygWin compilation appeared and so another
flavour of Linux was attempted. RedHat 8 became the next test bed for TerraGear
compilation. The compilation was successful and test elevation data was downloaded
from the United States Geological Survey in DEM format. The vector data was

20

downloaded from the National Geospatial-Intelligence Agency in VPF format known
as VMap0 which is accurate between 2040 meters and 4,270 depending on the source
[20].

Scenery was successfully created using the data from above. This scenery could
be displayed in FlightGear running under both Windows and Linux. It was noticed
that the scenery created under Linux was several times larger in disk space than
the Windows created scenery. The goal was now creation of scenery from the JGSF
data.

5.7 Joint Geospatial Support Facility Data

Once we had correctly created scenery JGSF supplied us with data to create accurate
New Zealand scenery. We requested to data formats; the first was raster data in
DEM format and the second was vector data in VPF format. We received three sets
of data from JGSF

• Shape files (NZ Topographic Data, see glossary) which are contour maps con-
taining both raster elevation data and vector data of roads, rivers, buildings
and much more

• Digital Terrain Elevation Maps (DTED, see glossary) which is a format close
to DEM

• VPF files in Vector Map Level 1 (VMap1) format

The VMap1 data is compatible with TerraGear and is not publicly available.
There are some problems with these data formats. Firstly shape files are not sup-
ported directly by FlightGear, secondly DTED files are not supported. Research
began in order to convert JGSF data to formats that TerraGear supported. There
are various conversion tools such as Geographic Resources Analysis Support System
(GRASS) [21] which have been investigated and do show potential.

After contacting JGSF it was discovered they can provide the data in the formats
we require, due to time constraints however this has not been tested any further. It
is still believed that TerraGear can be used to create scenery from the JGSF data.

5.8 Results

TerraGear was compiled on both Linux and Windows. Scenery was only created
successfully on Linux, this scenery can be used on Windows by FlightGear. JGSF
have not supplied the required formats for scenery creation. Research shows that
once the data formats are available scenery can be successfully created.

6 VMSA Interface

The third requirement was to allow for many units to be viewed within the 3D envi-
ronment of the UAV. While there is only a testing version of the multiplayer engine
for FlightGear which has been called buggy and unreliable, there is still potential.
The multiplayer is believed to support the FGNetFDM which was discussed earlier
in the FG Interface.

The use of FGNetFDM in multiplayer would allow the reuse of the FG Interface
to send data about units into FlightGear. There is also the possibility of displaying

21

ground and sea units within FlightGear as well. The FDM contains a variable to
specify an objects height above ground; this could be set to zero to keep ground
units on the ground permanently.

22

7 Conclusion

The aims of the project were:

• Integrate the UAV flight data into a flight simulator to create a 2D and 3D
view of the flight.

• Ensure the scenery within the flight simulator is accurate. The use of high
resolution data from JGSF in Geographical Information System (GIS) format
will be used to create detailed and accurate scenery. The JGSF data must be
converted into formats to be used in a flight simulator. To support a 2D view,
the created scenery should also be viewable in bitmap format.

• Integrate the UAV Interface into the VMSA to simulate Virtual Battleground
Scenarios.

Both Microsoft Flight Simulator and FlightGear were extensively researched for
use in the solution. FlightGear was chosen for its ability to display the UAV in 3D
as well as its communication support and expected multiplayer engine.

The solution to the 3D Interface was

• Implement communication across the serial port with the UAV.

• The UAV data is processed by the UAV Poller then passed to the GUI and
the FG Interface.

• The GUI displays current UAV data and debug information.

• The FG Interface wraps the UAV data into the FlightGear Flight Dynamic
Model and then sends it to FlightGear across the network using socket com-
munication.

FlightGear effectively displayed real-time data from the UAV in a 3D environment.
The second aim of the project was the creation of accurate scenery for use in the

3D environment using high resolution data from JGSF. TerraGear was selected to
create the scenery; it was successfully compiled for Linux and used to create scenery
using basic public data. JGSF data was not in a compatible format and due to time
constraints could not be used to create accurate scenery. Research shows that JGSF
data can be used to successfully create FlightGear scenery.

The third requirement of the project involved the creation of an interface for the
Virtual Maritime Systems Architecture. Research suggests that the FG Interface
can be reused to send data about other units into FlightGear. Due to time con-
straints and a limited multiplayer engine this aim was not implemented.

23

8 Glossary

JGSF The primary military role of JGSF is to acquire, collate and main-
tain high integrity databases for production and dissemination of
Geospatial products and services to static and deployed NZDF HQs
and Force Elements. JGSF is also the NZDF central provider of
maps and charts, digital databases and feature foundation data
and undertakes commercial hydrographic services on behalf of the
RNZN. [2]

DTED DTED2 is the basic high resolution elevation data source for all
military activities and systems that require landform, slope, eleva-
tion, and/or terrain roughness in a digital format. DTED 2 is a
uniform gridded matrix of terrain elevation values with post spacing
of one arc second (approximately 30 meters). [22]

VPF The Vector Product Format (VPF) is a standard format, structure,
and organization for large geographic databases that are based on a
georelational data model and are intended for direct use. [23]

Shape File stores nontopological geometry and attribute information for
the spatial features in a data set. The geometry for a feature is stored
as a shape comprising a set of vector coordinates. Shapefiles handle
single features that overlap or that are noncontiguous. Shapefiles
can support point, line and area features. [24]

DEM Digital Elevation Model : A model of terrain relief in the form of
a MATRIX. Easch element of the DEM is regared as a node of an
imaginary grid. The gird is defined by identifying one of its corner
(lower left usually), the distance between nodes in both the X and
Y directions, the number of nodes in both the X and Y directions
and the gird orientation. [25]

SRTM The Shuttle Radar Topography Mission (SRTM) obtained ele-
vation data on a near-global scale to generate the most complete
high-resolution digital topographic database of Earth. SRTM con-
sisted of a specially modified radar system that flew onboard the
Space Shuttle Endeavour during an 11-day mission in February of
2000. [26]

24

References

[1] “Defence Technology Agency,” September 2004.
http://www.nzdf.mil.nz/corporate/hqnzdf.html#Defence

[2] “Joint Geospatial Support Facility,” September 2004.
http://www.nzdf.mil.nz/jgsf/role.html.

[3] P. Strong, “UAV Uplink Specification.” This report is awaiting security vetting
and as such is restricted.

[4] P. Strong, “UAV Downlink Specification.” This report is awaiting security vet-
ting and as such is restricted.

[5] “Microsoft Flight Simulator 2002 Home Page,” September 2004.
http://www.microsoft.com/games/pc/fs2002.aspx.

[6] “FlightGear Project,” September 2004. http://www.flightgear.org/.

[7] “Microsoft Flight Simulator 2002 Software Development Kits,” September 2004.
http://www.microsoft.com/games/flightsimulator/fs2002 downloads sdk.asp.

[8] Microsoft, Creating Terrain and Land Classification.

[9] “BGL Tools,” September 2004. http://www.scenery.org/design utilities a.htm.

[10] “VFR Scenery of England and Wales,” September 2004.
http://www.horizonsimulation.com/index.html.

[11] “TerraGear Project,” September 2004. http://www.terragear.org/.

[12] “Atlas Home Page,” September 2004. http://atlas.sourceforge.net/.

[13] “FlightGear User Mailing List,” September 2004. http://www.mail-
archive.com/flightgear-users@lists.sourceforge.net/maillist.html.

[14] “FlightGear Scenery Designer,” September 2004. http://fgsd.sourceforge.net.

[15] “.NET CoadTools,” April 2004. http://www.coad.net/noah.

[16] T. J. Krell, “Serial Communications : The .NET Way,” September 2004.
http://www.codeproject.com/dotnet/DotNetComPorts.asp.

[17] “ CCS Microchips,” September 2004. http://www.ccsinfo.com/picc.shtml.

[18] “ Flight Gear Internal Scenery Coordinate Sys-
tems and Representations,” September 2004.
http://www.flightgear.org/Docs/Scenery/CoordinateSystem/CoordinateSystem.html.

[19] D. Megginson, “FlightGear Scenery Tutorial,” September 2004.
http://glennm.orcon.net.nz/flightgear/fg-scenery-tutorial2.html.

[20] “VMAP0 Accuracy,” September 2004. http://www.mapability.com/index1.html?http&&&www.mapability.com/info/vmap0 accuracy.html.

[21] “Geographic Resources Analysis Support System,” September 2004.
http://grass.itc.it/.

25

[22] “DTED2 - Digital Terrain Elevation Data Level 2,” September 2004.
http://gcmd.nasa.gov/records/GCMD Canada DND DTED2.html.

[23] “Vector Product Format Overview,” September 2004.
http://WWW.NIMA.MIL.

[24] “ShapeFile,” September 2004. http://pcsa.hrsa.gov/datamaps/glossaries/gis glossary.htm.

[25] “Digital Elevation Maps, Glossary,” September 2004.
http://www.geocities.com/capecanaveral/9727/gist.html.

[26] “Shuttle Radar Topography Mission,” September 2004.
http://www2.jpl.nasa.gov/srtm/.

26

A Appendices

A.1 UAV Interface

Figure 10: UML diagram of UAV Interface GUI

A.2 UAV Poller

A.3 FG Interface

27

Figure 11: UML diagram of UAV Poller

Figure 12: UML diagram of FG Interface

28

