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Abstract: 

 

This project aims to automate the road finding process between two locations based on a 

digital approximation of the real terrain. Additional constraints, such as terrain gradients, 

will be introduced in order to achieve more realistic roads. A performance comparison 

will be made between the standard A* algorithm and variations of it. Different heuristics, 

which are used by the algorithms to guide them to the goal node, are also presented and 

compared. To overcome some of the computational constraints associated with road 

finding on large digital terrains, terrain sub-sampling techniques will be presented, which 

includes single terrain sub-sampling and multi-resolution terrain sub-sampling. A 

comparison between no sub-sampling, single terrain sub-sampling and multi-resolution 

sub-sampling using a variety of different sub-sampling factors will be presented using the 

A* algorithm and variations of it. We will show that terrain sub-sampling greatly reduces 

the time associated with the road finding process at the cost of producing non-optimal 

solutions.
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1. Introduction 

 

Path finding has been a traditional aspect of Artificial Intelligence for a long period of 

time and many solutions have been presented since. Path finding has many uses, from 

computer games to helping robots and rovers navigate through an environment. This 

report will focus on road finding (basically path finding) on a terrain represented as a 

digital height map. The principles presented can also be used for route finding using 

means other than roads. Following the selection of start and end locations, the program 

presented will find the most economical road by taking the gradients of the terrain into 

account. F. Markus Jönsson [1] previously looked at path finding for vehicles in real 

world digital terrains by focusing on terrain types which affect a vehicle’s speed and 

avoidance of enemy units on the terrain.  

 

The literature describes many algorithms for finding the shortest path between two 

points, one of the earliest solutions proposed was Dijkstra’s algorithm [2], first published 

in 1959. The problem with Dijkstra’s algorithm is that it finds the shortest paths to all 

other nodes in the search space as opposed to finding the shortest path to a single goal 

node. Dijktra’s algorithm always visits the closest unvisited node from the starting node 

and hence the search is not guided towards the goal node. Best First Search [3], in a way, 

does the opposite from Dijkstra’s algorithm. Instead of always picking the closest node to 

the starting node, it always picks the node that is closest to the goal node. Since we do not 

know the exact path from the current node to the goal node, the distance to the goal node 

has to be estimated. This estimate is referred to as the heuristic. Best First Search does 

not keep track of the cost to the current node and therefore does not necessarily find an 

optimal solution. 

  

The A* (A Star) search algorithm [4], used to find the shortest path between two points, 

was first introduced in 1968 [5] and is still widely used today, especially in the interactive 

entertainment industry. For instance, the computer game “Sim City 4” uses the A* 

algorithm for its traffic simulation [6]. The A* algorithm combines the approaches of 

Dijkstra’s algorithm and Best First Search. The A* algorithm is guaranteed to find an 
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optimal solution (assuming no negative costs and an admissible heuristic), like Dijkstra, 

and because it is guided towards the goal node by the heuristic, like Best First Search, it 

will not visit as many nodes as Dijkstra’s algorithm would do. This reduces both memory 

and time requirements. Amit J. Patel [7] has a good comparison between the A* 

algorithm, Dijkstra’s algorithm and Best First Search. 

 

In this project we develop different heuristics and variations of the A* algorithm in order 

to solve the shortest path problem under a variety of user defined constraints. The main 

reason for using the A* algorithm is that it is optimal and a heuristic search. It also 

performs better than other search strategies in many cases [7]. The search space, on 

which the road finding takes place, can potentially be quite large. This means that we 

must take steps to ensure that we do not run out of memory or that the search takes an 

excessive amount of time to run. Even a relatively small terrain map of 300 by 300 pixels 

has a search space of 90,000 nodes. Two possible approaches to reduce these problems 

are a reduction in the size of the search space through terrain sub-sampling and 

modifications to the search algorithm. Both approaches are discussed in this report. 

 

 

2. Problem Space 

 

2.1 Terrain Setup 

 

It is important to realize that we are dealing with discrete data (see Figure 1) as opposed 

to real world terrains which are ‘continuous’. The sampled digital terrain image is an 

approximation of the real terrain and should ideally be sampled at a high resolution. The 

higher the resolution of the digital terrain image, the more realistic the representation of 

the real terrain and the more accurate the path finding will be. However, there exists an 

upper limit on the resolution after which the road will not be any more accurate and will 

unnecessarily increase the running time of the path finding algorithm. 
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Figure 1 – The sampled terrain (an approximation of the real terrain) 

 

 

 Each pixel’s value of the digital image corresponds to the relative height of the terrain at 

that particular location. In the case of this report the heights of the terrain have been 

compressed to a range of 0 to 255, which can be represented by a single byte and can also 

be used as a grey value when the digital image is visually displayed. In that case, a pixel 

value of 0 corresponds to black (low altitude) and the maximum value of 255 corresponds 

to white (high altitude), ie. The brighter (higher intensity) the pixel, the higher the 

corresponding location is in the real terrain (see Figures 2 and 3). 

 

 
Figure 2 – The terrain represented using grey 

scale colours 

 
Figure 3 – The same terrain represented using 

the grey scale colour values 
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2.2 Adjacencies: 

 

To find a path from a starting node to a goal node, we must define a way in which 

successor nodes can be selected, ie. Where can we move to from a given location? In the 

real world, a person can take a step in any direction he/she pleases but on our digital 

terrain maps we are more restricted in our choices. There are two common approaches; 4-

adjacency (see Figure 3) and 8-adjacency (see Figure 4). 4-adjacency restricts the 

movement to the four main wind directions: north, south, west and east. 8-adjacency 

allows more freedom in movement as it, in addition to the directions of 4-adjacency, also 

allows movement in the northeast, northwest, southwest and southeast directions. 

 

 
Figure 3 – 4-adjacency 

 
Figure 4 – 8-adjacency 

 
Figure 5– 16-adjacency 

 

In addition to 4 and 8 adjacency, we can also use 16-adjacency (see Figure 5) which 

allows even greater freedom of movement as we can now move north-north-east, north-

east-east, etc. Using 16-adjacency, we can also achieve a smoother looking road by 

reducing the sharpness of the turns (see Figures 6, 7 and 8 for comparison). To reduce 

sharp turns even further we can penalize sharp turns, for example, it is cheaper to turn 45 

degrees rather than 90 degrees. See section 3.3.2 for more detail. 
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Figure 6 – Road found using 4-

adjacency 

 
Figure 7 – Road found using 8-

adjacency 

 
Figure 8 – Road found using 

16-adjacency 

 

If we use the distance between nodes as our cost function for the ‘standard costs’ then 

neighbouring nodes that can be reached using 4-adjacency cost 1, the ones that can be 

reached by the diagonal steps of 8-adjacency have a cost of 2 and nodes that can only 

be reached by the additional steps of 16-adjacency have a cost of 5 . There are of course 

other cost functions that can be chosen, rather than just using the distance between two 

nodes. Section 3.3 introduces additional parameters that will influence the cost function. 

 

 

3. The A* Algorithm 

 

3.1 Overview of the A* algorithm 

 

The A* algorithm is an algorithm that, like Dijkstra, finds the shortest path from a start 

node to a goal node. The difference between Dijkstra and A* is that A* uses a heuristic to 

guide itself towards the goal. The heuristic estimates the cost to reach the goal node from 

the current node; the heuristic estimate is usually referred to as the h(n) value (See 

section 3.2 for more on heuristics). A* also keeps track of the cost needed to get to the 

current node from the start node, this cost is generally referred to as g(n). The total cost 

of a node, f(n), is the sum of the cost to reach the current node from the start node and the 

heuristic estimate. 

 

 
f(n) = g(n) + h(n) 
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An integral part of the A* algorithm are the open and closed lists. The open list contains 

all the nodes that have been reached but haven’t been visited and expanded yet. The 

closed list contains all the nodes that have been visited and expanded, ie. They have been 

removed from the open list and added to the closed list. A* moves to a successor node by 

choosing the most promising node (the one with the lowest f(n) value) from it’s list of 

potential successor nodes (ie. from the open list). 

 

A* algorithm pseudocode: 

 

Setup the start node 
Setup the goal node 
Create an empty open list 
Create an empty closed list 
Add start node to open list 
while( open list is not empty) { 

Pick the node with the lowest f(n) value from the open list and make it the current 
node 
if (current node matches goal node) 
 return the current node. 

 Find all successor nodes from the current node 
 For each successor node { 
  Set it’s g(n) value to the g(n) value of the current node plus the cost to get  
  from the current node to this successor node 
  find the successor node on the open list 
  if(successor node is on open list && existing one has a lower g(n) value)  
   continue 
  if(successor node is on closed list && existing one has a lower g(n) value)  
   continue 
  Remove occurrences of this successor node from the open and closed lists 
  Set the parent of the successor node to the current node 
  Use the heuristic to estimate the distance to the goal node, ie. h(n) 
  Add this successor node to the open list 
 } 
 Add current node to the closed list 
} 
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3.2 Heuristics 

 

As we have mentioned already, the heuristic part (the h(n) component) used by the A* 

algorithm is what differentiates it from Dijkstra’s algorithm by guiding the search 

towards the goal node. If the heuristic function is admissible (meaning it never 

overestimates the minimum cost to the goal), then A* is also, like Dijkstra, guaranteed to 

find the shortest/cheapest path. It is also of great advantage to use a heuristic that 

underestimates the minimum cost as little as possible, as this will result in fewer nodes to 

be examined (see section 5.3 for a comparison of heuristics). An ideal heuristic will 

always return the actual minimum cost possible to reach the goal. The diagonal distance 

heuristic is such a heuristic using 8-adjacency and the Manhattan distance heuristic is one 

using 4-adjacency. A third heuristic which is also commonly used is the Euclidean 

distance heuristic. 

 

 
 

  

Fig. 9 – The Manhattan 

distance between two 

points. 

Fig. 10 – The Euclidean 

distance between two points 

Fig. 11 – The distance using 

the diagonal path. 
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a) Manhattan distance heuristic (Fig. 9) 

 

The Manhattan heuristic is computed by adding together the differences in the x 

and y components. The advantage of using this heuristic is that it is 

computationally inexpensive.  

 

||||)( baba yyxxnh −+−=  

 

The major drawback of the Manhattan heuristic is the fact that it tends to 

overestimate the actual minimum cost to the goal (unless 4-adjacency is used) 

which means that the road being found may not be an optimal solution. If we are 

not interested in an optimal solution, just a good one, then using an 

overestimating heuristic can speed up the road finding (see section 5.3). 

 

b) Euclidean distance heuristic (Fig. 10) 

 

The Euclidean heuristic is admissible, but usually underestimates the actual cost 

by a significant amount. This means that we may visit too many nodes 

unnecessarily which in turn increases the time it takes to find the road. The 

Euclidean distance heuristic is also computationally more expensive to apply 

compared to the Manhattan heuristic, as it additionally involves two 

multiplication operations and taking the square root. 

 

2 22 )()()( baba yyxxnh −+−=  

 

 

c) Diagonal distance heuristic (Fig. 11) 

 

The diagonal distance heuristic combines aspects of both the Manhattan and 

Euclidean heuristics. The resultant heuristic is admissible (unless 16-adjacency is 
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used) and has the advantage of always giving the actual minimum possible cost to 

the goal if 8-adjacency is used. It also has the advantage that taking the square 

root is no longer necessary, thus making it computationally slightly more efficient 

than the Euclidean distance heuristic. The heuristic value consists of two parts, a 

diagonal and a straight part. To find the number of diagonal steps that can be 

taken, the following formula can be used: 

 

|}||,|min{__ baba yyxxStepsDiagonalnum −−=  

 

The number of straight steps that need to be taken is found using: 

StepsDiagonalnumyyxxStepsStraightnum baba __*2|)|||(__ −−+−=  

ie. 

StepsDiagonalnumancetdisnmanhattaStepsStraightnum __*2___ −=  

 

The reason for subtracting twice the number of diagonal steps from the Manhattan 

distance is that 1 diagonal step is equivalent to 2 straight steps. If we assume that 

diagonal steps cost 2 and horizontal steps 1, then the following formula yields 

the h value for this heuristic: 

 

StepsDiagonalnumStepsStraightnumnh __*2__)( +=  

 

The square root of 2 does not have to be calculated every time as it can be stored 

as a constant value in the program. 
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3.3 User defined constraints 

 

3.3.1 Gradients and Gradient Penalties 

 

The reason for introducing gradient penalties is that realistic roads generally have a 

maximum gradient. The Cornwall County Council, for instance, limits the maximum 

gradient for traditional surfaced roads to 10%, ie 1 in 10 [8]. There are many reasons for 

imposing a maximum gradient, for example:  

• Safety Reasons – vehicles traveling downhill have greater stopping distances. 

• Vehicle Considerations – Some vehicles, especially heavy loaded trucks, would 

have great difficulties traveling uphill.  

 

The gradient between 2 nodes is calculated in the following way (see Figure 12): 

 

 
Figure 12 

 

)(tan 1

ds
dhgradient −=θ  

 

where 

dh = difference in height between the two nodes 

ds = the (ground) distance that separates the two nodes 

 

We have already specified standard costs to move to a successor node (see section 2.2). 

In addition to the standard costs we also require ‘gradient penalties’, so that moving up a 

steep incline is more costly than going along a flat surface. For example (see Figures 13 

and 14) we usually wish to avoid hills and mountains and try to go around them 

(assuming they are not too large) as realistic roads generally have maximum allowed 

gradients as mentioned above.  
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Figure 13– Road built with no gradient penalties, 

hence not avoiding the hill 

 
Figure 14 – Road built with gradient penalties,  

thus avoiding steep inclines and avoiding the hill 

 

The gradient penalties are basically cost multipliers. For example we could make road 

building on a 20 degrees slope twice as expensive as building a road on flat terrain. In 

other words we multiply the standard cost (the cost to move to the successor state on a 

flat surface) by the corresponding penalty. The maximum gradient penalties can be 

specified by the user for each 10% range (see Figure 15). The penalties in each 10% 

range are linearly interpolated to produce a different penalty for each gradient. These 

penalties are then added to 1 to produce the penalty multiplier.  

 

 
Figure 15 – The Gradient Penalties Dialog allowing the user to specify gradient penalties for each 

10% range 

 

For example, from Figure 15 we can see that maximum penalty for the 0% - 10% range is 

1.0. This means that the penalty for a 10% gradient of the road is 1.0 and for a flat surface 
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with a gradient of 0% is 0. All the values between 0% and 10% are linearly interpolated. 

Each range uses the previous range’s maximum penalty as the minimum (see Figure 16). 

For example, from Figure 15 we can see the maximum penalty for the 50% - 60% range 

is 6.0 and for the 60% - 70% range it is 7.0. So for the 60% - 70% range the minimum 

penalty is 6.0, the maximum 7.0, while all gradients within that range have a penalty 

between 6.0 and 7.0. Splitting the penalties up into 10% ranges allows for more control of 

the penalties, rather than using a predefined function that calculates the penalty given the 

gradient. 

 
Figure 16 – Example gradient penalty multipliers with each 10% range being linearly interpolated. 

 

 

3.3.2 Direction Change Penalties 

 

In addition to the gradient penalties, we can also impose direction change penalties on the 

road in order to keep it straighter and prevent it from making too many unnecessary turns 

as this would obstruct the traffic flow. For example if we were building a motorway we 

wouldn’t want to have a 90 degree turn in the road as this would force every vehicle to 

slow down before the bend which defeats the aim of the motorway which is to provide  

high-speed travel for a large numbers of vehicles. Even on other types of roads it is 

undesirable to have sharp turns. The City of Hamilton in Montana, USA, for example has 
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a regulation that says that a curve must have a minimum radius of 249 feet in order to 

provide a design speed of 30mph [9]. The minimum radii of motorway curves must be 

even greater to allow for higher design speeds. 

 

As with the gradient penalties, the user has the freedom to specify the penalties (see 

Figure 17). 

 

 
Figure 17 – The Direction Change Penalty Dialog 

 

The dialog box allows the user to specify the penalties for 7 directions, although not all 

are used by all adjacencies. For example, if we are using 16-adjacency we can turn by a 

maximum of 7 directions to the left or right. The A* algorithm will never perform a 180 

degree turn, as long as the cost to get to a neighbouring node is greater than 0. If we were 

using 8-adjacency however, we can only turn by a maximum of 3 directions to the left or 

right. The direction change penalty will be added to the gradient penalty multiplier and 

then the total cost to the neighbouring node will be calculated, ie. 

 

Total Cost = standard cost * (gradient penalty + direction change penalty) 

 

Where the standard cost is the cost to visit a particular successor assuming no penalties, 

ie. Height differences and direction changes have no effect. 
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For example, if the standard cost to a neighbouring node is 1, the gradient penalty is 2.5 

and the direction change penalty is 1.5 then the total cost to get to the neighbouring node 

is 1*(2.5 + 1.5) = 4. 

 

Each direction is assigned a number from 1 to 16 in clockwise direction starting north 

(see Figure 18). 

 
Figure 18 – The values that are assigned to each direction 

 
The following code snippet shows how the difference between two arbitrary directions 

can be found. This is crucial when the direction change penalty needs to be calculated. 

 

 
 

In the above code snippet deltaDir tells us how many direction changes occur between 

the current direction and the new direction. Using this deltaDir value, we can look up the 

corresponding penalty value. 

 

 

int deltaDir = Math.abs(currentDir-newDir); 
if(deltaDir > 8) 

deltaDir = 16 - deltaDir; 
 

if(adjacency == EIGHT_ADJ) // using 8-adjacency 
 deltaDir /= 2; 
else if(adjacency == FOUR_ADJ)  // using 4-adjacency 
 deltaDir /= 4; 
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3.4 Variations of the A* algorithm 

 

As we have seen in section 3.1, the open and closed lists are critical aspects of the A* 

algorithm. The open list contains all the nodes that are possible candidates for the next 

node to be visited and the closed list contains the nodes that have already been visited. 

A* will always select the cheapest node from the open list and visit it next. During the 

search, especially on large terrains, this list of open nodes (and closed nodes) can grow 

very large. This is something we want to avoid, because the larger the list the more 

memory is required to store it and the more time is consumed when new nodes are added 

to the list, a check is performed whether a node is present in the list or when searching 

the list for the node with the smallest f(n) value. The extra time consumption varies with 

the data structures used to store the list(s). There are variations of the A* algorithm that 

try to improve on the memory and time requirements. However, a reduction in the size of 

the search space is usually more effective in minimizing memory and time usage (see 

section 4 for terrain sub-sampling). 

 

The Beam Search variation of the A* algorithm imposes a limit on the size of the open 

list. The size limit on the open list is referred to as the “beam width”. By imposing a limit 

on the open list, the memory requirements of the search are reduced and operations (see 

previous paragraph) on the open list occur quicker. Once the limit has been reached the 

node with the highest f(n) value (highest cost) is dropped from the open list (and added to 

the closed list) to make room for a new node. Depending on the data structure used, it 

might be an advantage to delete several nodes (the ones with the highest f(n) values) once 

a limit has been reached instead of removing a single node at a time. The major 

shortcoming of Beam Search is that it is not optimal and not complete, meaning it may 

not necessarily find the shortest path (or any other path) from the start node to the goal 

node. This can happen when the node that would have led to the shortest path is 

discarded from the open list. Just like A*, the closed list can still grow very large and can 

lead to the same memory and time issues mentioned above. 
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Iterative Deepening A* [10] performs a series of searches, where each search has a 

maximum cut-off value, ie. a limit on the f(n) value. The cut-off value is increased with 

each iteration. The iterations continue until the goal node has been reached or the search 

space has been exhausted. Initially the cut-off value should be the h(n) value of the start 

node. The question arises by how much we should increase the cut-off value with each 

iteration. If we increase it by a small amount, there is the possibility of going through 

many iterations; this is a problem if the path is long and each iteration takes a significant 

amount of time. If we increase it by a large amount with each iteration, we may visit 

many nodes unnecessarily. Just like the standard A* algorithm, iterative deepening A* is 

also optimal, ie. it will also return the shortest path.  

 

Searching in one direction (unidirectional search) involves searching a single search tree, 

but there is another approach, bidirectional search, that searches two smaller trees 

instead. One search starts from the start node searching forwards to the goal node, the 

other searching backwards from the goal node to the start node. Because the trees grow 

exponentially, the search space created by two small search trees is generally less than 

the size of a single large tree assuming that the bidirectional search meets in the middle, 

ie. the two smaller search trees are approximately of the same size. Pohl [11, 12] noted 

that if there is more than one path from the start node to the goal node, then the two 

search fronts seldom meet in the middle. This means that the size of the two ‘smaller’ 

search trees often exceeds the size of the single search tree created by using a 

unidirectional search. 

 

A variation of the bidirectional search is the retargeting approach, first suggested by Pohl 

and Politowsky [13]. The retargeting bidirectional search does not perform the forward 

and backward searches ‘simultaneously’, but switches between, ie. the forward search is 

allowed to run for a certain amount of time, then the backward search, then the forward 

search again and so on until a path has been found. In addition to this, instead of aiming 

the search towards the goal node and start node, for the forward search and backward 

search respectively, each search front aims at the most promising candidate (called the d-

node [13]) of the other search front. Experimental results (see section 5.2) however 
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resulted in poor solutions. The quality of the solution generally improves the longer each 

search is allowed to run for. 

 

Another variation of the bidirectional search, suggested by De Champeaux, is the front-

to-front variation [14]. The motivation behind it is to avoid that the two smaller search 

trees do not meet in the middle, as discussed above. Unlike the Pohl’s bidirectional 

search [11] the two search fronts aim at each other as opposed to aiming at the start or 

goal node. Since we are aiming at a search front consisting of several nodes rather than a 

single node, it makes the heuristic calculation much more expensive as the heuristic 

depends on all the nodes of the opposite search front. In addition to that, new nodes are 

continuously expanded thus dynamically changing the search fronts. Politowski and Pohl 

[13] showed that even though the two search fronts now meet in the middle reducing the 

size of the search space compared to unidirectional search, the extra time needed to 

compute the heuristic values tends to exceed the time it would have taken to search the 

extra nodes with unidirectional search. 

 

 

4. Terrain Sub-sampling 

 

4.1 Single Terrain sub-sampling 

 

We previously mentioned that the search space can be very large and thus searching 

through it can take a long time and use up a lot of memory and other resources.  We have 

seen that there are variations of the A* algorithm (see section 3.4), that try to address 

some of these problems, but a better approach is to try and decrease the size of the search 

space. This can be accomplished by sub-sampling the terrain. 
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Figure 19 – Sub-sampling the terrain 

 

Sub-sampling works by transforming a group of cells from the original terrain map into a 

single cell for the sub-sampled terrain map. Figure 20 shows sub-sampling a terrain map 

using a factor of 4. This means that every 4 by 4 group of cells is transformed into 1 cell, 

ie. 16 cells are transformed into 1. As a result our sub-sampled terrain is 1/16th the size of 

the original terrain. For example, if we had a terrain map of 300 by 300 pixels giving 

90,000 possible nodes and used a sampling factor of 4, our sub-sampled terrain map 

would be 75 by 75 pixels big and contain only 5625 possible nodes. Obviously, the larger 

the sampling factor, the smaller the sub-sampled terrain map. 

 

 
Fig. 20 – Sub-sampling using a factor of 4 

 

Original 
Terrain 

Sub-sampled 
Terrain 
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How do we transform a group of cells into a single cell? There are many operators that 

can be applied, in my implementation two operators can be used; the mean and median 

operators. 

• Mean Operator – the mean operator just averages all the height values in the 

current group of cells. This average value is then used as the height value for the 

corresponding cell in the sub-sampled terrain map. The mean operator does not 

work well for groups of cells that contain a ridge or sudden drop-off. For example 

if we had a 5 by 5 group of cells where the left half (first three columns) had 

height values of 10 and the other half had height values of 140, then the single 

cell that will represent this group of cells will have a value of 62 (see Figures 21 

and 22 for a 2D view). We can see that the steep gradient in the original terrain 

becomes ‘smudged’ on the sub-sampled terrain map giving us a less steep 

gradient, which makes taking that path more appealing due to the lower gradient 

penalty. Once the path on the sub-sampled terrain map has been found, and we 

perform the searches between the road points (see further down for more detail), 

we are now forced to traverse the steep gradient on the original terrain. The 

assumption, when using the mean operator, is that the terrain does not change that 

suddenly, ie. that the terrain changes smoothly and that cliffs and sudden drop-

offs occur rarely or not at all. 
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Figure 21 – The groups of cells before sub-
sampling 
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Figure 22 – The sub-sampled groups of cells 
using the mean operator 
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• Median Operator – the median operator picks the middle value (median) of all the 

height values in the current group of cells; this requires the height values to be 

sorted. Using the example mentioned in the mean operator description above, the 

median operator would have preserved the steep gradient (see Figure 23 and 24 

for a 2D view). The cell used as the median is found by selecting the middle cell 

from the list of sorted cells (sorted by height). The middle is defined as: 

⎥⎦
⎥

⎢⎣
⎢=

2
llsnumberOfCemiddle  
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Figure 23 – The groups of cells before sub-
sampling using the median operator 
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Figure 24 - The sub-sampled groups of cells 
using the median operator 

 

 

After a start and goal position has been selected on the original terrain map, we can now 

use the sub-sampled terrain map to find a road more quickly in most cases.  
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Path finding using the sub-sampling procedure: 

 

 
 

Using large sub-sampling factors reduces the size of the search space but it has several 

disadvantages: 

• The greater the sub-sampling factor, the more cells get merged into one cell, thus 

making it easier to lose fine terrain structures, eg. A narrow passage between two 

hills. 

• Large sub-sampling factors decrease the number of way points along the road, 

thus increasing the distance between them on the original terrain map. This means 

that we are running the path finding algorithm less often on the original terrain 

map. However, it is usually less expensive to run the path finding algorithm more 

often but with a shorter distance between the each start and goal node. 

• The quality of the road found is usually greater when using small sub-sampling 

factors as less “smudging” of the terrain occurs (see first point)  

 

 

1. Select start and goal positions on original terrain map 

2. Create the sub-sampled terrain map using the specified sub-sampling factor 

3. Transform the start and goal positions, to the corresponding locations on the sub-

sampled terrain map 

4. Run the path finding algorithm on the sub-sampled terrain using the transformed 

start and goal nodes 

5. Transform all the nodes of the sub-sampled road found to the corresponding nodes 

on the original terrain map, ie. Create the way points on the original terrain 

6. Replace the first and last way points by the original start and goal positions 

7. Run the path finding algorithm on the original terrain map between each 

consecutive pair of the way points found in step 5.  

8. Join all the path segments found in step 6 together to produce the final road 
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4.2 Multi-Resolution Terrain Sub-sampling 

 

Instead of just using the high resolution original terrain map and the sub-sampled low 

resolution terrain map, we can also use intermediate terrain maps (see Figure 25). 

 

 
Figure 25 – Sub-sampling using 3 resolutions of the terrain map 

 

In the above example, we first find the road on the lowest resolution terrain map which 

has the smallest search space so the road finding should be relatively quick. Each point 

along the road found is then converted to the corresponding locations on the medium 

resolution terrain map. Now we find the road between each consecutive pair of the 

converted road points (just like we did with single sub-sampling) and join up all the road 

segments. We repeat the same process again, ie. Converting the medium resolution road 

points to the high resolution terrain map and finding the road between each consecutive 

pair and finally join the segments. 

 

We can of course use more than 3 resolutions, starting with the lowest resolution terrain 

map and working our way up through the intermediate terrain maps to the original high 

resolution terrain map. In experimental trials however, single sub-sampling usually 

Original 
Terrain 

Sub sampled 
Terrain 

Sub sampled 
Terrain 

Find road 
(1st) 

Find road 
(2nd) 

Find road 
(3rd) 
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results in higher quality roads found than using multi-resolution sub-sampling (see 

section 5.4). 

 

My program allows the use of up to four lower resolutions, ie. The sub-sampling takes 

place up to four times (see Figure 26). The sub-sampling factors can also be specified, 

starting with the high resolutions. For example, if we used “5” and “10” as the sub-

sampling factors then we would first find the road on the terrain sub-sampled by a factor 

of 10 (lowest resolution terrain) and then find the intermediate road on the terrain sub-

sampled by a factor of 5 before finding the final road on the original terrain. 

 

 

Figure 26 – The multi-resolution sub-sampling options dialog 

 

 

4.3 The sub-sampling problem 

 

The use of sub-sampling can lead to ‘detours’ (as we will see in section 5), ie. A road 

segment that we would expect to be nearly straight can now have bends in it. The severity 

of these detours depends largely on the factor that is used to sub-sample the terrain. The 

larger the sub-sampling factors the greater the detours usually are. 
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Figure 27 – Sub-sampling problem. 

 

The green line and points show the actual road on the high resolution terrain, but when 

sub-sampling comes into place, all the points in one region (see white/grey shading) are 

transformed into one point. This point is then used for the road finding for the low 

resolution terrain map (see the left side of Figure 27) and once the road has been found, 

the points are transformed back to the high resolution terrain map. These transformed 

points now lie in the centre of each region. This means that even though the road along 

those 2 segments would have been nearly a straight line, using sub-sampling we now 

have a 90 degree bend in the road. This produces the detours we can often see on roads 

found using sub-sampling. As the sub-sampling factor increases, the detours become 

more extreme due to the greater distance between the way points. 

 

 

5. Experimental Results and Comparisons 

 

5.1 Comparison of different single sub-sampling factors: 

 

Settings: Default gradient penalties, default direction change penalties, 16-adjacency, A* 

algorithm, diagonal distance heuristic. The road found with no sub-sampling is included 

for comparison. 
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Image 

Sub-

sampling 

factor 

Time 

taken 

Number of 

nodes 

visited 

Total Cost 

of Path 

No sub-

sampling 
2 min 32 s 70788 297.10 

3 992 ms 12581 423.76 

5 281 ms 8687 369.98 

10 266 ms 8869 315.41 

20 6 s 27122 362.50 

 

If we look at the above table, we can see the relative quality of the roads found using 

various sub-sampling factors compared to the road found using no sub-sampling. We can 
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see that as the sub-sampling factor increases, the smoothness of the road decreases. The 

roads found using sub-sampling factors of 5 and 10 produced reasonable roads, while the 

quality of the roads found using sub-sampling factors of 3 and 20 produced less satisfying 

roads. The road found using a sub-sampling factor of 10 produced the best one compared 

to the other sub-sampling factors in this case. Compared to the road found with no sub-

sampling, the road was found in only 266 ms instead of 2 minutes and 32 seconds, a huge 

improvement. It also visited only 8869 nodes (~12.5% of the nodes visited without sub-

sampling). The detour that sometimes occurs with rounds found using sub-sampling is 

due to the sub-sampling problem discussed in section 4.3. Also interesting to note are the 

differences in the running times of the various sub-sampling factors. Using a sub-

sampling factor of 10 proved to be the quickest, closely followed by factor 5, both being 

under the 300ms mark. Sub-sampling using factor 3 took nearly a second while sub-

sampling using factor 20 took longest at ~6s. The reason for the factors 5 and 10 being 

the quickest is that those sub-sampling factors are near the ‘optimum’ equilibrium sub-

sampling factor. Sub-sampling using factor 3 means that the road on the sub-sampled 

terrain contains more way points which lie close together on the high resolution terrain 

thus making the search between the way points very fast, ie. We do a lot of small 

searches. If we are sub-sampling at a factor of 20 we do the opposite, we do very few 

searches on the high resolution terrain since the distance between the way points is 

greater (see section 4.1). The other two sub-sampling factors, “5” and “10”, lie in 

between; the distance between the way points is moderately large and the searches on the 

high resolution terrain occur moderately often. 

 

5.2 Comparison of different algorithms: 

 

Settings: Default gradient penalties, default direction change penalties, diagonal distance 

heuristic, 16-adjacency. 



 27

 

Image 

Algorithm (& 

sampling factor if 

applicable) 

Time 

taken 

Number of 

nodes visited 

Total Cost of 

Path 

 

A* (with no sub-

sampling) 
14 s 21,720 222.47 

 

A* (with sub-

sampling factor 5) 
187 ms 7,431 428.99 

 

Iterative 

Deepening A* (no 

sub-sampling, 10% 

f(n) increase with 

each iteration) 

24 s 51,728 222.47 

 

Beam Search (no 

sub-sampling, 

beam width = 300, 

beam cutoff = 100 

23 s 27,190 294.66 

 

Beam Search (sub-

sampling factor 5, 

beam width = 300, 

beam cutoff = 100) 

203 ms 7,983 447.05 
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Retargeting Search 

(no sub-sampling, 

each search front 

visits 100 nodes at 

a time) 

218 ms 13,934 470.36 

 

From the above table we can clearly see that the A* algorithm with no sub-sampling 

produced the best road, having the smallest total cost. Using the A* algorithm with a sub-

sampling factor of 5 took a fraction of that time (only ~187 ms) and produced a 

reasonable road. The iterative deepening approach of the A* algorithm produced the 

same road as the normal A* algorithm but due to the additional iterations visited more 

than twice as many nodes and took ~10s longer to run. The performance of the iterative 

deepening A* algorithm (and the other algorithms) could be improved by refining the 

heuristic so that instead of just estimating the cost to the goal based on a flat surface 

would take the gradients into account as well. The Beam Search with no sub-sampling 

produced an interesting road in this example. The lower part of the road looks almost 

identical to the road produced by the A* algorithm but the upper half contains a “S” 

shaped curve in the road that has some similarity to real roads leading up a mountain, like 

some of the alpine roads in the European Alps (see Figure 28). Using the Beam Search 

with sub-sampling resulted in a road that is very similar to the road produced using A* 

with sub-sampling. This is due to the fact that we usually reach our current goal before 

the width of the beam is exceeded. The retargeting search produced a relatively poor road 

having the largest total cost, as expected, since the search fronts alternate often and 

always aim at the current best of the other search front. The ‘current best’ node appears to 

be the most promising node locally, but would make for a very poor choice globally. 
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Figure 28 - Passo Dello Stelvio, Italy, alpine road in the European Alps 

 
 
5.3 Comparison of different heuristics: 

 

Settings: Default gradient penalties, default direction change penalties, 16-adjacency, A* 

algorithm with no sub-sampling, diagonal distance heuristic. 

 

Image Heuristic Time taken 
Number of 

nodes visited 

Total Cost of 

Path 

 

Manhattan 

Distance 
10 s 19488 300.64 

 

Euclidean 

Distance 
18 s 24057 300.54 

 

Diagonal 

Distance 
17 s 23135 300.54 
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From the table above we can see that paths found using the different heuristics are 

virtually the same. In fact, the roads found using the Euclidean and diagonal distance 

heuristics are exactly the same while the road found using the Manhattan heuristic is only 

marginally worse. Since we are using 16-adjacency, the only heuristic that is admissible 

is the Euclidean distance, that is, it is the only one that never overestimates the minimum 

cost to get to the goal node and thus is guaranteed to find the shortest road. Both the 

Manhattan distance and diagonal distance heuristics tend to overestimate the minimum 

distance to the goal node, with the Manhattan distance heuristic usually overestimating 

by a much larger amount compared to the diagonal distance heuristic. Using an 

inadmissible heuristic means that we may not get an optimal solution but it has the 

advantage that the search visits fewer nodes and thus takes a shorter time to run. This can 

be observed from the above table; the road found using the Manhattan heuristic took only 

10 seconds to run while the other heuristics took 7-8 seconds longer. It can also be seen 

that the search guided by the Manhattan heuristic visited approximately 4,500 fewer 

nodes than the search using the Euclidean distance heuristic and approximately 3,500 

fewer nodes than the search guided by the diagonal distance heuristic.  

 

 

5.4 Comparison of different sub-sampling techniques: 

 

Settings: Default gradient penalties, default direction change penalties, 16-adjacency, 

diagonal distance heuristic. 
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Sub-sampling Type No sub-sampling Single sub-sampling Single sub-sampling

Image 

  

Factor(s) None 5 10 

Time 12 m 34 s 1 s 9 s 

Nodes visited 146,772 20,882 36,534 

Total Cost 534.71 614.07 580.65 
 

Sub-sampling Type Multi sub-sampling Multi sub-sampling Multi sub-sampling 

Image 

   
Factor(s) 5, 10 3, 5, 10 3, 5, 10, 15 

Time 1 s 484 ms 437 ms 

Nodes visited 21,029 18,695 21,546 

Total Cost 641.63 717.28 1040.13 

 

From the two tables above we can clearly see the difference between sub-sampling and 

no sub-sampling. The road finding took approximately 12 ½ minutes using no sub-

sampling, visiting almost 150,000 nodes in total, as opposed to the roads found using the 

various sub-sampling options taking at most several seconds and visiting a fraction of the 

nodes. This performance increase comes at a cost; the quality of the roads found using 

sub-sampling is lower than roads found using no sub-sampling. Without sub-sampling, 

the road found leads around the ridge as this was the cheapest option with a cost of 

534.71 while all the roads found using sub-sampling led directly over the ridge. The best 

sub-sampling option in this experiment was to use single sub-sampling (factor 10) 
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resulting in a reasonable road with a cost of 580.65. This road is slightly more expensive 

than the optimal road (approximately 8.6% more expensive), but the road was found in 

only 9 seconds. The roads using multi-resolution sub-sampling were found even faster, 

but resulted in worse roads. The more intermediate resolutions we use the faster the roads 

are found but also the worse the quality of the roads get. We must realize however that if 

we use too many resolutions, then we may spend more time on sub-sampling the terrains 

than on the actual searching. We can see from the above table that the road found using 4 

additional resolutions resulted in a poor path that is almost twice as expensive as the 

optimal road. The more resolutions we use, the larger the sub-sampling factors get which 

result in the detours caused by the sub-sampling problem described in section 4.3. 

 

 

5.5 Comparison of different gradient penalty functions: 

 

Settings: Default direction change penalties, 16-adjacency, diagonal distance heuristic, 

A* algorithm. 

 

The following gradient functions are compared against each other. Gradient function #1 

uses a linear function to calculate the gradient penalty multiplier whereas gradient 

function #2 uses a non-linear approach. Gradient Function #2 is more realistic as it treats 

all gradients up to 30 degrees with the same cost and everything above it as very 

expensive, thus making that node an unlikely successor for the A* algorithm. This is to 

reflect real road building where we usually have a maximum gradient (see section 3.3.1). 

Gradient Function #1 favors small gradients too, but doesn’t penalize steep gradients as 

much. 
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5.5.1 No sub-sampling: 

 

Gradient Function Gradient Function #1 Gradient Function #2 

Sub-sampling Factor(s) No sub-sampling No sub-sampling 

Image 

  
Time 1 m 40 s 7 s 

Nodes visited 49,753 15,467 

Total Cost 350.02 145.45 

 

From the two images in the above table we can see that roads found do not differ by a 

large amount. Both roads found that it was cheaper to move around the ridge than to 

move over it. Because the total costs are heavily influenced by the gradient penalties, we 

cannot make a direct comparison between the total costs of the two roads. We can see 

that there is a significant difference in the time taken and the nodes visited between these 

two gradient functions. The linear gradient function (gradient function #1) visited more 

than three times as many nodes as the non-linear gradient function and as a result took 1 

minute and 40 seconds to find the road compared to just 7 seconds. Using large penalty 
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multipliers for gradients above a certain threshold can reduce the size of the search space 

since it is now very expensive to visit a node that requires the traversal of a road with a 

large gradient. This makes the node unlikely to be visited. 

 

 

5.5.2 Single sub-sampling: 

 

Gradient Function Gradient Function #1 Gradient Function #2 

Sub-sampling Factor(s) 10 10 

Image 

  
Time 4 s 1 s 

Nodes visited 22,346 10, 246 

Total Cost 439.88 219.97 

 

We can see that the roads produced by the two gradient functions using single sub-

sampling are less similar than the roads we saw above using no sub-sampling but still 

have some common features: both roads cross the ridge at approximately the same 

location and have turns at similar locations too. The major difference is that the turns are 

more exaggerated using the non-linear gradient function. The reason for that is that when 

the road finding between the way points on the original terrain occurs, the algorithm 

encounters a gradient which is above the threshold thus making it expensive to visit. This 

means that the algorithm will attempt to find a road to the current goal node avoiding the 

path using the steep gradient. This results in the detours we can see in the image above. 

The more expensive we make steep gradients, the longer the detours can get as it will be 

cheaper to make a long detour then moving up the steep gradient. It is also worth noting 

that the road using the non-linear gradient function was found in 1/4th the time of the one 

using the linear gradient function and also visited only ½ as many nodes. 
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5.5.3 Multi-resolution sub-sampling: 

 

Gradient Function Gradient Function #1 Gradient Function #2 

Sub-sampling Factor(s) 5, 10 5, 10 

Image 

  
Time 344 ms 282 ms 

Nodes visited 11,499 8,877 

Total Cost 490.76 329.33 

 

As we have seen with single sub-sampling (section 5.5.2) and no sub-sampling (section 

5.5.1), the roads found using the non-linear gradient function (function #2) visited less 

nodes, resulting in a performance increase at the cost of introducing more turns and 

detours. The performance increase in this case however is not as large, with the road 

found using the non-linear gradient function being approximately 22% faster and visiting 

approximately 30% fewer nodes than the road found using the linear gradient function 

(function #1). The road found using the linear gradient function however looks better but 

uses steep gradients more often making it less realistic. 

 

 

6. Future Work 

 

There are many additions that could be made to improve the quality of the roads, improve 

performance and allow for more realism. Some additions that could be made are: 

 

• Terrain Types 

In addition of just taking gradients into account when finding the path on a digital 

terrain map, we could allow for different terrain types. Using different terrain 
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types we could for example differentiate between water (lakes, rivers etc.) and 

earth which would affect the road finding process. Water crossings could be made 

more expensive, so that, just like in the real world, we would build a road around 

a lake and not build a bridge across it. It could also be useful to define swamp, 

forest terrain types etc. as these would also affect the road finding process. It may 

not be economically or environmentally feasible to build a road through a dense 

forest or swamp. F. Markus Jönsson [1] used different terrain types for his path 

finding paper where vehicles (in particular tanks and defense force vehicles) 

move from one location to another while following existing roads if possible and 

avoiding enemy units. 

 

• Unrestricted Movement 

To improve realism and to achieve smoother looking roads we could allow 

movement in any arbitrary direction, not just the predefined directions used by the 

4-, 8- or 16-adjacencies used in this report. Since we are using a digital terrain 

map, which has discrete data, several questions arise. For example how do we 

calculate the height at any arbitrary point and the gradients in any direction? 

 

• Smoothing with Bezier curves 

To achieve even smoother looking curves and to reduce the ‘aliasing effect’ that 

occurs during sub-sampling we could use Bezier curves. This process would take 

place after the road has been found. 

 

• Heuristics in 3 dimensions 

If we are using gradient penalties (ie. we are making the road building more 

expensive on non-flat terrain) then the heuristics tend to underestimate the 

minimum cost to reach the goal more than if we were using no gradient penalties. 

This is because the heuristic functions do not include the height differences in the 

calculations. As mentioned previously, the more the heuristic underestimates the 

more nodes are being visited which as a result increases the running time and 

memory requirements. Improving the heuristics so that they estimate the 
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minimum cost to the goal node taking the height differences and gradient 

penalties into account as well would reduce the amount of underestimating taking 

place. As a result fewer nodes would get visited, thus potentially speeding up the 

search and reducing memory usage. 

 

 

7. Conclusion 

 

We have seen that finding a road between two points on a digital terrain map, which is an 

approximation of a real terrain, can take a considerable amount of time and memory 

using the standard A* algorithm. We have defined additional constraints which affect the 

cost function in order to increase the realism of the roads. An example are the gradient 

penalties which can be used to favor roads with low gradients just like real road building 

where we often have a maximum allowed gradient. We have introduced variations of the 

A* algorithm in order to address the time and memory issues, in particular the Beam 

Search variation which imposes a maximum size on the open list which as a result 

reduces the amount of memory required to store the open list and also makes operations 

on the open list faster. The Beam search variation does not find an optimal solution as it 

sometimes removes a node which is currently the least promising node to reach the goal 

but would have been the node along the shortest road. It is also not complete so that it 

may not find a road at all. The only variation that significantly reduced the running time 

of the road finding was the retargeting approach but the roads produced by it were 

generally of very poor quality. A more drastic improvement on running times and 

memory requirements was obtained by sub-sampling the original terrain, resulting in a 

large reduction in the size of the search space. The road finding takes place on the sub-

sampled terrain and after the road is found, all the points along the road are transformed 

back to the corresponding locations on the original terrain. We then find the road between 

each consecutive pair of the road points. We have seen that the roads produced using a 

sub-sampling factor of 5 and 10 produced the best results taking the quality of the road 

and running time into account. Using smaller sub-sampling factors often increases the 

quality of the road but also takes longer since the sub-sampled terrain is still relatively 
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large. Using large sub-sampling factors (>10) do not improve the running time since the 

distance between 2 way points on the original high resolution terrain is relatively large. 

The quality also degrades due to the sub-sampling problem discussed in section 4.3. We 

have also introduced multi-resolution sub-sampling which uses intermediate resolutions 

between the high and low resolutions. The motivation behind multi-resolution sub-

sampling is that we can increase the performance when using large sub-sampling factors 

so that the distances between the way points is reduced by using an intermediate 

resolution before going back to the high resolution terrain. Multi-resolution sub-sampling 

also suffers from the sub-sampling problem (see section 4.3) which can now occur for 

every sub-sampled resolution used. The performance gain from using multi-resolution 

sub-sampling over single sub-sampling is usually not very significant but the loss in the 

quality of the road is significant. Thus the use of multi-resolution sub-sampling is only 

appropriate on large high resolution terrains. 
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Appendix 

 

Running Instructions: 

 

Note: The skin that is being used in this program is still in the development stage, so it 

has some bugs. Sometimes the components are painted incorrectly. The skin is enabled 

by default but can be disabled when the program is started. 

 

To run the program with the skin enabled: 

Type “java RoadTool” in the command prompt. 

To run the program with the skin disabled: 

Type “java RoadTool -skin” in the command prompt. 

 

Once the program has started, a terrain can be loaded by clicking on “File” and then 

“Open”. A dialog will appear prompting for the selection of a file. It is considerably 

faster to load the terrain if it is stored on the local hard drive rather than a network drive. 

Once the terrain has loaded, the selection of the start and end points can be made and the 

road finding can begin by clicking on “Search” under the “Search” item in the menu bar. 

Note that for long paths with no sub-sampling, the search can take a long time. The 

search can be cancelled at any time by clicking on “Cancel Search” under the “Search” 

item in the menu bar. 

 

Terrain data information: 

 

The terrain files are height maps stored as raw files; the terrains have a file extension of 

‘.raw’. The terrain files are 8-bit grayscale values thus allowing values from 0 to 255 for 

each pixel. The values are stored row after row. Since the terrain files are stored as raw 

files, and contain no file header, they contain no information on the size of the terrain or 

its dimension. This information needs to be recorded externally. All the supplied sample 

terrain files have a dimension of 300 by 300 pixels. If a terrain is used with dimensions 

different from the default 300 by 300 dimension, then a minor change has to be made in 
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the source code so that the loading of the terrain works for this dimension. How to load 

terrains with dimensions other than the default 300 by 300: 

1. Open the “HeightMap.java” file 

2. Change the variables “width” and “height” to the dimension of the terrain file 

to be used. 

3. Save the file. 

4. Compile the file (eg. “javac HeightMap.java”). 

5. Run the program. 

 

Screenshots: 

 

 

Figure 29 – Path between two points and the 
search space (ie. Nodes visited). 

 

Figure 20 – Path found between two points on a 
slope with a steady gradient. 
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Figure 31 – Path through flat terrain with hills 
(16 adjacency, A*, no sub-sampling). We can see 

the algorithm avoided going up the hills; it is 
always cheaper to go around them. 

 

 

Figure 32 - Path through flat terrain with hills 
(16 adjacency, A*, no sub-sampling). The Search 
Space is also displayed. We can see that nodes up 
a hill were never visited as it was always cheaper 

to visit nodes along the flat surface. 

 

 

Figure 33 – The main window of the road tool application with the search menu shown. 
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