
SEMI-AUTOMATIC HIGH-QUALITY RECONSTRUCTION
OF THE HEART PATHOLOGY FROM MRI DATA BY

DEFORMABLE MESHES

By: Bo Li
Supervisor: Burkhard Wuensche

 January 2004

 2

CONTENT

Abstract ... 3

1. Introduction... 3

2. Background... 4

2.1 Introduction of the toolkit from previous program 4

3. Active Contour Models (B-Spline Snakes)... 5

3.1 Introduction to B-Spline Snakes .. 5

3.2 The implementation of the B-Spline Snake ... 7

3.3 A simple test case for BSpline class .. 13

4. Radial Basic Function ... 15

4.1 Introduction to the Radial Basic Function .. 15

4.2 Implementation of the Radial Basic Function...................................... 17

4.3 The Analysis and comparison of two different ways to implement

The Radial Basic Function in my application ... 17

5. Sample test case for my application.. 22

5.1 Re-arrange the control points to form the closed B-Spline curve 22

5.2 Test case: Constructing the Pelvis of the human body 23

5.3 Contained problem and further improvement of my application 26

6. Conclusion and further research ... 26

Reference .. 27

 3

Abstract

In this project we investigated and developed a semi-automatic method for the
high-quality reconstruction of the heart pathology from MRI data. Traditionally
heart pathology is constructed by tracing contours on individual MRI slices by
hand. However, for a clinical set-up medical experts require a fast and reliable
technique to trace contours automatically or semi-automatically. In a previous
project we have developed a tool, which uses a basic soft object model in order
to enable users to quickly approximate the heart pathology. In this project we use
B-Spline Snakes to adjust the approximate shape obtained with the soft object
model so that it will automatically fit the heart contours in every individual MRI
data slice. We then reconstruct the heart pathology by using Radial Basic
Functions and a Marching Cubes Algorithm. Our results show that the technique
offers a fast and convenient way for the effective modelling of organ shapes from
medical image data sets.

Keywords: Soft Object Modelling, 3D Marching Cubes, Active Contour Model (B-
Spline Snake), Radial Basic Functions.

1. Introduction

In order to construct a high-quality model of the heart shape, medical experts first
analyse the heart pathology from every individual MRI data slice and find the
exact contour in each of them, and then construct the heart pathology again by
fitting a B-Spline surface to the contours taken from MRI data. Currently people
in the medical school trace the contour of the heart pathology in each slice by
hand, although this is a choice to detect contour on each slices, it’s not only very
unreliable, but also very time-consuming. As people should spend a lot of time to
trace the contour of the heart pathology slice by slice, and if the final model is not
look like what it expected to be, the researchers have to trace again by hand,
also it increases the difficulty for researcher to determine the reason why the final
model is not correct. So a fast and reliable technique is expected to trace the
contour of the heart model precisely and constantly.
In order to find a solution to these problems, I firstly use Soft Object Modelling
technique to provide some generic Soft Object models in a 3 dimensional
environment, so that users can use these models to approximate the shape of
the heart combining the generic models (the reason to this is that approximately
fitting generic models to the contour is much easier than tracing the contour by
hand). After an approximate model of the heart is created, I work out the
intersection of the approximate model with the data slices, then I implement the 2
Dimensional Marching Cube to get the interpolate points of the model in each
slices. With the help of these interpolate points, I can simply form a closed B-
Spline, then I adjust the closed B-Spline to make it exactly fit the contour of the
shape at each slices (using B-Spline Snake technique). For the last step, I take a
constant number of sample points in every closed splines at each slices and
assign different field values to them. With the help of these sample points and

 4

field values, I reconstruct the model of the heart pathology so that its surface
goes though all the sample points (using Radial Basic Function and 3D Marching
Cubes).
In this report, I will:

- describe the environment and soft object models from my previous
project, also some bugs I fit in the previous code and some new
function I added to the previous toolkit

- introduce the B-Spline Snake technique for minimising the energy in
the spline which can adjust the spline to exactly fit the contour in every
image slices

- introduce the Radial Basic Function for creating a 3 dimensional
continue field area by using the sample points provided (Combine this
result with the Marching Cube can derive a significant smooth 3D
model which pass though every sample points)

- describe the problems I met and solved when I was implementing the
B-Spline Snake and Radial Basic Function in my program

- introduce some further improvement of the currently project (For
example using deformable meshes instead of Radial Basic Function to
represent the adjusted closed B-Splines)

2. Background

2.1 Introduction of the toolkit from previous program

The definition of Soft Object Modelling technique is that we define Soft Object
models as iso-surface of a density field, which is defined as the sum of distance
functions to samples’ geometric primitive. A surface is implied by taking an iso-
surface through this density field - the higher the iso-surface value, the nearer it
will be to the skeleton.
In the previous project, I have implemented the Soft Object Modelling technique
to create some generic models in a 3D environment, e.g. Generic Sphere (Soft
Ball), generic cylinder (Soft Line), generic cone (Soft Cone), and generic curve
(Soft Curve). I have also added some useful functions to the toolkit so that users
can simply control and adjust the generic models by using mouse and keyboard,
for example changing the radius of the soft object model, adjusting the position of
the skeleton of the soft object model, and so on and so force.
The user interface of the program created in my previous project is shown in the
Picture 2.1.1.

 5

Picture 2.1.1: Program from previous project

According to the picture of my previous program in picture 2.1.1:

- The red bar in the bottom is used to adjust the size of the selected soft
object. For example, adjust the radius of the soft sphere.

- The Add button in the top left is a button which will pop up a menu,
where user can select the soft object model from.

- The Modify button next to the Add button is the button to switch the
display mode of the program.

- The Adjust button is used to modify the selected soft object. For
example, start the process which uses B-Spline Snakes and The
Radial Basic Functions to reconstruct the model.

More detail about the control of the program I made can be found in my previous
report [5].

3. Active Contour Models (B-Spline Snakes)

3.1 Introduction to B-Spline Snakes

This section presents an overview of one popular active contour model: B-Spline
Snakes, which is very useful for detecting and tracking the region in an image.
Snakes were first introduced in 1987 by Kass [1] et al, and have become popular
since then. Technically, a Snake is an energy-minimizing spline guided by
external constraint forces and influenced by image forces that pull it toward
features such as lines and edges. With the help of this energy-minimizing spline,
people can successfully use snakes for interactive interpretation, in which user-
imposed constraint force guide the snake near features of interest. Snakes can
also be successfully used to solve some problems including detection of edges,
lines, and subjective contours, and so on. In this project, I use B-Spline Snakes

 6

to detect the contour of the heart pathology on each slice, and accurately allocate
the closed B-Spline on the contour. In the rest of this section, I will briefly
introduce the theory of the B-Spline Snake, and in next section I will explain the
steps I implement B-Spline Snake and problems I met when I was implementing
it.
As we mentioned above: a Snake is an energy-minimizing spline guided by
external constraint forces and influenced by image forces that pull it toward
features such as lines and edges, we need a energy function to make the snakes
towards the lines and edges, so the energy function of the B-Spline Snake can
be made up of 2 parts: internal constraint forces, external constraint force.
The internal constraint forces of the spline serve to impose a piecewise
smoothness constraint, it depends on the intrinsic properties of the spline, and
normally it is the sum of the elastic energy and bending energy of the spline.
Minimizing both the elastic energy and bending energy can lead to a smoothed
spline.
The external constraint forces are responsible for putting the snake near the
desired location. These forces are derived from the image data itself. In this
project, I use the intensity gradient at each pixel as the main extrinsic force of the
B-Spline Snake, but the original image data should be smoothed by Gaussian
filter first. The reason for importing the Gaussian filter to the external force is that:
the data in the original images are always discontinuous, if part of snakes finds a
low-energy image feature, the spline term can not pull the neighbouring parts of
the snake toward a possible continuation of the feature. So if we spatially
smoothing the image data by Gaussian filter to make it continuous, the whole
snake will toward to the low-energy feature of the image.
According to the description above, we represent the position of the snake
parametrically by v(s) = (x(s), y(s)), then the energy function of the B-Spline
Snakes is:
For internal constraint forces:

Formula 3.1.1: the equation for calculating internal force in the Snake

Note: both α(s) and β(s) here are the weights of the elastic force and the bending
force in the internal energy. Adjusting the weights α(s) and β(s) controls the
relative importance of the elastic force and the bending force.

For external constraint forces:

Formula 3.1.2: the equation for calculating bending force in the Snake

21 () | |
2elastic sE s v ds= α∫

s

21 () | |
2bending ss

s

E s v ds= β∫
2 2

int
1 | | | |)
2elastic bending s ss

s

E E E v v ds= + = (α +β∫

(())ext image
s

E E v s ds= ∫ 2(,) | ((,)* (,)) |imageE x y G x y I x yσ= − ∇

 7

The final energy function is:

Formula 3.1.3: Snake’s energy function

Note: here is also a weight for external forces, adjusting that weight control the
relative importance of the external forces in the total energy of the snake.

3.2 The implementation of the B-Spline Snake

According to the B-Spline Snake introduction above, I will describe how I
implement the Snake in my project, what problems I met when I was importing it,
and how I solved these problems in the following words.
The B-Spline Snakes technology I introduced so far is still in the part of energy
function, this is not enough, because working out the energy of the current status
of the B-Spline doesn’t mean that we make the B-Spline reach the minimum
energy feature of the image, In order to implementation the B-Spline Snakes
technology, not only I need to correctly implement the energy function (described
above), I also need to implement the adjusting method of the B-Spline. The
Adjusting method is the method my program used to make the original B-Spline
regularly moved toward the edges in the image, this method is very inconsistent,
different people can implement it differently, but the main idea is that my program:

- regularly adjust the control points of the B-Spline
- work out the energy of the adjusted status of the B-Spline
- compare the current energy with previous energy, if current energy is

less, start from the current status and keep on adjusting, otherwise, do
the adjusting again from previous status

These 3 steps will be kept on going until the minimum energy status is found.
I will introduce my implementation of the energy function and adjusting method in
the following, and at last I will also provide a simple test case to display how
efficient my implementation is.
I create a class called BSpline to implement all the basic functions a B-Spline
Snake should have. For a simple B-Spline Snake, it should have some functions
for importing the initial data, for example the initial control points of the B-Spline
and the sample image data the Snake going to look at. A Snake also need some
constant functions to work out its total energy and automatically adjusting itself to
minimize the total energy. Finally, the Snake should also need to return the
sample points in the adjusted B-Spline back, so that they can be used to
construct the model. The general structure of the BSpline class is in the following
picture:

int intsnake ernal external constraE E E E= + +

 8

Figure 3.2.1: The Structure of the BSpline Class
From Figure 3.2.1 above, we can notice that a BSpline instance is made up of 4
parts: Initializing Methods, Energy Function Derivation, Adjusting Methods and
Result Derivation.
Initializing Methods are some methods for importing the control points of the
initial B-Spline and the path of the image data from current directory. These
methods are called whenever a new instance of BSpline is created. The control
points will be stored in a constant variable of the class, and the image data
should be smoothed by a Gaussian filter first before stored into the instance.
Energy Function Derivation and Adjusting methods are used to implement the
energy function of the Snake and adjust the B-Spline depend on the total energy,
these two parts will be explained in detail in section 3.2.1 and section 3.2.2 in the
following.
The main reason why using BSpline class is to use it to adjust the initial B-Spline
and make it fit the edges in the image, then return the final B-Spline back. So the
Result Derivation processes are used to work out the sample points of the B-
Spline, a collection of these sample points in 3D can be used to construct the
accurate model describe in image data slices (in my program, the result
derivation process is going to choose 20 sample points on each B-Spline,
explained in section 3.2.3).

3.2.1 The implementation of the energy function

The getEnergy() method which calling the getInternal() and getExternal()
methods is the implementation of the energy function in the BSpline class. In
BSpline class, I assume the initial curve is a uniform B-Spline curve, so the
parametric equation of B-Spline curve is:

 9

() ()
()

()⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
−
−

=

34
2

2
**

6
1

4

t
tv
tv
ttt

tB

() ()∑
−

=

+−=
1

0

4 3
n

i

i itBPtP

43
32
21
10

<≤
<≤
<≤
<≤

t
t
t
t

() ()4*6**3 +−= ssssssv
 Formula 3.2.1: The equation of uniform B-Spline curve

According to the formulas of the internal constraint forces in previous section, the
way I work out the integration of elastic force and bending force in the Snake is
by dividing the whole curve into a constant number of curve segments depending
on the parameter t in the formula above. So the elastic force is the integration of
elastic force in each curve segment which can be worked out by inputting the
length of the curve into the elastic force formula. For the bending force is a bit
tricky, because it requires the first derivative of the uniform B-Spline curve above
other than the formula itself. So I pre-calculate the first derivative of uniform B-
Spline by hand and hard code it in the BSpline class, the first derivation formula
is in the following:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−
−

−−
=

+−=∑
−

=

2

2

'
4

1

0

'
4

)4(*3
)2(

)2(
*3

6
1)(

)3()(

t
tv

tv
t

tB

itBPtP
n

i
i

)129()(2 sssv −=

43
32
21
10

<≤
<≤
<≤
<≤

t
t
t
t

Formula 3.2.2: The first derivative of uniform B-Spline curve

For calculating external constraint forces of the Snake, I first use Gaussian
function to smooth the image data and then I compute the intensity gradient of
the image data. The higher the gradient is, the smaller the external energy forces
of the Snake.
The Gaussian filter is defined as:

Formula 3.2.3: 2D Gaussian Function

The distribution of this Gaussian filter is shown in Picture 3.2.1.1

 10

Picture 3.2.1.1: The distribution of 2D Gaussian filter

The smoothing process with Gaussian filter is though a 3 by 3 matrix, so applying
this matrix to every pixel of the image data will obviously smoothed image data.
The 3 by 3 matrix from Gaussian filter is defined as following

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

006.0
027.0
044.0

,
,
,

027.0
121.0
199.0

,
,
,

044.0
199.0
329.0

Figure 3.2.1.1: The 3 by 3 matrix created by Gaussian filter

And the pictures before and after the Gaussian filter are illustrated in the picture
3.2.2:

Picture 3.2.1.2: Pictures before and after Gaussian filter

So we can find that using this smoothed image to calculate the intensity gradient
of the image is more accurate than the initial image, because this can simply deal
with some annoying problems caused by some noise in the image like the picture
on the left above. For the noisy image above, if we skip the step of smoothing it
by Gaussian filter and do B-Spline Snake directly, the final curve of the Snakes
can not fit the edges in the image, as they are not lead towards it.

 11

With the smoothed image data (picture on the right), I simply work out the
intensity gradient for a point, says (x0, y0), by summing the pixel value difference
between point (x0, y0) and points around it, (in here I take 4 points which are in
just left, right, top and bottom of the point (x0, y0)). The formula for work out the
intensity gradient is in figure 3.2.1.2:

)),(),,(),,(),,(max(),(1111 nnnnnnnnnn yxvyxvyxvyxvyxI ++−−=
22)()(),(nn yyxxyxv −+−=

Figure 3.2.1.2: the formula for computing intensity gradient

After worked out the internal constraint forces and external constraint forces, I
work out the total energy by sum them up with weights, the weight for internal
forces in my program is 100, and the weight for external forces is -0.0002.

3.2.2 The implementation of the Adjusting Methods

The purpose of adjusting the original B-Spline is to make the spline track the
edges in the image so that the minimum energy of the spline is achieved. The
basic processes of doing that is keeping on changing the position of every one of
the control points which define the B-Spline until the minimum energy spline is
achieved. Because the minimum energy of the spline in the image is unknown
and the direction of moving each control point is totally random, all these
conditions increase the variability and difficulty of fitting the original B-Spline
curve into the edges. So a constant and efficient solution to make the original
curve trend to the edges is required.
The main idea of my adjusting method is that I apply a move to control point one
after another, because changing position of one control point in B-Spline can
lead to a change of other parts of the curve, these moves are put into a loop until
the minimum energy of the curve is achieved. The following paragraph describe
the adjusting method in detail.
Applying a correct move to a control point is really random and complex, as I
need to specified the direction of the move and the distance of the move, also
although the control point is in the position of the high intensity gradient, the
curve may not pass though the edges we expected in image. So I could only
apply a move of the control point to trend to the position we expected each time.
I start defining a move for a specified control point by finding the approximate
direction and distance of the move. This process is implemented in the
getClosestStep(CVec3df p) method. In this method, I wrote a program to find
the position of the point p in the image first, then I started a search in a 9*9
square area with position p in the exactly centre. This search is in order to find
out the highest gradient point in this area, says q. Finally this method will return a
SPoint class which is the vector from point p to q. With the help of this SPoint
instance, I can work out the initial distance by taking the length of the vector and
initial direction by taking the direction of this vector. Following picture describe
the process of getClosestStep(CVec3df p) method:

 12

Picture 3.2.2.1: Picture of deciding the initial info for a move
After I get the SPoint instance from getClosestStep(CVec3df p) method, I still
can not use its length and direction as the content of a move. Because whether
point q from image can represent the minimum energy point of previous 9*9
square areas can be determined only depending on the whether the energy of
the curve is minimum compared with some other points in this area. So I take 7
other points which can form a circle with q, whose centre is p. as shown in figure
3.2.2.2:

Picture 3.2.2.2: Picture of deciding the initial info for a move

After working out the 7 other positions, I assign the specified control point
mentioned before to these points and point p (in total 9 positions) one by one and
work out the energy of the curve for each one of them. Finally, the position with
lowest energy is the position of the move for that specified point.
The processes of deciding a move mentioned above will be apply to every
control points in the curve one after another. In order to make sure the curve
created after moving all the control points is the curve with minimum energy, I put
the whole processes before into a loop, which will stop until all the move
positions for the control points are themselves (this mean the control points don’t
need to be changed).

3.2.3 Result Derivation processes

Although the Result Derivation processes looks very simple (as it just takes a
constant sample points from the final curve, assign field values to them, and
return them back), it’s quite complex when I am implementing it. There are
basically 2 problems:

 13

1. The distance between every 2 sample points is supposed to be constant.
This is quite hard to achieve, because it’s quite hard to get a constant
number of points in the B-Spline with constant distance between them.
Even if we get these points, it’s quite hard to work out the distance
between them on the curve as well.

2. After I get a number of sample points from the curve and assign the field
value of them to 0. However, zero-valued sample points are not enough to
create subsequent surface for fitting process by Radial Basic Functions
(mentioned in the following), I also need positive-valued and negative-
valued sample points. For each sample point, I create 2 other points, the
line formed by which is perpendicular to the curve on the position of
corresponding sample point. After I get these 2 points for each sample
points, I should decide what field values I need to assign to them, positive
or negative. This is the second problem. As I want to assign positive value
to the point inside the closed curve, and negative value to the point
outside the closed curve.

The way I deal with the problem 1 is by specifying the value of parameter t to the
B-Spline in sequence, and the difference between every continue t is the same.
Although this way of taking sample points doesn’t help too much, it can still
create a list of sample points on the edges in sequence, which can be used to
identifying the contour of the model.
There are basically two ways I attempt to solve problem 2:

• Method one, I work out the vector which is perpendicular to the curve at
the sample point, and then determine two points which correspond to this
sample point by adding and subtracting the vector from the sample point.
While applying field values to them, I separate this case into situations, for
example, if the sample points is taken from clockwise, then the point on its
right is assigned to positive and the point on its left is assigned to
negative. This way of assigning field values to sample points worked very
well for all my test cases, but I am not sure whether it will still work if the
case get much more complex.

• Method 2, I simply use the points on the skeleton of the initial soft objects
as positive sample points. The benefits of this method are:

o Directly derives the positive sample points from the skeleton of the
soft objects other than starting a search to detect other sample
points.

o Produce less sample points than before, more efficient.
The comparison of the above two methods will be shown in detail in section 4.3.

3.3 A simple test case for BSpline class

In order to check the performance of the BSpline class, I have created a small
program which acquires a BSpline instance to adjust the original B-Spline curve
and make it detect the edges of an ellipse in the middle of the image. Because I
just want to test how efficient and effective BSpline class is, so one initial curve
and one image is enough. In this small program, the original B-Spline curve is

 14

formed by 17 control points and the position of them are defined by me, so that I
can make sure the initial curve is far away enough for checking. The original B-
Spline curve and image data in this small program are in the following picture:

Picture 3.3.1: The initial curve and image data of the test case

I have also modified the some parts of the codes in this small program compared
with the final program I handed in. Other than asking the adjusting processes to
keep on running until the final curve is achieved, I assign this task to the “j”
button in the keyboard, so every time users click the “j” button, it will adjust every
control point only once, users will get the final curve after several attempts of the
“j” button. With the help of this “j” button, I can clearly find out how the initial
curve be adjusted to match the edges of the ellipse in the image. The process of
these adjusting is in the following pictures:

Picture 3.3.2: Processes of adjusting the initial curve to match the edges

With the pictures above, we can notice that the final curve is in the middle of the
image and matches the contour precisely.

 15

4. Radial Basic Function

Until now, with the techniques mentioned before, I can precisely get the sample
points in the edges of each data slices together with some field values. Like the
picture below:

Picture 4.1: Sample Points from data slices
Note: In the above picture, the yellow points are sample points directly taken from the final curve
of each data slices and their field values are zero, red points represent points with positive field
values, blue points represent points with negative field values.

With this set of zero-valued points and non-zero-valued points, I need to
construct a 3D model, whose surface will pass though all the zero-valued points.
This raises a problem to interpolate a set of scattered data.
In this section, I will presents an overview of a popular interpolation and
reconstruction method from the field of scientific visualization – Radial Basic
Function, and I will show how Radial Basic Function can be applied to solve the
problem of interpolating scattered sample points in my application. In the
following parts of this section, I will:

• briefly introduce the Radial Basic Function theory
• introduce how I implement it in my program
• introduce a sample test case and some contained problems currently in

my program of this part

4.1 Introduction to the Radial Basic Function

Radial Basic Functions are used to reconstruct a continue function f(x) from a set
of pairs of points and field value pairs, Like {(X1, f1), (X2, f2), (X3, f3), (X4, f4)… (Xn,

 16

fn)}, where Xi represents the position of the sample point in 3D, and fi represents
the field value corresponding to that sample point. The 3D interpolation of the
field at the given sample points using Radial Basic Functions is defined as:

() ()() ()

() ()∑

∑

=

=

=

+=

m

j
jjm

m

n

i

ii

xpxp

xpxdRxf

1

1

β

α

Formula 4.1.1: Scattered data interpolating method

For the formula above, the basis function R (di(x)) is a non-negative function with
the distance function di(x) as the input, which represents the distance between
point x and the sample point Xi .For my application, I choose The Radial Basic
function

() iiii rrrrR log**=
Formula 4.1.2: The definition of Radial Basic Function

For the polynomial part of the interpolating method above, it defines some
polynomial basic of degree at most m, where variable m is a fixed value
determined by the number of the sample points I take from previous parts. In my
application, I specified the polynomial part in the form of p(x) = c1 + c2x + c3y +
c4z.
With the formula mentioned, sample points and sample field values above, we
can substitute them into the formula f (xi) = fi in order to work out the coefficients
of the Radial Basic Function.
For the purpose of better understanding the interpolating method above, I can
also write the formula in matrix form as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
f

c
B

c
P

P
A
T

λλ

Formula 4.1.3: Interpolating method in matrix format

Where

• A is an n*n matrix with n equals to the number of the sample points.
Aij = R (di (xi)), where di (xi) represents the distance from point i in the
sample points to point j.

• P is a matrix with n rows of (1, xi, yi, zi).
• And λ and c are matrixes of coefficients which I need to work out before I

do the interpolating processes.

So after substituting the sample points and sample field values into the matrix
above, it will lead to linear system of n+m equations, and I can simply work out
the values of the coefficients by using the LUSolver[4].

 17

The LUSolver [4] is a tool which implements the LU decomposition algorithm in
order to work out the coefficient part of the Radial Basic Function. LU
decomposition is a procedure to decomposing an N*N matrix into a product of
a lower triangular matrix and an upper triangular matrix :

The introduction of LU decomposition can be found in [4].

4.2 Implementation of the Radial Basic Function

The procedure of analyzing the sample points on the edges and creating a 3D
model passing though all the sample points is getting simpler if I split this task
into 4 steps in my application:

• Write an algorithm, which will work out the distance between every 2
sample points and form the B matrix part in formula 4.1.3.

• Use the B matrix and a matrix of field values to form the Radial Basic
Function equation.

• Use LUSolver algorithm to work out the coefficient of the equation (U part
of the LUSolver).

• Write an algorithm which recalculates all the field value in the working
environment by Radial Basic Function, and store these field values into a
float array.

In my application, I combine the above 4 steps all together into a class called
LUSolver. With the help of this LUSolver class, I can do all these 4 important
processes though a simple method call. So after user worked out the sample
points in each adjusted B-Spline curve, they assign field values to every sample
points, and pass all information above in to a method called display in the
LUSolver class, then a new fielded cube will be returned from the method. The
performance of these LUSolver class will be shown in the following section with
test cases.

4.3 The Analysis and comparison of two different ways to implement The

Radial Basic Function in my application

The most difficult part while implementing the Radial Basic Function (even for my
whole application) is the way to work out positive and negative sample points
after the adjusted curves are given. Because sample points in the adjust curves
are all zero-valued points, and these are far not enough to determine the field
values in the whole working cube by Radial Basic Function. So we need a serial
of valid positive and negative sample points to help define the field values of the
whole cube. This raises a problem of deciding how many points that we going to
use and which way to determine positive and negative sample points.

 18

I have made two attempts to get the sample points in my application, and I will
explain each of them in detail in the following words.

4.3.1 Using normal vector to determine positive and negative sample points

Using normal vector to determine the positive and negative sample points came
out into my brain the first time when I start consider this problem. The main idea
of getting positive and negative sample points is very obvious: for each B-Spline
curve in the data slice, after I adjust the curve to make it fit the edges of the
image, I:

- take 20 sample points which has similar distance between every two of
them by using the t parameter of the B-Spline (Problem 1 introduced in
the section 3.2.3), and assign zero field value to all of them

- determine normal vector at every zero-valued sample point by working
out the tangent vector at that point first

- take 2 points in each side of the zero-valued sample point along the
normal vector with a constant distance

- separate into situations to determine which point should be assigned to
positive field value and which negative

Like the picture in the following:

Picture 4.3.1.1: Sample points from attempt 1

In the above picture, the grey points are zero-valued sample points directly taken
from the curve, red points are the positive sample points, and blue points are
negative sample points. I assign the field values of all red points to 10, and blue
points to -10.
So I use these sample points to create the final model by using the Radial Basic
function, the picture of the final model is in the following:

 19

Picture 4.3.1.2: the final model created from attempt one

There are several disadvantages of attempt one:

- The way to determine the positive and negative sample points are not
correct all the time in my application. As I just use the normal vector
and a constant distance value to determine the positive and negative
points. These way works for some simple model like above, but it will
get a big problem if I have very complex and messy picture. Then it will
be very hard to determine which point inside the closed curve and
which is outside. This is a common problem in the mathematic as well.

- Too many sample points will be created by this way. Because I will
create 2 points for each zero-valued point, 20 zero-valued points will
be taken from one curve, and there are at least 15 closed curves.
Totally, there will be 3*20*15 = 900 sample points for every test case.
900 sample points are quite a lot for the LUSolver. Sometimes
LUSolver will make some numerical error while working out the
coefficients of the Radial Basic Functions (Because while the number
of sample points getting bigger, some numerical error will occur when
a bad processor was included in the running of a parallel
application). Another problem caused by these 900 sample points is
that it’s quite time-consuming while do the calculation.

Because of the two disadvantages above, I have to find another way to efficiently
and effectively work out the sample points for Radial Basic Function and display
the final model. This make me think of the way I used in attempt two in following
section.

4.3.2 Using initial skeleton of the soft object to determine the positive
sample points

In my second attempts, I use the skeleton of the initial soft objects created in the
environment to determine the positive sample points, the reason of doing this are:

 20

- The soft object models approximately simulate the edges of the
models formed by the data images, the skeletons of the soft object
models are in the best positions for the positive points.

- Using skeletons to define the positive sample points can lead to much
less sample points than previous attempt (In fact I don’t need to specify
a positive and a negative points for every zero-valued sample point,
even for every slice).

But there is another problem arising: because I am using the 3D Marching Cube
to display the final reconstructed model, positive points and zero-valued points
are not enough to help Radial Basic Function precisely determined the field
values of every points in the cube (the reason will be introduced in the section
4.3.3). Then I need to determine the negative sample points as well, and this
leads to another difficulty that where and how many negative sample points I
need to define. In my application, as the image data are along the z axis of the
coordinate system, I define the points along the edges which are parallel to the z
axis as the negative points. This obviously is not a sufficient way to determine the
negative points, but it work for most of the case with only a few faults. The picture
below shows the sample points selected by method 2:

Picture 4.3.2.1: The sample points from method 2

In the above picture, we can find that at most 2 positive sample points in each
slice and all negative sample points are in the edges paralleling the z axis. In the
test case above, finally there are 20*15 + 10*12 = 420 sample points, this is less
than half of the sample points from attempt one, it’s much efficient and effective.

4.3.3 A common problem in both

There is a common problem appears in both of the attempt mentioned before, let
have a look at the following pictures, they are the meshes mode and sample
point’s mode of the final model:

 21

Picture 4.3.3.1: The mesh mode and sample point’s mode of the final model from 3D
Marching Cube with intensity 40

For the left picture above, the blue curve is the edges of the final model in current
slice. The right picture is a picture of the sample points for the final model. As I
am passing the sample points to the Radial Basic Function, and re-constructing
the final model by 3D Marching Cube with 0 field values specified, the blue curve
should exactly go though all the yellow points (zero-valued sample points) in the
right picture, but actually they are not.
I have substituted the zero-valued sample points into the Radial basic function
again to see whether the field value is zero (if not, then that means there is some
problem in my code). The result of this testing is that all field value for zero-
valued points are very close to zero, so this is not the cause of the problem.
Another cause of the problem I guess is that: as the way 3D Marching Cube to
work out the zero-valued point from two other valued points at each side is using
linear interpolation directly, however the way radial basic function use to
determine the field values is not linear, it’s about n2*log(n). This could lead to the
problem of not going though the zero-valued points.
For example, like the graph below:

Point O is the point with zero field value, and point A is a positive point, point B is
a negative point, the distance between A and O is R, and the distance between B
and O is 2R. If the field value in A is x, so that the field Value of point B should be
-22log(2)*x. However, if I know the position and field values of the points A and B
and want to work out the zero-valued point by linear interpolation, it will give me
the point O’ but not O. This is the reason why the meshes curve didn’t go though
the sample points. A way to prove my guess is right is by changing the intensity
of the Marching Cube: If I decrease the resolution of the Marching cube, the gap
between curve and sample points should be bigger. The following pictures show

 22

the meshes curve and sample points of the final model after I decrease the
resolution of the Marching Cube:

Picture 4.3.3.2: The mesh mode and sample point’s mode of the final model from 3D
Marching Cube with resolution of 20 by 20 squares for the image

According to the pictures above, I can obviously find out that the curve of the
mesh mode is far away from the sample points compared with the Pictures in
4.3.3.1. This means the Marching Cube must be one of the causes of the
problem.

5. Sample test case for my application

Before I introduce the sample test case of my application, I will introduce another
technical problem I solved in my application first.

5.1 Re-arrange the control points to form the closed B-Spline curve

In my application, after the users use soft object models to approximately
simulate the shape from data image, my application will take the corresponding
points and field values for each slice created by soft object, and it uses a 2D
marching Cube to work out the corresponding interpolated points. So now I have
a problem to re-arrange the interpolated points before I use them to create
BSpline instance. The reasons why I need to re-arrange the interpolated points is
that they are not in the correct order initially, if I don’t re-arrange them, a very
messy curves will be created. Like the picture in the following:

 23

Picture 5.1.1: The curve created before rearrange

According to the above picture, we can find that if we don’t correctly arrange the
control points of the B-Spline curve, a not correct curve will be created, and it
definitely can not be used for the future adjusting.
I re-arrange the control points by writing a algorithm which connecting every
head and tail of the point pairs returned from the 2D marching cube. The detail of
these lines of code are in the applyMarchingSquare() method, and all the
methods related to it.

5.2 Test case: Constructing the Pelvis of the human body

Finally, in order to show the effective and efficiency of my application, I provide a
test case together with my application, this is a test case of reconstructing
human’s pelvis by my toolkit. I take the sample MRI data set of Human’s Pelvis
directly from the Auckland University COMPSCI 716’s assignment web page.
This is a real MRI dataset of a human’s pelvis, and this dataset consists of 56
image slices in grayscale color (value between 0 and 255), so I use these image
slices as the basic slices users should follow while approximately constructing
the model in the data set. A quick look at of these image slices is in the following:

 24

Picture 5.2.1: The MRI data slice of human’s pelvis

Initially, I planned to make a simulated model of the bones in the pelvis (like the
parts inside the red circles of the above image). But the intensity of the Marching
Cube in my application is not high enough to precisely detect the edges of bone
in this pelvis dataset. Then I changed my mind to construct the whole outside
skins of the pelvis other than the bones.
For the Pelvis MRI data set I get from the internet, because the width, height and
length of this data set are 128,128, and 56, it only takes about half of the working
environment to display all MRI data slices (because the length is only 56, about
half of 128). I have modified my application to limit the display points so that they
can only be displayed in this limited area. In my application, the area user use to
construct the pelvis is all the space from 0.25 to 0.75 in z axis.
The description about the steps I make my test case is in the following:

- I hard-coded 4 Soft Cone models into my application to approximately
construct the outside skin of the pelvis (In normal situation, users are
required to do these steps by mouse by themselves).

Picture 5.2.2: 4 Soft Cones which approximately simulate the pelvis

 The positions and radius values of these 4 soft cone models are:
 Soft Cone 1:

Position: (0.33, 0.51, 0.25) (0.27, 0.44, 0.75)
Radius: 1.5 1.3

 Soft Cone 2:
Position: (0.65, 0.51, 0.25) (0.73, 0.44, 0.75)
Radius: 1.5 1.3

 Soft Cone 3:
Position: (0.5, 0.51, 0.25) (0.5, 0.44, 0.75)
Radius: 1.5 1.3

 Soft Cone 4:
Position: (0.5, 0.6, 0.25) (0.5, 0.6, 0.75)

 25

Radius: 0.3 0.3
- With the Soft Cone models mentioned above, we get a approximate

model of the human’s pelvis. For the picture below, we can find that
the contour of the model formed by 4 soft cones are still not exactly
match the edges of each slices, it just approximately close to them.

Picture 5.2.3: Model formed by4 Soft Cones to approximately simulate the pelvis
- After the approximate model is created (according to previous two

steps), I click the GetSnake Button in my application. This button
actually starts all the processes of computing and displaying the final
model described by the MRI dataset. They are listed in the following:

1. Get the field values in the environment created by soft object
2. Take the corresponding field values to form a 2D array for each

data slice
3. Pass fields values from previous step to a 2D Marching cube to

work out the interpolated points of the current environment with
the data slice

4. Use the interpolated points to form a closed B-Spline curve by
passing them into a new BSpline instance

5. Call the adjustBSpline() method for every BSpline instance to
adjust the initial B-Spline curve and make them match the
edges in every image slice.

6. Call the getSamplePoints() method in BSpline instance to get
the zero-valued sample points from each adjust curves, also
get the positive and negative sample points as well.

7. Pass all the valued sample points into the LUSolver class, and
call the display() method in the LUSolver class to get the new
field values.

8. Using 3D marching cube again to reconstruct the model by the
new field values.

 26

- finally, I got the human’s Pelvis like following picture:

Picture 5.2.4: Final model of human’s pelvis from my application

After this human’s pelvis is displayed, users still can switch between this final
mode and the initial soft cones mode by using the ‘a’ button in the keyboard.

5.3 Contained problem and further improvement of my application

Currently, the contained problem in my application is still the problem that the
final curve of my model doesn’t match the zero-valued sample points (I
mentioned in section 4.3.3).
One improvement of my application can be made in the process in which I get
the interpolated points for each slice in my application. Currently I get these
points from the field values which are pre-calculated and stored in my application
already. This is not precise enough for using 2D Marching Cube to get the
interpolated points in each data slice. I can change this process by recalculating
the field values at each slice singly, and then I can get a very precise field values
for my 2D Marching Cube.

6. Conclusion and further research

In this project, I have developed a program which can help the medical
researchers much easier to track the contour in each image slice. The reason
why my software is convenient is that the researchers can use the soft object
models to approximately construct the shape in each MRI data slice, and get the
exact contour by letting computer to work it out automatically, this is much easier
than asking researchers to use mouse to track the contour themselves by hand.
In my future research, I can improve my application by finding a better way to
reconstruct the model from the adjust curves other than using the Radial Basic

 27

Function. The reason is that although the Radial Basic Function provide a really
smooth surface for the model, it is quite time-consuming to run. I am currently
focusing on using free form deformation technique to create deformable meshes
to match the adjust curves from the B-Spline snake. This is quite a new
technique in this area, however, it’s still far away from finish.

Reference
[1] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International
Journal of Computer Vision 1 (4) (1988) 321-331.

[2] Burkhard Wunsche and Ewan Tempero, A Comparison and Evaluation of
Interpolation Methods for Visualizing Discrete 2D Survey Data.

[3] Carr, J. C., Beatson, R. K.,Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum, B.
C. & Evans, T. R. (2001), Reconstruction and representation of 3D objects with radial
basic functions, in ‘Proceedings of ACM SIGGRAPH 2001’, Computer Graphics
Proceedings, Annual Conference Series, pp. 67-76.

[4] William H.Press, Saul A. Teukolsky, William T. Vetterling, Brian P.Flannery, LU
Decomposition and Its Application, Chapter 2.3, Numerical Recipes in C.

[5] Bo Li, Modelling heart pathology with Soft Object Modelling, COMPSCI 380
project, supervised by Burkhard Wuensche, Department of Computer Science, University
Of Auckland, New Zealand, November 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

